
HAL Id: hal-00411146
https://hal.science/hal-00411146v1

Submitted on 26 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UbiGate: A Gateway to Transform Discovery
Information into Presence Information

Bissyandé Tegawendé, Laurent Réveillère, Yérom-David Bromberg

To cite this version:
Bissyandé Tegawendé, Laurent Réveillère, Yérom-David Bromberg. UbiGate: A Gateway to Trans-
form Discovery Information into Presence Information. 4th ACM International Workshop on Services
Integration in Pervasive Environments, Jul 2009, London, United Kingdom. pp.NC. �hal-00411146�

https://hal.science/hal-00411146v1
https://hal.archives-ouvertes.fr


UbiGate: A Gateway to Transform Discovery Information
into Presence Information

Tegawendé Bissyandé
ENSEIRB

Department of Telecommunications
1 av. du docteur Sweitzer

BP99 - 33402 Talence Cedex, France
bissyand@enseirb.fr

Laurent Réveillère David Bromberg
University of Bordeaux 1

351 cours de la Libération
F-33405 Talence Cedex, France

{reveillere, bromberg}@labri.fr

ABSTRACT
Pervasive computing involves various entities which need to
coordinate tasks and share resources through different ser-
vice discovery protocols. However, the multiplicity and the
incompatibility of those protocols have made interconnec-
tivity problematic. Moreover, most service discovery pro-
tocols require a strong participation of users to genuinely
play their part. Consequently, service discovery in a per-
vasive environment has become a challenge that researchers
as well as practicionners have tried to overcome through
various approaches. Nevertheless, existing solutions mostly
consist of designing new protocols which usually address spe-
cific application needs while participating in the increase of
heterogeneity.

To address these problems, we present a new paradigm for
service discovery involving the use of a gateway, called Ubi-
Gate, and relying on SIP, a widespread signaling protocol.
Centered around the notion of presence, UbiGate enables
real time availability of service information while hiding the
heterogeneity of underlying protocols. We have developped
a prototype of UbiGate supporting service discovery proto-
cols such as the protocol used in Bluetooth service discovery
mechanism and a protocol enabling the detection mechanism
of RFID. Preliminary results show that UbiGate enables new
service discovery protocols, either IP or non-IP based, to be
seamlessly supported with no significant overhead in discov-
ery latency.

Keywords
UbiGate, SIP, Presence, Pervasive, SDP, Service Discovery

1. INTRODUCTION
Ubiquitous Computing, otherwise known as pervasive com-

puting, refers to a computing paradigm where the user is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIPE’09 July 13–17, 2009,London, UK
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

constantly in interaction with computing devices [11]. As
envisioned by Weiser, pervasive computing takes into ac-
count the natural human environment and allows the com-
puters themselves to vanish into the background [27]. In such
environments, computers surrounding the user share com-
munication resources and computing capacities packaged as
services. The pervasive computing scheme therefore aims
at enabling the use of those services in the most seamless
and effortless possible way. Users collect information that
describes attributes of available services using Service Dis-
covery Protocols (SDPs). Currently, pervasive computing
makes use of a wide range of SDPs [2, 8, 9, 12, 15, 16, 24,
25, 26]. Therefore, a user will be isolated if his device lacks
the capacity to discover resources available in its vicinity
because of protocol incompatibility.

Existing SDPs are either based on the Pull model or the
Push model. In the Pull model, service requesters regularly
send requests to discover services available in their environ-
ment. In the Push model, service providers automatically
announce the services they provide by sending advertise-
ments. However, neither model correctly address the con-
straints of pervasive computing. Indeed, the volatility of
devices requires service requesters to reiterate their discov-
ery requests to get up-to-date information when using the
Pull Model. In the Push Model, advertisements sent by ser-
vice providers are performed cyclicly. Hence, users must
wait for the next advertisement to get accurate informa-
tion. The dynamicity of pervasive environments suggests
that users should be notified when the state of a service
changes in order to provide realtime snapshots of the con-
text in which they operate. Such a realtime service discov-
ery can be compared to the notification of contact status
in Instant Messaging (IM) clients such as Windows LiveT M

Messenger or Google TalkT M . In those IM clients, the user
performs a realtime monitoring on the presence status of
each member of its buddy list. This ability to access realtime
information about a person’s status, communications capa-
bilities, and preferences as suggested by Rosenberg in [20] is
relevant to virtually every means of communication.

So as to convey presence information dynamically, various
instant messaging protocols are available, such as XMPP
(also known as Jabber) [22], IRC [17] and SIP/SIMPLE [13,
19, 21]. In particular, the Session Initiation Protocol, oth-
erwise known as SIP, is widely adopted for its simplicity,
portability and extensibility[10, 20].

Taking into consideration both the aforementioned chal-
lenges of Service Discovery in pervasive computing and the



SIP widespread adoption, we introduce a new service dis-
covery paradigm based on SIP.

This paper
This paper presents a new approach for service discovery
based on the SIP protocol. It consists of exposing discov-
ery information about services as presence information for
users. To do so, we introduce the UbiGate gateway which is
in charge of transforming discovering information into pres-
ence information. UbiGate handles all discovery tasks in
the environment and delivers pertinent information to each
user.

The contributions of this paper are as follows:

• We have proposed a new approach for service discov-
ery involving the use of a gateway and relying on the
widely used SIP protocol. Following our approach, we
present UbiGate: a gateway to transform discovery in-
formation into presence information;

• We have developped dedicated modules for UbiGate to
support RFID and Bluetooth technologies. Our pre-
liminary experiments show that UbiGate does not in-
troduce any significant performance penalty in service
discovery while enabling support of new services to be
easily added.

The rest of this paper is organized as follows. Section 2
introduces our approach and the architecture of the UbiGate
gateway. Section 3 assesses our prototype implementation of
UbiGate, demonstrating its benefits in a pervasive environ-
ment. In Section 4, we present other approaches that were
proposed as attempts to unify the mechanisms of service
discovery. Finally, Section 5 concludes and presents future
work.

2. OUR APPROACH

Figure 1: Interaction among pervasive computers,
users and UbiGate

The most important concern in service discovery within
pervasive computing is the interconnectivity among com-
munication entities. Yet, the variety of protocols, because
of their incompatibility, has made it difficult for one device
to keep track of the availability of existing services. The
underlying challenges are to enable service discovery using
a unique protocol, and to improve reactivity, considering

the volatility of pervasive environments. Our approach con-
sists of building a gateway in charge of transforming service
discovery messages into presence information for end-users.
This gateway, called UbiGate, exchanges information with
users through the SIP protocol, while managing various na-
tive discovery protocols, as illustrated in Figure 1.

UbiGate aims at unifying service discovery protocols so
as to make them transparent for users. Besides, it is perti-
nent to suppose that the appearance of new protocols will
facilitate the advertisement of more services that may inter-
est users. Therefore, the infrastructure has been designed
to easily welcome new protocols. In UbiGate, protocols are
plugged as modules packaging their capabilities.

Practically, UbiGate enables service discovery through SIP
compliant devices. Using the SIP protocol, users can ad-
dress discovery requests to the gateway which will manage
all tasks for information gathering. SIP is thus the pillar of
our approach. So as to better understand how it sustains
the infratructure, an overview of the protocol is presented.

2.1 SIP background
SIP is originally a signaling protocol for Voice over IP

(VoIP) and third generation mobile phones. It is standard-
ized by the IETF and adopted by the ITU.1 This protocol
enables creating, modifying and terminating a communica-
tion between parties. Communications include audio/video
communications, games, and instant messaging.

The SIP protocol is based on a client-server model. A SIP
message can be sent or received by a client. A sent message
is said to be outgoing ; otherwise, it is said to be incoming.

SIP is a text-based protocol similar to other well-known
protocols such as HTTP2 and RTSP.3 A SIP message begins
with a line indicating whether the message is a request (in-
cluding a protocol method name) or a response (including a
return code). A sequence of required and optional headers
follows. Finally, a SIP message includes a body containing
other information relevant to the message.

Logically, SIP is composed of three main entities: a reg-
istrar server to allow users to record their current location,
a proxy server in charge of dispatching SIP messages, and a
user agent required on each communication device to per-
form all SIP-related actions.

To support mobility, a user is assigned a SIP URI (Uni-
form Resource Identifier), which is a symbolic address, anal-
ogous to an e-mail address. When a SIP proxy receives a
message for a local URI, it asks the local registrar server
to translate the URI into contact information for a specific
user agent. A user must thus inform the registrar server of
the user agent at which he would like to receive messages.

Following the success of SIP, the IETF has produced many
specifications related to presence and instant messaging with
SIP. This set of specifications is known as SIMPLE4 and
covers topics ranging from protocols for subscription and
publication to presence document formats.

2.2 UbiGate architecture
The UbiGate gateway aims at meeting the challenges of

service discovery in pervasive computing by leveraging the

1ITU: International Telecommunications Union.
2HTTP: HyperText Transfer Protocol.
3RTSP: Real Time Streaming Protocol.
4SIMPLE: SIP for Instant Messaging and Presence Lever-
aging Extensions.



SIP protocol. The architecture of UbiGate is based upon
the three major components illustrated in Figure 2.

Figure 2: UbiGate architecture

The main issue that is addressed by the UbiGate gate-
way is the reliability of the communication channel between
UbiGate and users. Indeed, service requesters rely on Ubi-
Gate to perform discovery tasks and regularly convey back
to them appropriate information. So as to ensure a reli-
able and efficient access to information, service attributes
are stored in a centralized registry managed by the gate-
way. Indeed, because of the dynamicity of pervasive en-
vironments, distributed storage systems are hard to deploy
and maintain efficiently. Considering the capabilities of SIP,
UbiGate deploys an event framework in charge of managing
a SIP presence server. This Presence Manager handles the
storage of services as entries, and matches requesters’ sub-
scriptions with those entries.

In order to discover services, UbiGate uses a service bro-
ker. This broker handles the native discovery protocols sup-
ported by the gateway. The Communication Manager (i.e.
the service broker), is in charge of activating service discov-
ery sessions and recovering the attributes of services that
are available in the environment. This component cooper-
ates with the previous one for service information storage.

The Gateway Manager enforces the coordination between
the components. It therefore enables them to conjointly
perform discovery and notification tasks. This component
also provides a control interface for the administration of
UbiGate, allowing users to easily add new features.

Furthermore, since our approach aims at providing an
infrastructure that is as much extensible as possible, Ubi-
Gate’s suported discovery protocols are integrated through
modules. For a given discovery protocol, the module pack-
aging its capacities can be plugged into the gateway and re-
moved as well without impacting the behaviour of existing
protocols. This design feature allows UbiGate to be eas-
ily integrated in the environment so as to limit the impact
of changes for end-users. Typically, the gateway renders
seamless the upgrades on discovery protocols as well as dis-
ruptions in environment settings. Indeed, service providers
are not required to switch to or add new protocols in their
service advertisement kernel. In point of fact, it is up to the
gateway to adapt itself to the environment by integrating
in its core new modules for supporting available discovery
protocols.

2.3 Service Discovery using UbiGate
Service discovery through UbiGate can be split in two dis-
tinct activities: the discovery process activity which col-
lects service information, and the notification activity during
which information is delivered to service requesters.

UbiGate uses a Pull model for its discovery processes.
Practically, all the native service discovery protocols man-
aged by the gateway are regularly called upon to scan the en-
vironment so as to provide up-to-date information on avail-
able services. However, as far as service requesters are con-
cerned, the discovery system is perceived as running a Push
model that works in real time. Indeed, an advertisement is
performed each time the context changes. This scheme al-
lows UbiGate to unify service discovery mechanisms while
improving the Push model. It is this notion of realtime no-
tification that has encouraged the choice of SIP.

A user wishing to benefit from the capacities of UbiGate
is required to register itself as a service requestor by sub-
scribing to the presence of a service. The subscription sent
to the gateway is performed by sending a SIP SUBSCRIBE
request, including an URI5 that represents the targeted ser-
vice. For the purpose of guaranteeing a uniform interaction
with the gateway, we have introduced an ad-hoc format for
encoding relevant subscription information into URIs. This
format indicates the type of service, or/and the provider’s
name, and/or the preferences on the protocol through which
the service is advertised.

sip:UbiAny.Printer.UbiAny@192.168.200.18

Figure 3: Example of subscription URI

The service request format thus provided allows requesters
to target a specific type of service on a given device while
filtering the advertisement protocol. The latter option can
be useful if the requester is sending requests on behalf of
other entities that have strict constraints.

As illustrated in the example of Figure 3, keywords such
as Printer may be used so that communicating entities may
understand the significance of the terms utilized.

To discover the full range of available services in its vicin-
ity, the client can send beforehand a SUBSCRIBE [19] re-
quest using the joker UbiAny. The gateway will then inform
the client of all service types available through a list of key-
words. Using them, the user can then properly transmit its
subscription to the gateway.

<note> Bluetooth.OBEXObjectPush.0C:19:73:1F:1C </note>

Figure 4: Compact description of a service

Service attributes requested by a user are described in a
standard PIDF6 XML document attached to SIP NOTIFY
[19] messages. To enable standard, unmodified, SIP user
agents such as Windows Live Messenger to correctly pro-
cess such a PIDF document, we use the optional note tag
recommended by the RFC [23] for additional information,
as illustrated in Figure 4. Each of these service descriptions
contains only the essential information that characterizes a
service: the service type, the address of the entity offering

5URI: Uniform Resource Identifier.
6PIDF: Presence Information Data Format.



the service, and the native protocol used by the provider to
announce the service.

Thus, the compact description proposed in Figure 4 presents
a OBEX Object Push service advertised by the Bluetooth
Service Discovery Protocol supported by a Bluetooth-enabled
device which MAC address is ‘0C:19:73:1F:1C’. This type
of description is provided when requesters specify in their
requests the service type and the protocol. The presence
server then supplies the provider’s address as requested in-
formation.

However, it is noteworthy to mention that the flexibility
of SIP can be exploited so as to deliver better descriptions of
services. Indeed, besides the essential attributes listed pre-
viously, a user may be interested in knowing the name of the
service provider, its state along with the possible function-
alities it yields. To deliver such an extended description, we
have designed a new Service Discovery Information Format
that is an extension of PIDF. In this new format, instead of
using the PIDF note tag, UbiGate fills a service tag with all
attributes values. The new format thus allows a more en-
hanced description of services as illustrated in the example
of Figure 5.

1 <service id=”service-101”>
2 <type> Printer </type>

3 <name> Zeus </name>
4 <brand> Xerox </brand>
5 <protocol> RFID </protocol>

6 <address> A0:23:1C:34:17 </address>
7 <state> Ready </state>

8 <functions>
9 <function> Printer </function>

10 <function> Copier </function>

11 <function> Scanner </function>
12 </functions>

13 </service>

Figure 5: Extract of the extended description of a
service

The protocol tag in the Service Discovery Information For-
mat contains a value that refers to the protocol used by the
service provider to advertise the service. Thus, the value
‘RFID’ has been placed in the example of Figure 5 because
an RFID tag has been attached to the printer Zeus, and it is
the detection of this tag that has provided all the informa-
tion. This extended description format has been designed
to include all informations provided by Bluetooth Service
Description Protocol as it was the experimental protocol
used in UbiGate. Yet, the extensibility of the PIDF for-
mat guarantees future adaptations of the format to include
any additional attribute proposed by any service discovery
protocol. Moreover, the format proposed is flexible since
the parser does not require all services to be completely de-
tailed. Besides, note tags can be used when the description
proposes more information that need to be conveyed to the
requester.

Advanced Features. With UbiGate, a user can subscribe
to any available services, without any concern for diversity
of entities that provide those services, nor for the protocols
they use for advertisement. However, usually, users require
advanced discovery features based on service providers or
more often on protocols used for service advertisement. Typ-
ically, if we consider a user that needs to discover, with his
PDA, the services advertised by his desktop computer, it is
important to allow him to subscribe to the computer rather

than to all service types that UbiGate can find in the entire
environment. Likewise, a user wishing to track all RFID
tags that penetrate his environment should receive informa-
tion related only to the protocol used for RFID. Thus, Ubi-
Gate provides an optimisation of discovery requests. This
optimisation consists of enabling a selection for the options
mentionned above by including fields in subscription URIs.

3. ASSESSMENT
To assess our approach, we have developed a prototype

implementation of UbiGate. This prototype includes about
10,500 lines of Java code, and relies on the SIP presence
server7 provided by NIST (National Institute for Standards
and Technology).

For the purpose of presenting the contributions of Ubi-
Gate, we have considered two case studies involving the
Bluetooth technology and RFID which is increasingly adopted
for tracking purpose.

First, we consider a building manager who needs to be
informed in real time when items of great value cross spe-
cific gates of his building. These items have been associated
with RFID tags. As an important constraint, the manager
should be able to receive information on his desktop or lap-
top computer and any SIP compliant device. To enable this
scenario, we have integrated in UbiGate support for RFID
by developing a module, as described in Section 2.2. This
module consists of about 200 lines of Java code. For our ex-
periments, we used the ASPX RFID Kit (Icode 2) RW-310
with C-100 Converter.

In our second case study, we consider that a user with
a Bluetooth-enabled device will likely scan the environment
several times to discover available Bluetooth services. Since,
inquiries in Bluetooth respect the Pull model, service discov-
ery is no longer seamless nor effortless because it involves
perpetual manipulation from users and/or permanent in-
quiries from devices. Using UbiGate, the user only has to
subscribe to the presence of Bluetooth entities and their ser-
vices. To do so, we have developed a Bluetooth module con-
sisting of about 1,100 lines of Java code and based on the
AvetanaBluetooth8 stack.

As described in Section 2.3, creating well-formatted re-
quests requires that users know their syntax, which can be
a complex task. To overcome these limitations, we have de-
veloped a SIP User Agent that is compliant with UbiGate’s
new format for service description. It provides a powerful
graphical interface simplifying the subscription steps. We
have tested the presence server of UbiGate using SIP com-
pliant standard clients such as SJPhone9 and SIP Commu-
nicator10.

Within the same perspective, we have implemented an
interface for UbiGate’s administrators. They can use the
interface to start pulling with a specific service discovery
protocol even if there is no subscription yet. Thus, when
requesters address their requests to UbiGate, the latter has
already information to deliver. The interface also allows
shutting down the gateway or disabling unused protocols.

Table 1 lists the sizes of the implementations for UbiGate’s
different components. It also includes the sizes of the two

7NIST SIP: http://www-x.antd.nist.gov/proj/iptel/
8Avetana web page: http://www.avetana-gmbh.de
9SJPhone: http://www.sjlabs.com

10SIP Communicator: http://sip-communicator.org



Figure 6: UbiGate service discovery stack (Example with Bluetooth SDP)

modules required for Bluetooth and RFID support.

Component/Module Package size

UbiGate
Gateway manager 4.8 Kb
Communication manager 25.1 Kb
SIP Presence Server 4.1 Mb

Total size of UbiGate 4.13 Mb

Modules
Bluetooth 22.2 Kb
RFID 6.1 Kb

Table 1: Package size of UbiGate components and
modules

We now present preliminary results of a performance eval-
uation of our UbiGate implementation. For our experi-
ments, the gateway has been deployed on an Intel Pentium
4 computer with CPU frequency of 3.06 GHz and 1 MB
of memory. We have also setup a native application using
the Avetana stack directly. Due to specificities of Bluetooth
technology, only first inquiry sessions are relevant. Indeed,
the service discovery process is then complete and the de-
vices do not use any information from previous inquiries to
accelerate information exchanges. The comparison in Ta-
ble 2 shows that there is no significant overhead using Ubi-
Gate compared to a direct discovery process using the Ave-
tana Bluetooth stack. Indeed, over the 31 seconds required
for bluetooth service discovery completion, UbiGate takes
less than 1 second to reformat informations data and con-
vey them through the network for display on the client side.

Native UbiGate
Delay 1st inquiry ≈ 31 seconds ≈ 31.7 seconds

Table 2: Comparison of Bluetooth inquiry delays

We have also deployed Ubigate on an OSGI TM platform
in order to facilitate its deployment, migration and the man-
agement of dependancies. For this, we have encapsulated
UbiGate’s components as OSGi bundles. The OSGi bun-
dles for the modules enable dynamic upgrades of UbiGate,
while presenting roughly the same size of code as the non-
OSGi version. Our OSGI based implementation of UbiGate
has been deployed and run successfully on the knopflerfish11

OSGi platform. The OSGi bundles as well as the complete
Java code of the UbiGate project are available at the project
web page12.

Finally, it is noteworthy to indicate that UbiGate infras-
tructure allows new service discovery protocols (such as Jini,

11Knopflerfish: www.knopflerfish.org
12UbiGate: http://uuu.enseirb.fr/∼bissyand/UbiGate/

UPnP, ...) to be easily added. Further, as outlined in Fig-
ure 6, Ubigate enables IP and non-IP applications to dis-
cover each other transparently.

4. RELATED WORK
Over the years many research groups and industries have

focused on designing solutions to cope with the heterogene-
ity of service discovery protocols. Typically, providing SDP
interoperability consists of enabling applications to switch
their current SDPs on the fly according to their networked
environment. This is made possible through the use of an
intermediate representation of SDPs paradigms (i.e an in-
termediary protocol) in order to abstract incompatibilities
among SDPs to exclusively consider their similarities [1, 3,
5, 7, 14, 18]. So far, two approaches have emerged depend-
ing on how applications are either bound or unbound to this
intermediary protocol [4]. In an explicit approach, applica-
tions need to be explicitly designed to use a specific discovery
API that translates, if required, the intermediary protocol
to the SDP currently used according to the networked en-
vironment [18]. In a transparent approach applications are
unaware of the translation process [3]. While the latter of-
fers seamless interoperability to legacy applications, the for-
mer enables the extending existing SDPs with advanced fea-
tures. Our approach combines the strengths of the current
approaches to provide a new SDP paradigm based on the
concept of presence in order to provide a realtime discovery
as required by pervasive environments. Following the ex-
ample of the Amigo service architecture [6], UbiGate allows
the integration of heterogeneous technologies by establish-
ing interoperability of SDPs through different mechanisms
involving the deployment of an intermediate node.

5. CONCLUSION
The multiplicity of discovery protocols, the capacities of

pervasive computers, and the expectations of users, have
contributed to the rise of new challenges for service discov-
ery. To meet these challenges, we have proposed a new ap-
proach for service discovery involving the use of a gateway
and relying on a widespread protocol, SIP.

Following our approach, we have designed the UbiGate
gateway in charge of transforming discovery information into
presence information. UbiGate can then process subscrip-
tions from SIP compliant devices and manage discovery tasks
using adequate native service discovery protocols. Centered
around the notion of presence, UbiGate enables a realtime
availability of service information while hiding the hetero-
geneity of underlying protocols.



The suitability of the approach for pervasive computing
has been illustrated through two case studies involving the
use of the Bluetooth service discovery protocol and a proto-
col for RFID. We have then developed dedicated modules for
UbiGate, thus demonstrating the ease for adding support of
new protocols.

After tackling the issues in service discovery in this paper,
future work will involve service delivery using the SIP pro-
tocol. Taking advantage of the peer-to-peer model of SIP
and the portability aspect of UbiGate, service delivery can
be dealt with efficiently.

Acknowledgements
The authors would like to extend their gratitude to EN-
SEIRB graduate students Nabila Ayadi, Jean Collas and
Aurélie Goubault de Brugière who contributed major parts
of the implementation of UbiGate’s prototype. We further
thank Dr. Julia Lawall and the anonymous reviewers for
their useful comments.

6. REFERENCES
[1] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel.

Base: A microbroker-based middleware for pervasive
computing. In Proc. of PERCOM’03, pages 443–451.
IEEE Computer Society, 2003.

[2] Bluetooth Consortium. Specification of the Bluetooth
System Core version 1.0b: Part E, Service Discovery
Protocol (SDP). Technical report, November 1999.

[3] Y.-D. Bromberg and V. Issarny. INDISS: Interoperable
discovery system for networked services. In Proceedings
of the 6th International Middleware Conference, pages
164–183, Grenoble, France, Nov. 2005.

[4] Y.-D. Bromberg, V. Issarny, and P.-G. Raverdy.
Interoperability of service discovery protocols:
Transparent versus explicit approaches. In Proceedings
of the 15th IST Mobile and Wireless Communications
Summit, Myconos, Greece, 2006.

[5] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P.
Picco, and S. Zachariadis. A Reconfigurable
Component-based Middleware for networked
Embedded Systems. Journal of Wireless Information
Networks, 14(2):149–162, June 2007.

[6] N. Georgantas, S. B. Mokhtar, Y.-D. Bromberg,
V. Issarny, J. Kalaoja, J. Kantarovitch, A. Gerodolle,
and R. Mevissen. The amigo service architecture for
the open networked home environment. In WICSA
’05: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture, pages 295–296,
Washington, DC, USA, 2005. IEEE Computer Society.

[7] P. Grace, G. S. Blair, and S. Samuel. A reflective
framework for discovery and interaction in
heterogeneous mobile environments. SIGMOBILE
Mob. Comput. Commun. Rev., 9(1):2–14, 2005.

[8] E. Guttman, C. Perkins, J. Veizades, and M. Day.
Service Location Protocol, Version 2. RFC 2608,
Internet Engineering Task Force, June 1999.

[9] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - a
service discovery and delivery protocol for ad-hoc
networks, 2003.

[10] W. Jiang, J. Lennox, H. Schulzrinne, and K. Singh.
Towards junking the PBX: Deploying IP telephony,
2001.

[11] T. Kindberg and A. Fox. System software for
ubiquitous computing. IEEE Pervasive Computing,
1(1):70–81, January 2002.

[12] J.-C. Liang, J.-C. Chen, and T. Zhang. Mobile service
discovery protocol (msdp) for mobile ad-hoc networks.
In Autonomous Decentralized Systems, 2007. ISADS
’07. Eighth International Symposium on, pages
352–362, 2007.

[13] M. Lonnfors, J. Costa-Requena, E. Leppanen, and
H. Khartabil. Session initiation protocol (SIP)
extension for partial notification of presence
information. RFC 5263, Internet Engineering Task
Force, Sept. 2008.

[14] E. Loureiro, F. Bublitz, N. Barbosa, A. Perkusich,
H. O. de Almeida, and G. Ferreira. A flexible
middleware for service provision over heterogeneous
pervasive networks. In Proc. of WoWMoM’06, pages
609–614. IEEE Computer Society, 2006.

[15] R. S. Marin-Perianu, J. Scholten, P. J. M. Havinga,
and P. H. Hartel. Cluster-based service discovery for
heterogeneous wireless sensor networks. Int. J.
Parallel Emerg. Distrib. Syst., 23(4):325–346, 2008.

[16] A. N. Mian, R. Baldoni, and R. Beraldi. A survey of
service discovery protocols in multihop mobile ad hoc
networks. IEEE Pervasive Computing, 8(1):66–74,
2009.

[17] J. Oikarinen and D. Reed. Internet Relay Chat
Protocol. RFC 1459, Internet Engineering Task Force,
May 1993.

[18] P.-G. Raverdy, V. Issarny, R. Chibout, and
A. de La Chapelle. A multi-protocol approach to
service discovery and access in pervasive environments.
In The 3rd Annual International Conference on
Mobile and Ubiquitous Systems: Networks and
Services, pages 1–9, San Jose, CA, USA, July 2006.

[19] A. B. Roach. Session Initiation Protocol (SIP)-Specific
Event Notification. RFC 3265, Internet Engineering
Task Force, June 2002.

[20] J. Rosenberg. Presence: The best thing that ever
happened to voice. Comput. Teleph., 8(11):67–68,
2000.

[21] J. Rosenberg. A presence event package for the session
initiation protocol (SIP). RFC 3856, Internet
Engineering Task Force, Aug. 2004.

[22] P. Saint-Andre. Extensible Messaging and Presence
Protocol (XMPP): Core. RFC 3920, Internet
Engineering Task Force, Oct. 2004.

[23] H. Sugano, S. Fujimoto, G. Klyne, A. Bateman,
W. Carr, and J. Peterson. Presence information data
format (PIDF). RFC 3863, Internet Engineering Task
Force, Aug. 2004.

[24] Sun Microsystems. Jini Architecture Specification
version 2.0. Technical report, June 2003.

[25] The Salutation Consortium. Salutation Architecture
Specification version 2.0c. Technical report, June 1999.

[26] UPnP Forum. UPnP Device Architecture version 1.0.
Technical report, June 2000.

[27] M. Weiser. The computer for the 21st century.
Scientific American, 265(3):66–75, September 1991.


