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Boltzmann sampling of ordered structures

Boltzmann models from statistical physics combined with methods from analytic combinatorics give rise to efficient algorithms for the random generation of combinatorials objects. This paper proposes an efficient sampler which satisfies the Boltzmann model principle for ordered structures. This goal is achieved using a special operator, named box operator. Under an abstract real-arithmetic computation model, our algorithm is of linear complexity upon free generation ; and for many classical structures, of linear complexity also provided a small tolerance is allowed on the size of the object drawn. The resulting programs make it possible to generate random objects of sizes up to 10 7 on a standard machine.

Introduction

In 2004, Duchon, Flajolet, Louchard and Schaeffer [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF] proposed a new model, called Boltzmann model, which leads to systematically construct samplers for random generation of objects in combinatorial classes described by specification systems. This framework has two main features: uniformity (two objects of the same size will have equal chances of being drawn) and quasi-linear time complexity.

Boltzmann samplers depend on a real parameter x and generate an object a in a given combinatorial specifiable class A with a probability essentially proportional to x |a| where |a| is the size of a. Hence they draw uniformely in the class A n of all the objects of size n in A. The size of the output is a random variable, and parameter x can be efficiently tuned for a targetted mean value. Moreover using rejection, one can obtain exact size or approximate size samplers. Efficient generation of huge objects makes it possible to adress problem of testing and benchmarking. This new approach differs from the "recursive method" introduced by Nijenhuis and Wilf [START_REF] Nijenhuis | Combinatorial algorithms[END_REF] bringing the possibility of relaxing the constraint of an exact size for the output. This implies a significant gain in complexity: no preprocessing phase is needed and expected time complexity is linear in the size of the output.

Boltzmann samplers have been developped for a whole set of combinatorial classes, labelled or unlabelled. Basically, they are classes defined from basic elements by means of fundamental constructions such as cartesian products, disjoint unions, sequences, sets and cycles, these operators being well known in combinatorics.
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In this paper, we focus on a particular operator, introduced by Greene [START_REF] Greene | Labelled formal languages and their uses[END_REF], which allows to construct objects with internal order constraints. We extend Boltzmann model to efficiently generate these objects. The main idea is to slightly change the value of the x parameter along the execution of the algorithm. This simple idea leads to Boltzmann samplers for objects such as alternating permutations (which we could not handle before) and more generally any variety of increasing tree [START_REF] Bergeron | Varieties of increasing trees[END_REF]. This also leads to a new point of view for random sampling of combinatiorial objects built upon Cycle, Set or Sequence, as these constructions can be rephrased using ordered structures [START_REF] Greene | Labelled formal languages and their uses[END_REF][START_REF] Flajolet | Analytic combinatorics[END_REF]. Nonetheless, there is still some points to be adressed in order to make this method fully effective: we have to evaluate the generating series of our objects in some arbitrary value, these generating functions may not exist in a closed form, and we may have to solve differential equations.

As an example, we will focus on alternating permutations. All the proofs are available in the appendix.

Boltzmann model for labelled structures

Definition A combinatorial class A is a denombrable (or finite) set, with a size function size | • | : A → N and such that there is only finitely many objects of each size.

In the following, we will use these notations: if A is a class, then for any object α ∈ A, |α| is its size. Furthermore

A n = {α ∈ A | |α| = n} and a n = Card(A n ).
There exists two kind of combinatorial objects: unlabelled and labelled ones. Basically, a labelled object of size n could be seen as an unlabelled object of the size, in which each atomic part is numbered by a number in {1, . . . , n}. In other words, a labelled object of size n is simply an unlabelled one of the same size paired with a permutation in S n .

In all the following, we will only consider labelled objects.

Definition Let A be a (labelled) combinatorial class. We define the exponential generating function defined by

A(z) = α∈A 1 |α|! z |α| = n∈N a n z n n!
Now, in order to construct some objects, we need a set of rules. Precisely, we will have some basics objects, called atoms, and a set on operators which allow us to build big objects from littler ones. A few of these operators are presented on figure 1 or more completely in [START_REF] Flajolet | Analytic combinatorics[END_REF].

Definition A Boltzmann sampler ΓC(x) for a (labelled) combinatorial class C is a random generator such that the probability of drawing a given object γ ∈ C of size n is exactly:

P x (γ) = 1 C(x) x |γ| |γ|! = 1 C(x) x n n! where C(x) is obviously the (exponential) generating function of C. A Description A(z) ΓA(x) ε Empty class 1 return ε Z Atomic class z return ➀ B × C Cartesian product B(z) × C(z) return (ΓB(x), ΓC(x)) B + C Disjoint union B(z) + C(z) if Bernouilli B(x) B(x)+C(x)
then return ΓB(x) else return ΓC(x) Seq(B) Sequence Let's notice that this sampler depends on a (real) parameter x, which can be tuned to aim a given expected size for the output of the algorithm. To be precise, if we denote by N the size of the output, one can solve the équation

E x (N ) = x C ′ (x)
C(x) in order to fix the value of x. We could also compute then

V x (N ) = x 2 C ′′ (x) C(x) + x C ′ (x) C(x) 1 -x C ′ (x) C(x)
. Boltzmann model is a very useful tool to efficiently generate combinatorial structures [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF][START_REF] Flajolet | Boltzmann sampling of unlabelled structures[END_REF]. In particular, it is possible to automatically build a sampler according to the specification of a combinatorial class, following recursively the rules described in figure 1 or in [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF].

Extension to ordered structures

We introduce the central object of this paper: the box operator, for which we extend the Bolzmann formalism.

The main idea of this paper consist of changing the value of the x parameter of the sampler ΓA during the recursive calls. Indeed, one can notice that, in the classical Boltzmann sampler (see figure 1), this value is fixed at the beginning and stays constant during the execution of the algorithm. Here, we will change this value during the execution according to a given probability density.

Definition The box product of two labelled classes B and C, noted by B × C, is the subset of B × C such that the least label is in the left composant of the pair, on the B part.

Furthermore, we need to ensure that B 0 = 0, i.e. the class B has no empty objects.

We have to highlight the fact that this operator is a binary one, and not an unary one! Indeed, the real operation is not • , but rather • × •.

Proposition 2.1. The generating function of

A = B × C is A(z) = z 0 B ′ (t)C(t)dt

Boltzmann sampler for the box operator

As said before, we want to change the value of the parameter x of the sampler according to a given probability law.

Proposition 2.2. If 0 < x < ρ A , then δ A x (t) = xB ′ (tx)C(tx) A(x)
is a probability density over [0, 1]. Now, we can almost explicitely present our algorithm for generating A = B × C following Boltzmann's ideas. We will need just one last notion: the derivative class.

Definition

The derivative class of a given combinatorial class B, written B ′ , is the set of objects of B in which an atom has been substituted by a hole, by a reservation. In other words, one atom (of size 1 by definition) has been replaced by a distingued atom, written ⊙, whose size is 0.

We will explain later how to compute this differentiated class. The proof just consists in checking that we can get all the desired objects, only these ones, and each one with the correct probability.

Nonetheless, we still have several points to adress before being able to really implement this algorithm: we have to define the differentiated class B ′ , and explain how to draw according to the probability density δ x .

Theoretical complexity

The free generation of objects (with no constraint on the size) works according to the following algorihm:

1. First, draw a random number according to δ x 2. Then generate two sub-objects 3. Eventually re-label the final object At this point, we first investigate the complexity of this algorithm related to the size of the generated object. Let us assume that the first step is in O(1). We will see later that this assumption is indeed correct, even if the hidden constant can be quite big. Moreover, we will suppose that the third step is also in O(1).

Then, according to the algorithm, to get an object of size n, we have to get two sub-objects of sizes k and n -k. From this, we check that the complexity of our algorithm is O(n): it's the same complexity as for the previously known Boltzmann samplers.

In a majority of real-world usage of random sampling, we just care about the shape, the form of the squeleton of the huge objects we get. The exact position of the label is not as important as the structure of the objects we get.

In addition to this complexity of the free generator, one can estimate the complexity for approximate-size generator. First, let us remind that approximatesize generation means that we want to get an object of size in

[(1 -ε)n, (1 + ε)n]
In the original paper [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF], it is proved that, under some conditions on the analytical nature of the generating function, we only need a constant number of trials for approximate-size sampling. Here, these conditions are often true, and the generation stays linear.

Proposition 2.4. For any combinatorial structure whose generating function ∼ C(1 -x) -α log β 1 1-x , using a simple rejection method, the number of trials is constant for a given precision.

As a majority of "interesting" classes ave thus property, it means that we can quite often ensure a linear complexity even for approximate-size generation.

For example, in our particular case of alternating permutations, if ε = 10%, then the average number of trials is less than 7.

Example: Alternating permutations

Alternating permutations (also known as increasing proper binary trees) are defined by the specification T = Z + Z × (T × T ). From this one we can get

T (z) = z + z 0 dz dz (u)T 2 (u)du, and therefore T (z) = tan(z) with ρ T = π 2 . To lighten, let us note A = Z × T 2 and A(x) = tan(x) -x.
From there, one can write:

δ A x (t) = x dz dz (tx)T 2 (tx) A(x) = x tan 2 (tx) tan(x) -x
Hence, a Boltzmann sampler ΓT (x), for 0 x < ρ T = π 2 , is the following:

Algorithm 2 Boltzmann sampler for T Input: x ∈ R Output: An object of T , meaning an alternating permutation Require:

0 x π 2 1: Draw uniformly U over [0, 1] 2: if U x T (x) = x tan(x) then 3:
T ← Leaf ➀ 4: else 5:

Draw α over [0, 1] according to δ A x 6:

T ← Node ⊙ (ΓT (αx), ΓT (αx)) 7: end if 8: return T with right labels One can compute the expected size of the output:

E T x (N ) = x T ′ (x) T (x) = x 1 + tan 2 (x) tan(x) = 2x sin(2x) ∼ π/2 1 1 -x π/2
More precisely, one can compute the distribution of the sizes of the output. We have P T

x (N = 2n) = 0 and a simple computation leads to

P T x (N = 2n + 1) = T 2n+1 x 2n+1 T (x)(2n + 1)! ∼ ∞ 4 π tan x x π/2 2n+1
This probability asymptotically follows a geometric distribution of parameter x π/2 . This behaviour really differs with the proper binary tree case.

Algorithmic issues

In order to be able to implement on a computer the previous algorithm, we first have to adress a few practical points.

The B ′ combinatorial class

This class B ′ intuitively corresponds with the objects of the B class, in which a reservation replaced an atom. One can check that the generating function of

B ′ is (B ′ ) (z) = dB(z) dz (z).
Proper definition and set of properties are presented in [START_REF] Bergeron | Combinatorial species and tree-like structures[END_REF].

To define it precisely, we have to introduce a new special atom, written ⊙ and such that | ⊙ | = 0. But be aware that ⊙ = ε ! This atom, simply speaking, is juste a reservation for a future atom Z. It's just an empty place, but an existing and reserved one.

Then, one can recursively define or class B ′ by:

ε ′ = ∅ ⊙ ′ = ∅ Z ′ = ⊙ (A + B) ′ = A ′ + B ′ (A × B) ′ = A ′ × B + A × B ′ (Seq(A)) ′ = Seq(A) × A ′ × Seq(A) (Set(A)) ′ = A ′ × Set(A) (Cyc(A)) ′ = A ′ × Seq(A) (A × B) ′ = A ′ × B
We can check that we can always compute a formula without any differentiated class isomorph to our differentiated class. Hence, one can automaticaly compute a Boltzmann sampler for this isomorph class, and so for the differentiated one. So, we are able to draw in a linear time an object of this class, following Boltzmann's model.

This being said, we have to notice that the classes B and B ′ are quite close. This observation beeing done, it is really frustrating to have to unroll this whole rewriting system to be able to draw objects in the differentiated class. It might be possible to find a more efficient and satisfying way to draw into such classes.

Drawing according to δ x

The second issue is that we have to be able to draw a (real) variabel according to an (almost arbitrary) distribution δ x over [0 , 1] One can easily verify that, if x < ρ, then δ x is a C ∞ function from [0, 1] to R + . More precisely, we know that ∀k ∈ N, ∀t ∈ [0, 1], ∂ To draw a random variable X according to δ x , we will adapt a rejection method to our particular distribution. We define a subdivision of [0, 1] into consecutive intervals ([α 0 , α 1 ], . . . ,

[α i-1 , α i ], . . . , [α N -1 , α N ]) with 0 = α 0 < α 1 < • • • < α i < • • • < α N = 1.
On each [α i-1 , α i ], let h i δ x be a continuous function. We choose the h i simple enough to be able to compute and know all the values A i = (α i -α i-1 ) αi αi-1 h i (u)du. These conditions on the h i ensure that we will be able to draw a random variable according to these functions, and to correct the fault induced by this approximation of δ x .

In the following, let Area(h) = N i=1 A i be the total area under all the h i . We use then the following algorithm: Algorithm 3 Draw a variable x according to a probability density δ x Input:

δ x : [0, 1] → R + ; N ∈ N ; α i ∈ [0, 1] ; and h i : [α i-1 , α i ] → R + Output: X ∈ [0, 1]
Require: δ x is a probability density over [0, 1] ; α 0 = 0 and α N = 1 ; and ∀i ∈ {1, . . . , N }, h i δ x Ensure: X ∼ δ x 1: repeat 2:

Draw i ∈ {1, . . . , N } such that P(i = k) = A k Area(h) 3:
Draw a random variable X according to the density hi Ai sur

[α i-1 , α i ] 4:
Draw a random variable Y according to the uniform law over [0, 1] 5: until Y h i (X) δ x (X) 6: return X Theorem 3.1. This algorithm returns a random variable X according to the distribution δ x ; and the expected number of rounds to finish is Area(h). We can compute that, if p = 1 Area(h) , then P(stop k ) = (1 -p) k-1 p and

0 1 t δ A x (t)
E({Number of trials}) = ∞ k=0 kP(stop k ) = 1 p = Area(h).
We can see here that the h i functions have to be the closest to the density δ x , in order to minimize the average number of trials to draw the variable X.

We tried two kind of approximations for the h i functions:

• piecewise constant functions:

∀i ∈ {1, . . . , N }, ∀t ∈ [α i-1 , α i ], h i (t) = δ x (α i )
• piecewise linear functions δ x being non-decrasing, we are sure that in both case:

∀i ∈ {1, . . . , N }, ∀t ∈ [α i-1 , α i ], h i (t) δ x (t)
In practice, we can see that for our problem, piecewise constant functions appear to offer the better compromise between pre-computing time and computing time. As our distributions are "more and more increasing" over [0, 1]i.e. all their derivatives are non-negatives -we chose to have a geometric subdivision of the interval: α i = 1 -2 i and α N = 1 (see figure 2). Experimentally, this kind of subdivision works quite well.

Conclusion

The random generation of ordered structures is in general a very difficult problem. In this short paper, we have presented a way to efficiently generate some of these structures, using Boltzmann model. As said before, it is possible with our algorithm for the box operator to generate objects of size up to 10 7 in reasonable time (at most about 100 seconds).

Moreover, we keep all the good properties induced by Boltzmann samplers: genericity of the algorithms, uniformity over objects of the same size, linear complexity in the size of the output as far as only the shape is concerned. The basic idea behind this extension is to slightly change the parameter during the recursive calls.

We think this idea can be extended to generate a lot of other structures and operators. For example, the shuffle operator, the Hadamard product, or almost any specification which can be described by a system of differential equations on the combinatorial classes. 

Proof. By definition of δ A

x , we can write that ∀t ∈ [0, 1], 0 δ A x (t), and:

1 0 δ A x (t)dt = 1 0 xB ′ (tx)C(tx) x 0 B ′ (u)C(u)du dt = x x 0 B ′ (z)C(z) dz x x 0 B ′ (u)C(u)du = 1 Therefore, δ A
x define a correct probability density over [0, 1].

Theorem The algorithm described above for the combinatorial class A = B × C is a correct Boltzmann sampler.

Proof. We have to check that we can get each object in A with this algorithm, and only those ones ; and mainly that we get each object with the right probability.

The first point is easy to check, as the algorithm follows by construction the exact definition of what is a box product.

About the second point, we have to check that we get any object α ∈ A with probability P

A x (α) = x |α| A(x) 1 
|α|! . Indeed, we can remind that:

C(x) = γ∈C x |γ| |γ|! and B(x) = β∈B x |β| |β|!
From this equation:

B ′ (x) = β∈B x |β|-1 (|β| -1)! A(x) = x 0 B ′ (u)C(u)du = x 0   β∈B u |β|-1 (|β| -1)!     γ∈C u |γ| |γ|!   du = x 0 (β,γ)∈B×C u |β|+|γ|-1 (|β| -1)!|γ|! du = x 0 α=( e β,e γ)∈A (| β| -1)!| γ|! (|α| -1)! u |α|-1 (| β| -1)!| γ|! du = x 0 α∈A u |α|-1 (|α| -1)! du A(x) = α∈A x |α| |α|!
Then we can write, assuming having Boltzmann samplers for B ′ and C, for a given pair (β ′ , γ) ∈ B ′ × C, the probability P

x ((β ′ , γ)) = x |β ′ | B ′ (x) 1 |β ′ |! x |γ| C(x) 1 |γ|! .
Hence, for a given α = ( β, γ) ∈ A, we can write, for the algorithme described earlier for A that:

P A x (α) = 1 0 (| β| -1)!| γ|! (|α| -1)! P tx ((β ′ , γ)) δ A x (t)dt = 1 0 (|β| -1)!|γ|! (|α| -1)! × (tx) |β ′ | B ′ (tx) 1 |β ′ |! (tx) |γ| C(tx) 1 |γ|! × xB ′ (tx)C(tx) x 0 B ′ (u)C(u)du dt = x |α| A(x) 1 (|α| -1)! 1 0 t (|α|-1) dt = x |α| A(x) 1 |α|!
Eventually, we get a correct Boltzmann sampler for this combinatorial class.

Theorem The algorithm 3 returns a random variable X according to the distribution δ x ; and the expected number of rounds to finish is Area(h).

Proof. It is quite simple to see that this algorithm implements the rejection method for the distribution δ x under the curve defined by the h i , and since h i δ x on each inverval, the algorithm is correct.

We will now find the expected number of rounds before returning a value. Let us use the events {The algorithm ends after exactly k rounds} written stop k , and {We chose the i th interval} written A i . First, we will have to compute P(stop 1 ) = N i=1 P(stop 1 |A i )P(A i ) But P(A i ) = Ai Area(h) according to the algorithm. And as to the conditional probability, we get: 

P(stop 1 |A i ) = P(Y h i (X) δ x (X)|A i ) = αi αi-1 P(Y h i (X) δ x (X)|X ∈ [µ, µ + dµ], A i )P(X ∈ [µ, µ + dµ]|A i ) = αi αi-1 P(Y h i (X) δ x (X)|X ∈ [µ, µ + dµ], A i ) h i (µ) A i dµ = αi αi-1 δ x (µ) h i (µ) h i (µ) A i dµ = 1 A i αi αi-1

Alternating permutations: experimental results

On a 1Ghz notebook, with 2Go of RAM, and a naive implementation in OCaml, we can reach sizes about 10 7 in reasonable time (about 10 seconds for free generation: see figure 4). Moreover, on can compute, for this specific class, the number of trials for approximate size generation. We can show that, for a given precision ε, only Using this approach, we can use Boltzmann model advantages, on so draw large object in very few time. For example, the example displayed as figure 3 can be computed in less than one millisecond on a standard computer.
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 1 B(z) l := Geom(B(x)) return (ΓB(x), . . . , ΓB(x)) l times Set(B) Set e B(z) l := Poisson(B(x)) return {ΓB(x), . . . , ΓB(x)} l times Cyc(B) Cycle log 1 1-B(z) l := Logarithmic(B(x)) return ΓB(x), . . . , ΓB(x) l times
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 1 Figure 1: Some classical constructors, their generating function and sampler

Algorithm 1 2 : 3 : 4 :

 1234 Boltzmann sampler ΓA for A = B × C Input: One real number x Output: An object of A Require: 0 < x < ρ A 1: Draw U in [0, 1] according to the probability density δ A x Randomly draw an object b ′ from the class B ′ using ΓB ′ (U x) Randomly draw an object c from the class C using ΓC(U x) Let a = (b ′ , c) correctly labelled 5: return The object a, with the reservation ⊙ replaced by an atom Z One should notice that the shape of this algorithm really looks like the one for the simple cartesian product B × C. Particularly, both of the two recursive calls for B ′ and C are independant and both with the same modified value for the parameter.

Theorem 2 . 3 .

 23 The algorithm described above for the combinatorial class A = B × C is a correct Boltzmann sampler.

  k δx ∂t k (t) 0. Particularly, the probability density is non-decreasing on his definition domain, and ∀t ∈ [0, 1], lim x→0 δ x (t) = 1 and lim x→ρ δ x (t) = Dirac(t -ρ).

Figure 2 :

 2 Figure 2: Shape of a typical δ x distribution

Figure 3 :

 3 Figure 3: Increasing proper binary tree: size 2033, drawn in less than 1ms

  From this point, P(stop k ) = (1 -p) k-1 p and E({Number of rounds}) =

e 4 1 sinhFigure 4 :

 14 Figure 4: Time for generating alternating permutation

A(x)

Proof. Following the definition of the box product, we have

Indeed, we have to distribute only n-1 labels, the least being fixed in B. Among those, we have to choose only k -1 for the first composant, and n -k for the second one. We can then rewrite this equation, using properties of binomial coefficients, and the fact that B 0 = 0:

which is a Cauchy product. This last remark leads to the claimed formula.

Remark Funnily, using this framework, the well-known integration by parts formula

can be proven and read as: "In a pair of labelled object, the least labeal is either on the first composant, either on the second one", which is absolutely trivial.

Proposition If 0 < x < ρ A , then δ A x (t) = xB ′ (tx)C(tx)