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1 Introduction

This paper addresses the following question: assuming a homogeneous level of risk

or uncertainty across agents, does individual risk aversion increase or decrease the

probability of attending higher education? In other words, is education a risky

investment, or an insurance? Until now, the empirical literature on the deter-

minants of schooling decisions has focussed almost entirely on the importance of

(i) cognitive skills, (ii) parents�background, and to a lesser extent, (iii) liquidity

constraints. For the most part, fundamental preference parameters such the pref-

erence for risk or the rate of time preference have either been ignored, or treated

within a representative agent framework.

In order to answer this question, we develop a methodology aimed at measur-

ing di¤erences in school continuation probabilities, conditional on an individual-

speci�c risk aversion factor. Using unique Italian panel data (the Bank of Italy

Survey of Income and Wealth) in which individual di¤erences in attitudes toward

risk are measurable (from a lottery pricing question), we construct the classical

Arrow-Pratt measure of absolute risk aversion, and we develop a reduced-form

econometric model of sequential schooling decisions.1 Because the Arrow-Pratt

measure is posterior to schooling decisions (it is measured in 1995), it depends on

current wealth (also measured in 1995), which is endogenous, as well as liquid-

ity constraints and background risk indicators. We also allow to be a¤ected by

non-classical measurement error.

Italy is an ideal country to investigate the e¤ect of preference (for risk) hetero-

geneity since liquidity constraints are unlikely to be relevant (Checchi, Fiorio and

1Because we do not model how subjective distributions are inferred, or do not force individuals
to know the true e¤ect of education on the higher moments of the distribution of post-schooling
outcomes, our approach is di¤erent from structural dynamic expected utility models, in which
Bellman equations are solved explicitly, for a given set of beliefs. Keane and Wolpin (1997) is
the seminal piece in the structural literature on schooling. See Belzil (2007) for a comprehensive
survey of the literature.
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Leonardi, 2008; Leonardi, 2007). In particular, college education is not as expen-

sive as in other countries (tuition costs in public universities are around 1,000 US

dollars per year at 1995 constant prices and still unchanged in real terms), private

schools are not popular and direct costs are low because of geographical reasons,

and because a very large proportion of college students live with their family of

origin (see the Table 1 in the Appendix).

Our method is based on two fundamental assumptions; namely that preferences

are time invariant (there must exist an individual speci�c, time invariant, risk aver-

sion parameter, which characterizes individual preferences), and that individuals

share common beliefs about the e¤ect of education on marginal risk exposure.

More speci�cally, we assume that measured absolute risk aversion is composed of

two (separately additive) parts; one containing the e¤ect of wealth, background

risk and the individual-speci�c time-invariant risk aversion factor, and a residual

non-classical measurement error component. As the incidence of non-response to

the risk aversion question is important, we must model self-selection explicitly. To

do so, we assume that both measured risk aversion and the response/non-response

outcome may depend on various measures of the quality of the interview, and on

unobserved heterogeneity possibly correlated with (i) the individual-speci�c time-

invariant risk aversion parameter, and with (ii) unobserved heterogeneity a¤ecting

grade transition.

In order to allow for non orthogonality between the individual speci�c risk

aversion parameter and wealth, we also model the distribution of wealth as a func-

tion of the risk aversion parameter, schooling, parents backgrounds, and various

instruments a¤ecting the transitory part of wealth (Guiso and Paiella, 2008). Dif-

ferent approaches to the interpretation of the wealth equation error term (whether

it is interpreted as random �uctuations, or measurement error) provide us with

the opportunities to estimate three versions of our model.
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Given identi�cation of the individual speci�c risk aversion parameter, we infer

the subjective e¤ect of continuing to a higher grade level on marginal risk exposure,

from the estimated e¤ect of the risk aversion parameter on the decision to attend

higher education. To this extent we model explicitly unobserved heterogeneity

a¤ecting grade transition (the decision to attend higher education), and we allow

it to be correlated with individual-speci�c risk aversion.

Finally we estimate the model separately for the cohorts born before and after

1950 because the younger cohorts were a¤ected by the extension of compulsory

schooling and the liberalization of access to universities which may have changed

their perception of the risk attached to college education (see section 3).

Our econometric model is based on four separate components. Precisely, it

maximizes the joint (mixed) likelihood of (i) educational choices, (ii) measured

absolute risk aversion, (iii) observed wealth and (iv) the response/non-response

outcome to the lottery question. For �exibility purposes, all idiosyncratic error

terms are modeled using mixtures of normals. Obviously, the high degree of �ex-

ibility comes at the cost of parameter proliferation. Our contribution is therefore

also methodological. For instance, our method could be used on a variety of data

sets that incorporate some imperfectly measured information on individual risk

preferences, such as the GSOEP (for Germany), and the PSID and the NLSY (for

the US).

At the outset, it should be made clear that modeling grade progression as a

function of individual speci�c risk aversion is not new.2 Indeed, it is achieved in an

earlier paper (Belzil and Leonardi, 2007). However, in that paper, grade progres-

sion is made function of the observed risk aversion measure. The paper therefore

ignores (i) the endogeneity of risk aversion (because wealth is endogenous), (ii) the

incidence of non-classical measurement error in the risk aversion measure, (iii) the

2Modeling schooling attainment as a transition (discrete duration) model is achieved in a
seminal piece by Cameron and Heckman (1998).
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possible correlation between wealth and risk aversion factor, and (iv) endogeneity

of the response rate.

To our knowledge, this is the �rst empirical paper that �nds both an explicit

and a signi�cant e¤ect of risk aversion on the probability of entering higher educa-

tion. Precisely, in all model speci�cations, risk aversion acts as a deterrent to higher

education investment, conditional on senior high school completion. Although the

relative importance of risk aversion (compared to parents�education) may vary

across models, our results indicate clearly that risk aversion is a key determinant

of the probability to continue to higher education. Indeed, after conditioning on

access to senior high-school (the grade level preceding higher education in Italy),

we �nd that individual risk aversion is almost as important as parental education

in explaining access to higher education. We �nd no substantial di¤erence across

cohorts born before and after the liberalization of college access in Italy.

The paper is constructed as follows. In Section 2, we present some background

material and review the most important literature. In Section 3, we present a brief

description of the Italian schooling system. In Section 4, we discuss the Bank of

Italy Survey of Income and Wealth (SHIW) and provide details about the measure

of risk aversion used in our analysis and sample selection. The econometric model is

described in Section 5. The main empirical results are in Section 6 and robustness

exercises in Section 7. The economic interpretation of the results, along with the

conclusion, are found in Section 8.

2 Background and Relevant Literature

Measuring the relationship between risk attitudes and educational choices is a

long standing problem in economics. Early theoretical results (Lehvari and Weiss,

1974, and Olson, White and She¤rin, 1979) stress that earnings uncertainty may
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depress human capital investment, but empirical work remains scarce and is rather

inconclusive. This is largely explained by two main issues.

First, there is a multiplicity of channels by which schooling may a¤ect risk

exposure. Some of these may come from the supply side and have to do with the

possibility of experiencing academic failure. Others come from the demand side,

and have to do with the e¤ect that education may have on earnings �uctuations

and volatility.3 In the long run, labor market productivity and earnings may be

a¤ected by technological changes, which may be viewed as an additional element

of risk from the perspective of the student. On the other hand, when schooling

is viewed as facilitating adjustment to technological change, this uncertainty may

turn out to favor schooling acquisition (i.e. schooling is a form of insurance). For

all these reasons, it is di¢ cult to say whether or not individuals perceive higher

education as a truly risky investment, or as a form of insurance.

Second, accounting for heterogeneity in risk attitudes is still nowadays a major

challenge for applied econometricians. In particular, individual di¤erences in risk

aversion are practically never measured in observational data. Furthermore, when

such measures exist, they are available for time periods over which major schooling

decisions have already been taken.

Taken broadly, the current paper may be viewed as a contribution to the lit-

erature devoted to the identi�cation of the main determinants and barriers to

educational attainment. In order to get a clear picture, it is useful to divide the

literature into three distinct groups.

A �rst group of papers has documented the signi�cant and stable correlation be-

3Focussing on the supply side, higher education requires to face both direct and psychic costs
while academic success may have an inherent random component. On top of this, uncertainty
about labor market abilities may also represent a form of ex-ante risk. At the same time, schooling
may reduce earnings dispersion by reducing the incidence of unemployment or by raising the job
o¤er probabilities (given unemployment) but it may increase wage volatility if more educated
workers �nd jobs in sectors or occupations where wages (or marginal product) is more volatile.

7



tween schooling attainments and parents�education, as well as a strong correlation

between schooling attainments and parental income. These empirical regularities,

which have not only been reported by economists, but also by many sociologists,

are well documented in many countries (Cameron and Heckman, 1998). This

branch of the literature is well known and need not be discussed further.

A second group is composed of papers devoted to the investigation of liquidity

and borrowing constraints that may a¤ect education choices (Cameron and Taber,

2004, and Keane and Wolpin, 2001). To a large extent, the main objective of this

literature is to provide an economic foundation to the observed correlation between

education and parental income. As this is not the topic of the current paper, we

do not review it in details. It is however important to note that in this literature,

which is surveyed in Keane (2002), it is customary to assume that all individuals

share a common risk aversion parameter, but that they face di¤erent degrees of

liquidity constraints because of di¤erences in parental income or parental transfers.

One of the most important consequences of allowing for liquidity constraints, is

that individuals who are subject to liquidity constraints react di¤erently to changes

in the direct cost of higher education than those who can more or less borrow

freely. As of now, it is fair to say that there is very little evidence supporting the

liquidity constraints hypothesis. In Keane and Wolpin (2001), the weak incidence

of liquidity/borrowing constraints is largely explained by the allowance for an

endogenous labor supply while in school. In Cameron and Taber (2004), it comes

out from the lack of signi�cant di¤erence between IV estimates of the return to

schooling using a direct cost instrument and those obtained using an opportunity

cost instrument. It is important to note that in this segment of the literature,

individual di¤erences in risk preference are totally ignored.

A third set of papers is concerned with the explicit role that risk aversion and

risk exposure may play in schooling decisions. This is the focus of our paper.
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Shaw (1996) develops a model of the joint investment in �nancial wealth and

human wealth to show that human capital investment is an inverse function of the

degree of relative risk aversion, but does not address the endogeneity issue between

education and risk aversion and does not attempt to measure an individual speci�c

risk aversion factor4. Palacios-Huerta (2003) presents an empirical comparison of

the properties of risk-adjusted rates of return to schooling within an intertemporal

model, using mean-variance spanning techniques, but does not model individual

decisions.5 Belzil and Hansen (2004) estimate a dynamic programming model

of schooling decisions in which the variance of the earnings distribution depends

on accumulated human capital. They �t their model on a sample taken from the

NLSY 1979 but, for technical reasons, they disregard heterogeneity in risk aversion.

Although each of these papers have investigated at least one aspect of the

relationship between risk, earnings uncertainty, and schooling, they also disregard

heterogeneity in attitudes toward risk.6 More recently, several economists have

tried to use directly (or indirectly) observable measures of individual risk aversion

and relate cross-sectional dispersion in risk aversion to observed schooling choices.

This literature is currently in its infancy. Until now, those who have used this

4Using data from the Survey of Consumer Finances, Shaw (1996) �nds that wage growth
is positively correlated with preferences for risk taking. She measures individual-speci�c risk
aversion using information on the allocation of wealth to risky �nancial assets or from a survey
question about that desired allocation. She also �nds that more educated individuals are also
more likely to be risk-takers.

5Basically, the mean-variance spanning technique amounts to quantifying the e¤ect of intro-
ducing a new asset on the mean-variance of another benchmark asset.

6There also exists a related literature in which descriptive analyses of empirical age/earnings
pro�le have been performed. In the earlier empirical literature, Mincer (1974) investigates how
the variance of earnings di¤ers across schooling levels over the life cycle while Chiswick and
Mincer (1972) use age earnings pro�le to investigate time series changes in income inequality.
However, the notion of variability is usually an �ex post� notion which may have little to do
with �ex ante� risk. In the more recent wage inequality literature, it is customary to analyze
wage dispersion (basically the variance) within education groups. Lemieux (2006) shows that
the variance of wages is higher within the more educated group and discusses the increase in
college enrollments that took place during the period over which rising wage inequality has been
documented for the US.
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approach have ignored the endogeneity of most risk aversion information. The most

important complications hinge on the fact that risk aversion measures, obtained

from self-reported survey items such as lottery pricing and the like, (i) are usually

available after schooling decisions have been exercised, (ii) are most likely subject

to (non-classical) measurement error, and (iii) are often characterized by a high

rate of non-response. This is exempli�ed in Belzil and Leonardi (2007), in which a

grade progression function is speci�ed conditional on an observed transformation

of the lottery pricing, regardless of endogeneity issues.7

As it stands now, the relationship between risk preference and education is

unknown.8 Nevertheless, and as indicated by the recent surge in empirical papers

devoted to the issue, the link between risk and education is now regarded as an

important topic.9 Knowing the degree of education selectivity based on individual

di¤erences in risk aversion is fundamental. For instance, the relatively insigni�cant

change in college enrollment that has been observed in the 1990�s after the increase

in returns to schooling that took place over the 1980�s in the US (and in other

countries) suggests that behavior toward risk may be a possible explanation.10

3 The Schooling System in Italy

The Italian schooling system is composed of four levels: elementary, lower high

school, upper high school and college. Elementary school is typically completed

at age 11 (equivalent to 5th grade in the US), lower secondary school at age 14

7However, in the �nal section of Belzil and Leonardi (2007), we stress that a more rigourous
treatment of risk aversion endogeneity, non-classical measurement error, wealth endogeneity, and
possibly non-response endogeneity is called for.

8More recently, a literature concerned with the separation of ex-ante risk and heterogeneity
in schooling decisions has also emerged. Cunha, Heckman and Navarro (2005) and Belzil (2007)
are two representative examples.

9See for instance the special issue of Labour Economics, 14(6), 2007.
10A descriptive analysis of college enrollment trends in the US is presented in Card and Lemieux

(2000). A structural general equilibrium analysis is found in Johnson and Keane (2008).
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(equivalent to 8th grade), upper high school at age 19 and college at age 23-24.

Our study looks at the e¤ect of individual-speci�c, time-invariant risk aversion on

the decision to continue after senior high school and enroll in college. We estimate

the e¤ect of risk aversion separately for the cohorts born before and after 1950

because they were di¤erently a¤ected by two education reforms which may have

an e¤ect on their decision to go to college.

For the period under consideration the compulsory schooling was elementary

school until 1962 and lower secondary afterwards i.e. the reform of the compulsory

school leaving age a¤ected the cohorts born after 1950. Table 1 lists the education

variables in form of dummies of the highest attained degree. The change in com-

pulsory schooling laws largely explain the increase in education attainment across

cohorts. Among those born before 1950, a high percentage of individuals stopped

at elementary school (37%). The proportion of those who stop at elementary school

drops dramatically within the cohort born after 1950 to 9% in Table 1 and the

proportion of those who stop at lower secondary school increases to 38%.11 The

reform of compulsory schooling in 1962 does not need to have direct implications

on our analysis because we look at the e¤ect of risk aversion only on the decision to

continue to college education and neglect its e¤ect on compulsory schooling levels.

However it is possible that the risk attached to the choice of continuing schooling

after high school was perceived di¤erently by the cohorts born before 1950 whose

compulsory schooling stopped at the elementary grade and by later cohorts whose

school leaving age was moved forward to lower high school grade.

We have another reason to analyze separately the cohorts born before and

after 1950: the restrictions to access to college were lifted in 1969 and a¤ected the

cohorts born after 1950 which at the time were aged 18-19. An easier access to

university may have led to changes to the perception of risk attached to college. In

11The fraction (not equal to 0) of people born after 1950 reporting elementary school as the
highest attained degree may be due to non-compliance or to grade repetitions.
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Italy there are four types of 5-year secondary schools: Liceo, technical, vocational

schools or art schools and schools for teachers. Liceo are the traditional high

schools to access university level education and until 1969 access to college was

restricted to these schools. All other choices (technical, vocational schools or art

schools and schools for teachers) develop professional and technical skills and only

after 1969 give also an optional access to university.12 Table 1 shows that the

percentage of the population with a college degree is much lower in Italy (10%)

than in the US and that a large fraction (31%) of the Italian population holds a

secondary school degree. Notwithstanding the easier access to university granted

after 1969, the proportion of college graduates in the population in Italy is still

very low (12%) even in the younger cohorts born after 1950.

4 The Bank of Italy Survey of Income andWealth

The 1995 survey of SHIW collects information on consumption, income and wealth

in addition to several household characteristics for a representative sample of 8,135

Italian households.

4.1 Measuring Risk Aversion

The 1995 survey contains a question designed to elicit risk aversion attitudes. Each

head of household is asked to report the maximum price he/she is willing to pay

to participate to an hypothetical lottery. The question is worded as follows:

�We would now like to ask you a hypothetical question that we would like you

to answer as if the situation was a real one. You are o¤ered the opportunity of

acquiring a security permitting you, with the same probability, either to gain a net

12After lower secondary school, one may also choose professional 3-years courses which do not
grant access to university but provide skills for determined professions. In our data these are
coded as lower secondary.
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amount of 10 million lire (roughly 5,000 euros) or to lose all the capital invested.

What is the most you are prepared to pay for this security?�13

The respondent can answer in three possible ways: 1) give the maximum price

he/she is willing to pay, which we denote as bet; 2) don�t know; 3) don�t want to

participate. Of the 8,135 heads of household, 3,483 answered they were willing to

participate and reported a positive maximum price they were willing to bet (prices

equal to zero are not considered a valid response and are coded as non response

as typically in this kind of questionnaires zero usually indicates that they do not

know responses).

The question has a large number of non responses because many respondents

may have considered it too di¢ cult. For our purposes the relationship between

non-response and schooling is of particular interest. Those who responded to

the lottery question are on average 6 years younger than the total sample and

have higher shares of male-headed households (79.8 compared to 74.4 percent),

of married people (78.9 and 72.5 percent respectively), of self-employed (17.9 and

14.2 percent) and of public sector employees (27.5 and 23.3 percent respectively).

They are also somewhat wealthier and slightly better educated (1.3 more years of

schooling). The di¤erence in education between the total sample and the sample

of respondents seems to suggest that, in so far as education is also a proxy for

better understanding, non-responses can be ascribed partly to di¤erences in the

13In other words, the expected value of entering the lottery is 0:5 � (5000 � bet) becuase with
probability 1/2 the respondent gets 5,000 euros and with probability 1/2 he loses his bet. The
interviews were conducted by professional interviewers at the respondents�homes and to help the
respondent to understand the question the interviewers showed them an illustrative card and were
ready to provide explanations. Guiso and Paiella (2008) discuss in details the main advantages of
this estimate of absolute risk aversion relative to those already in the literature. They underline
that the lottery represents a relatively large risk. In fact, the ratio of the expected gain of the
hypothetical lottery (5,000 euros) to the annual average Italian household consumption is 16
percent. This is an advantage since expected utility maximizers may behave as risk neutral
individuals with respect to small risks even if they are risk-averse to larger risks. Thus, facing
consumers with a relatively large lottery may be a good strategy to elicit risk attitudes (Rabin,
2000).
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ability to understand the question. Therefore, because non-responses may induce

selection bias, we model the response probability directly. To this extent, we

assume that the probability of responding to the lottery question may depend

on various measures of the quality of the interview given by the interviewer, on

education, and on other exogenous individual characteristics (see section 5.2).

At a theoretical level, it is easy to show that there is a one-to-one correspon-

dence between the value attached to the lottery and the degree of risk aversion.

For a given wealth wi; and a potential gain gi = 5000 euros, the optimal bet beti;

must solve the expected utility equation:

Ui(wi) =
1

2
Ui(wi + gi) +

1

2
Ui(wi � beti) = EU(wi + Pi) (1)

where Pi represents the return (random) of the lottery.

One way to derive a measure of the implied risk aversion would be to take a

second-order Taylor expansion of the second equality in equation 1 around wi and

then obtain an estimate of the Arrow�Pratt measure of absolute risk aversion in

terms of the parameters of the hypothetical security of the survey:

EU(wi + Pi) � Ui(wi) + U 0i(wi)E(Pi) +
1

2
U

00

i (wi)E(Pi)
2 (2)

It is therefore possible to express risk aversion as a function of the parameters

of the lottery and the value of the bet of each individual. Substituting 2 into 1,

we obtain the following expression for the Arrow-Pratt measure of absolute risk

aversion (Gollier, 2001):

Ai(wi) '
�U 00

i (wi)

U
0
i (wi)

= 2(5000� beti)=(50002 + bet2i ) (3)

In general, the degree of absolute risk aversion Ai(wi) depends on Ui(:), on

consumer endowment wi, and on background risk. The valid responses to the
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question - bet - range from 1,000 lire (0.5 euros) to 100 million lire (50,000 euros),

in equation 3 the variables are in euros. Of the 3,483 heads with a positive bet,

3,358 have an Ai(wi) > 0 which implies that they are risk averse individuals, 125

are risk neutral and 44 are risk lovers. Although the majority of the respondents

are risk averse and only 5% of the sample is either risk-neutral or risk-loving,

there is a large heterogeneity in the degree of risk aversion within the risk averse

individuals which shows that preferences are very heterogenous with respect to

risk.14

An alternative way to measure risk aversion (pursued in the robustness Section

7), implies the assumption of a speci�c functional form for the utility function

such that the coe¢ cient of absolute risk aversion tends to in�nity as the maximum

reported price tends to zero. Following Belzil (2007) and Guiso and Paiella (2008),

we use the exponential utility to compute the implied absolute risk aversion for

each individual in the sample:

� exp(�Riwi) = �
1

2
exp(�Ri(wi + 5000))�

1

2
exp(�Ri(wi � beti)) (4)

Equation 4 uniquely de�nes the Arrow�Pratt measure of absolute risk aversion

in terms of the parameters of the hypothetical security of the survey. Obviously,

R(wi) = 0 for risk-neutral individuals (i.e., those reporting beti = 5000 euros) and

R(wi) < 0 for risk-loving individuals (those with beti > 5000 euros).

It is important to note that both measure of risk aversion are unlikely to be

a perfect indicator of the true individual speci�c risk aversion parameter. For

14It should be noted that this measure of risk requires no assumption on the form of the indi-
vidual utility function and extends to risk-averse, risk-neutral and risk-loving individuals. The
problem with this approach is that the risk aversion at low levels of the price beti is underesti-
mated, because as beti approaches zero, this measure of Ai(wi) tends to 0.2, whereas the true
measure of risk aversion tends to in�nity.
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instance, the answers may be a¤ected by some contextual measurement error,

or by background risk, liquidity constraints and the like. For this reason, the

econometric model must be designed so to avoid estimating a grade transition

model that depends directly on either of these measures. These issues are discussed

in details in Section 5.15

4.2 Wealth

Since absolute risk aversion Ai(wi) is measured posterior to the schooling choice

(in 1995), we need to model its dependence on current wealth, in order to extract

the time-invariant individual-speci�c part of risk aversion (which we will denote

as �rai ). It is well known that wealthier individuals are also less risk averse, but

also that accumulated wealth itself depends on risk aversion.

The SHIW data are particularly accurate in the measurement of household

wealth. Wealth is de�ned as the total of �nancial and real assets net of household

debt. Financial wealth is given by the sum of cash balances, checking accounts,

savings accounts, postal deposits, government paper, corporate bonds, mutual

funds and investment in fund units and stocks. Real assets include investment

real estate, business wealth, primary residence and the stock of durables.

The SHIW data also provide various measures of �unexpected� changes in

wealth. Following Guiso and Paiella (2008), we use information on the self-reported

value of one�s home property and the average price of housing in the province of

15This lottery question has been used to study the relationship between risk aversion and
several household decisions. Guiso and Paiella (2006) use the question on risk aversion to analyze
occupation choice, portfolio selection, insurance demand, investment in education (in the linear
OLS case) and migration decisions. They �nd substantial e¤ects of this measure of risk aversion
in ways that are consistent with the theory i.e. that more risk averse individuals choose lower
returns in exchange for lower risk. They �nd for example that being risk averse increases the
probability of being self-employed by 36% of the sample mean and the probability of holding
risky assets by 42% of the sample mean. They also �nd that being risk averse as opposed to
being risk neutral or risk prone (i.e. they use a risk-averse dummy), lowers education by one
year on average.
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residence to build a measure of windfall gains (or losses) on housing. This measure

is constructed using data on house prices at the province level over the years 1980-

1994. For homeowners, we compute the house price change since the year when the

house was acquired or since 1980 if it was acquired earlier. To tenants, we attach

a capital gain equal to zero. We model wealth using the capital gain on one�s

�rst house property and the sum of settlements received related to life, health,

theft and casualty insurance. These variables are denoted capitalgain house and

insurance money in Table 1. Older cohort born before 1950 have higher wealth, a

higher average capital gain on their house but receive on average a lower amount

of money in form of insurance settlements.

4.3 Background Risk and Liquidity Constraints

Apart from individual di¤erences in wealth and from di¤erences in utility function

curvature, measured absolute risk aversion may also depend on background risk

and from the presence of liquidity constraints. When markets are incomplete, risk

aversion may vary not only because of heterogeneity in tastes but also because

individuals face environments that di¤er in terms of background risk (Gollier,

2001). The measure of background risk is intended to be a measure of aggregate

risk at the local level. It is obtained in the following way: For each province

we regress the log of GDP per capita in 1980-1995 on a time trend and compute

the variance of the residuals. We then attach this estimate (the variable variance

provincial gdp in Table 1) to all households living in the same province.16

The presence of liquidity constraints may also a¤ect risk aversion if they con-

stitute an impediment to consumption smoothing. We build a direct measure

of liquidity constraints as a dummy to indicate one of three types of constraints

16This variable is more likely to be exogenous rather than measures of the coe¢ cient of variation
of the distribution of future earnings based on subjective expectations like in Guiso, Jappelli and
Pistaferri (2002).
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(Guiso and Paiella, 2008). Discouraged borrowers and rejected loan applicants

(3% of the sample) are people who answer yes to either of the following questions:

�during the year did you or a member of the household think of applying for a loan

or a mortgage to a bank or other �nancial intermediary, but then changed your

mind on the expectation that the application would be turned down?�or �during

the year did you or a member of the household apply for a loan or a mortgage to a

bank or other �nancial intermediary and have it turned down?�. We also de�ned

as liquidity constrained people who belong to a family with liquid assets <1% of

total assets (18% of the sample) and those with debt >25% of total net worth (6%

of the sample). Overall the liquidity-constrained individuals constitute 30% of the

sample (the variable liquidity constraint in Table 1).

4.4 Sample Selection

Apart from the lottery question used to build the measure of absolute risk aversion,

we use information on the level of education attained by the head of household,

as well as variables such as age, gender, region of birth, parental education and

parental occupation. This set of variables is comparable to those which are used

in US studies based on the National Longitudinal Survey of Youth (NLSY). We

eliminate from the original sample of 8,135 those who report a missing value in any

of the following variables: education, age, gender, region of birth, education and

occupation of the head�s father and mother. Due to the many missing observations

on parents�education the �nal size of the sample is 7,563 (5,166 born before 1950

and 2,397 born after 1950).

Figure 1 shows the empirical distribution and the estimated kernel density of

our measure of risk aversionAi(wi) separately for the two cohorts. The distribution

of risk aversion is more skewed to the right for the younger cohort, but the mean is

approximately equal (the Kolmogorov-Smirnov test of equality of the distributions
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is rejected at the 1% probability level but the T test of equality of the means is

accepted).

Figure 2 compares the distribution of absolute risk aversion among the college

graduates and those individuals with a lower education degree. Basic summary

statistics indicate clearly that college graduates are less risk averse on average.

Although this negative correlation is consistent with conventional wisdom (namely

that risk aversion is detrimental to higher education), it is not su¢ cient to establish

the link between individual speci�c preferences and higher education for two main

reasons; �rst, absolute risk aversion depends on wealth (which may vary with

completed education), and second, the decision to enter college may be driven

also by individual unobserved cognitive ability which may also be correlated with

individual speci�c risk aversion. As will be clear later, we deal with this issue by

modeling explicitly the role of individual heterogeneity in grade achievement (see

section 5.5).

Table 1 shows the descriptive statistics of the sample. The original schooling

variable takes �ve possible values (1 to 5) corresponding to no education, elemen-

tary school (typically attained at 11 years of age), junior high school (attained at

14), senior high school (attained at 18), university degree (attained at 23-24).17 In

the estimation we use �ve dummy variables derived from the original education

variable, three dummies - north, centre and south - for the region of birth and

one sex dummy (female=1). In addition we have one dummy each - highschool

father and highschool mother - respectively for the level of education attained

by the individual�s father and mother (less than high school=0, high school or

more=1), and four occupation dummies for blue collar, white collar, self employed

and unoccupied for each parents�occupation.

17We actually have information about post-university degree, but the number of individuals
being too small, we cannot really estimate the transition to post-graduate studies.
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4.5 Interview Quality

In order to allow for non-classical measurement error in our analysis, we make

use of �ve dummy variables which indicate the quality of the interview. These

variables are in Table 1. No_understand is a dummy equal to 1 if, according to

the interviewer, the level of understanding of the questionnaire by the head is poor

or just acceptable (as opposed to satisfactory, good or excellent). Di¢ cult answer

is a dummy equal to 1 if, according to the interviewer, it was di¢ cult for the

head to answer questions. No_interest is a dummy equal to 1 if, according to the

interviewer, the interest for the questionnaire topics was poor or just acceptable

(as opposed to satisfactory, good or excellent). No_reliable is a dummy equal to 1

if, according to the interviewer, the information regarding income and wealth are

not reliable. No_climate is a dummy equal to 1 if, according to the interviewer,

the overall climate when the interview took place was poor or just acceptable (as

opposed to satisfactory or good).

All �ve variables indicate that the quality of the interview among the younger

generation born after 1950 is on average better and the proportion of non-responses

to the risk aversion question is much lower. The variable response=1 in Table 1

indicates that 62% of the cohorts born after 1950 responded to the risk aversion

question while only 35% responded among the older generations born before 1950.

Simple linear probability models estimated on each interview quality variable in

turn, show that wealth, schooling, father�s education and measured risk aversion

are often signi�cant predictors of those variables and constitute evidence that non-

classical measurement error is likely to be important (see Table 2 in Appendix).
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5 The Econometric Model

Our econometric model is based on four separate components. These are (i) the

grade transition model, (ii) the response/non-response outcome model, (iii) the

absolute risk aversion equation, and (iv) the wealth equation.

5.1 A Model of Grade Transition

We model schooling decisions as a reduced-form dynamic discrete choice model in

which the hazard function (the drop-out rate) depends on measures of parental

background, individual-speci�c heterogeneity and an individual-speci�c parame-

ter measuring permanent risk aversion. We assume that individual speci�c risk

aversion a¤ects only the transition from high school to college because earlier

transitions are more likely to be a¤ected by parents�decisions.

The grade transition model may be regarded as the reduced-form of a sequen-

tial dynamic programming model, in which subjective beliefs are not speci�ed by

the econometrician. It is therefore faithful to our objective not to dictate how

higher education a¤ects the second (or higher) moment of future state variables,

as perceived by the agent. This particular aspect of the grade transition model is

the cornerstone of our econometric methodology.

The conditional probability (hazard rate) of stopping at grade g for individual

i, denoted Hgi, is denoted:

Hg;i = �(Ug;i) for g = 1; 2; ::G (5)

where

Ug;i = �g�
S
i + �

0
gXi + �g�

ra
i (6)
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and where G is the second highest grade level (senior high school), or in other

words, the highest grade level at which continuation is possible. In our framework,

HG;i is the probability of dropping out after having completed senior high school.

Therefore, the probability of entering higher education is (1 � HG;i): Similarly,

HG�1;i is the drop out probability after completing junior high school. The term

�Si represents an individual-speci�c intercept term whose e¤ect varies with grade

level (according to parameter �g). The variable �
ra
i represents the permanent part

of individual-speci�c risk aversion and �g is a grade-speci�c parameter. Further

details on the treatment of unobserved heterogeneity are presented below. Xi

is a vector of observable characteristics (parents� educational and occupational

background, sex and region dummies), and �0g represents a grade speci�c vector

of parameters measuring the e¤ects of these characteristics. Note that the model

is general enough to take into account that the marginal e¤ect of risk aversion

may be positive or negative. In this paper we allow risk aversion to a¤ect only the

transition from high school to college.

�(:) is approximated with a mixture of 5 normal random variables:

�(:) =
M=5X
m=1

P gm � �(:;�gm; �gm)

where P gm is the mixing probability and �(�gm; �
g
m) denotes the normal cumula-

tive distribution function with mean �m and variance �2m.
18 Further details are

presented in the Appendix.

18Because the grade transition model is actually a sequence of binary choices, we follow Geweke
and Keane (2000), who advocate using normal mixtures in binary choices. Ferguson (1983)
discusses the capacity of normal mixtures to approximate any distribution.
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5.2 A Model of Non Response

As stated earlier, one of the key features of our analysis is the introduction of non-

classical measurement error. This is achieved by conditioning on the full set of

interview quality variables denoted by the vector Q. We therefore assume that the

decision to respond or not depends on some individual characteristics (age, sex)

in vector XR.19 In order to take into account selectivity, individual propensity to

respond is a¤ected by unobserved heterogeneity (�Ri ), which is allowed to be corre-

lated with individual-speci�c risk aversion (�rai ); individual heterogeneity a¤ecting

grade transition (�Si ) and individual wealth measured in year 1995 (Wealthi;95).

Precisely, the probability of response is

�R({0XXR + {WWealthi;95 + {0QQ+ �
R
i ) (7)

where

�R(:) =
M=5X
m=1

PRm � �(:;�Rm; �Rm)

and where (PRm ; �
R
m; �

R
m) are de�ned as those equivalent parameters introduced for

grade transition.

5.3 Modeling Absolute Risk Aversion

As risk aversion information contained in the SHIW is posterior to the period when

schooling decisions were made, we construct a non-linear factor model that allows

to identify individual-speci�c permanent risk aversion.

We �rst specify a �exible model of the Arrow-Pratt measure of risk aversion,

Ai;95(:), where the sub�x 95 (which we report only in this section for clarity reasons)

indicates that risk aversion is measured in year 1995:

19We could also include parents education and occupation, but we found their e¤ect so small
that we decided to exclude them.
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Ai;95(:) = �Ai;95(Wealthi;95;Background riski;95;Liquidity constraintsi;95; �
ra
i )+"

A
i;95

(8)

where �A(:) denotes a second degree polynomial, and where "Ai;95 is an error term

motivated by the presence of measurement error. Total measurement error ("Ai;95)

depends on quality interview variables (Q) as well as a purely idiosyncratic error

component (~"Ai;95). That is

"Ai;95 = "
A0
Q �Q+ ~"Ai;95

where "A0Q is a vector of parameters measuring the e¤ect of interview quality vari-

ables, and where he residual error term, ~"Ai;95; is distributed with density f
A():

Again, �rai ; is the time-invariant degree of risk aversion, upon which, schooling

decisions depend. The background risk and liquidity constraint variables are mea-

sured in 1995 and were described earlier in section 4.3.

5.4 Modeling Wealth

The wealth equation takes into account the key distinction between observed

wealth (obs:Wealthi;95), which is possibly be measured with error, and true wealth

(Wealthi;95), which is the relevant quantity from the perspective of the agent. Pre-

cisely, we have

obs:Wealthi;95 = 
0XXi + 

0
SSi + 


0
ZZi;95 + 
R�

ra
i + "

W
i;95 (9)

= 
0WWi + "
W
i;95 (10)

with
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"Wi;95 = "
W 0
Q �Q+ ~"Wi;95

where "W 0
Q is a vector of parameters measuring the e¤ect of interview quality vari-

ables, and where ~"Wi;95 is distributed with density f
W (:). The vector of parameter,


X , measures the e¤ect of parents�background variables on wealth while the vector

of parameters 
S allows us to detect if (or to what extent) wealth (and indirectly

risk aversion) is explained by education of the individual (Si is a vector of edu-

cation dummies). The vector Zi;95 contains a set of variables measured in 1995

which may explain the transitory part of risk aversion. These variables include the

capital gain on house property and the amount of money received as insurance

settlements.

To close the model, we approximate both fA(:) and fW (:) with a mixture of 5

unrestricted normal densities:

f s(:) =
M=5X
m=1

P sm � �(:;�sm; �sm) for s = W;A (11)

where �(:;�sm; �
s
m) denotes the normal density with mean �

s
m and standard devi-

ation �sm:

Di¤erent interpretations of the error term of the observed wealth equation

("Wi;95) will lead to di¤erent model speci�cations. In the paper, we consider three

possible interpretations. There are described as follows.

� Model with both measurement error and random �uctuations in wealth

Wealthi;95 = 

0
WWi + ~"

W
i;95 (12)
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� Model with measurement error only

Wealthi;95 = 

0
WWi (13)

� Model with exogenous wealth

Wealthi;95 = obs:Wealthi;95 (14)

Throughout the paper, we focus the presentation on the model that incorporates

both measurement error and random �uctuations, since it appears to be the most

general (at least conceptually). The generality of this speci�cation is obtained at

the cost of assuming that measurement error is deterministic (explained solely by

interview quality variables).

The second one imputes all the error term to measurement error. Although

the relevant wealth equation has no error term, it is still endogenous from the

perspective of the econometrician because it still depends on the unobserved risk

aversion factor. Both model speci�cations assume non-classical measurement error

in wealth.

Finally, the third one is the simplest speci�cation. It is obtained assuming

that observed wealth coincide with relevant wealth, and therefore enforces pure

exogeneity of the wealth component. Estimating the third model will not require

to estimate the likelihood of observed wealth

5.5 Heterogeneity

Because we have a relatively complicated non-linear factor structure, and we have

only a limited number of measurements on risk aversion, the distribution of the

time-invariant portion of risk aversion is di¢ cult to identify. To perform estima-
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tion, we partition the domain of the permanent risk aversion factor into 8 points;

f�ra1 = �0:02; �ra2 = 0:05; �ra3 = 0:08; �ra4 = 0:12; �ra5 = 0:14; �ra6 = 0:16; �ra7 = 0:18; �ra8 = 0:20g

These points are chosen to cover the same region as the Arrow-Pratt measure

obtained in 1995. These support points, along with their respective type proba-

bilities, de�ne the degree of heterogeneity in risk aversion.

To close the model, we assume that the heterogeneity components f�Si ; �rai ; �Ri g

may be approximated by a tri-variate discrete distribution. We estimate the model

with 8 types of individuals. Altogether, a type k is de�ned as the subset of the

population endowed with f�Sk ; �rak ; �Rk g. The support points f�Sk ; �Rk g are freely

estimated.

5.6 Estimation

We estimate the model by maximum (mixed) likelihood techniques. For an in-

dividual who does not respond to the lottery, the contribution to the likelihood,

LNR; is simply

LNRi =
KX
k=1

pk � (1� �R(: j typek)) (15)

The contribution to the likelihood for a respondent i; who has completed level

g; who is endowed with a wealth level Wealthi;95 and who reports a degree of

absolute risk aversion Ai;95(:); is denoted LRi ; and is equal to

LRi =
PK

k=1 pk � [�R(: j typek) � �
g�1
s=1 � (1�Hs;i(Xi j typek))s �Hg;i(Xi; j typek)

�fA(Ai;95 � ( �Ai;95 j typek))�

fW (obs:Wealthi;95 � (
0WWi j typek))]

where both fA(:) and fW (:) are given by equation 11.
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6 Empirical Results

As there exists a large literature which documents the determinants of schooling

attainment, we focus our discussion on the e¤ect of relative risk aversion on grade

transitions from senior high school to higher education. The actual and predicted

drop-out rates at all schooling levels are found in Table 2. The predicted values

are on the basis of the average values of the independent variables. The results

show that the model predicts accurately the termination rates at all levels of

schooling and in both cohorts (born before and after 1950). Since the extension

of compulsory schooling to the junior high school level a¤ected the cohorts born

after 1950, the termination rates at schooling levels lower than junior high school

is much lower in these cohorts.

6.1 The E¤ect of Non-Response

Before discussing the parameters, it is informative to examine the correlation be-

tween the heterogeneity term a¤ecting the decision to respond �Ri , and other het-

erogeneity components (individual-speci�c risk aversion �rai ; and grade transition

heterogeneity �Si ). Those are found in Table 3. For both cohorts, the correlation

between response heterogeneity and risk aversion heterogeneity is negative (-0.47

and -0.38). Taken as such, this indicates that self-selection is important, and in

particular, that an analysis that would ignore the endogeneity of the response de-

cision would lead to improper inference about individual risk aversion factor. The

correlation between response and grade transition heterogeneity is also found to

be important (-0.61 for the older cohort and -0.21 for the younger one).

Table 4 shows the parameters of the estimated response equation. The proba-

bility of responding increases with age (within cohort) and decreases with wealth

within each cohort. Female head of households are less likely to respond. Most vari-
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ables which indicate the (low) quality of the interview (the variables no_understand,

di¢ cult answer, no_reliable, no_interest and no_climate are explained in the

Section 5.2) are negative and signi�cant in the response equation in both cohorts

except for the variable no_interest (positive signi�cant) and no_climate (insignif-

icant) in the equation of the older cohort. These results imply that the lower

the quality of the interview, the lower the probability that they respond to the

risk aversion question. Although education is not introduced as a determinant

of the response equation, the incidence of response is increasing indirectly with

education, through the e¤ect of the interview quality indicators.

6.2 The Distribution of Individual Speci�c Risk Aversion

and Measurement Error

In order to estimate the model, we must also estimate the distribution of the

time-invariant part of the risk aversion measure (Table 5). This allows to separate

the degree of absolute risk aversion measured in 1995 Ai;95(:) into three di¤erent

components, one component that depends on wealth and background risk, an-

other component representing the time-invariant portion of risk aversion �rai , and

a residual term capturing non-classical measurement error. It is therefore inter-

esting to compare the distribution of this time-invariant risk aversion factor to

the actual Arrow-Pratt measure inferred in 1995 and evaluate the importance of

measurement error. In the last row of Table 5 we report the average values and

the standard deviations of the absolute risk aversion factor for both cohorts. The

estimates are equal to 0.1307 for the cohort born before 1950 and 0.1318 for the

cohort born after 1950. The standard deviations (between 0.03 and 0.04 ) are also

comparable across cohorts. When compared with the actual measure measured in

1995, the estimates are close to the mean and standard deviation of the observed

Arrow-Pratt risk aversion measure (mean 0.147 and standard deviation 0.055 for
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the cohort born after 1950 and mean 0.15 and standard deviation 0.057 for the

cohort born before 1950).

The correlations between the heterogeneity components (Table 3) indicate that

individual-speci�c risk aversion is positively correlated with individual heterogene-

ity explaining grade termination for the older cohort (the correlation is close to

0.10). For the younger cohort, it is negative (-0.23). These correlations are also

di¢ cult to evaluate because there are practically no equivalent estimates in micro-

econometrics.20

As is evident from the absolute risk aversion equation (Table 6), measurement

error is found to be most important. The estimates for the e¤ect of interview

quality are all positive (when signi�cant) and indicate that those who tend not

to be in control during the interview appear to over-estimate their degree of risk

aversion.

In total, we �nd that the variance of the error term is larger as the variance of

the regression. Obviously, this high degree of measurement error explains the very

weak correlation between risk aversion measures and grade completion reported in

the empirical literature. Indeed, as reported in Belzil and Leonardi (2007), there

is a very weak correlation between grade attainment and the betting price.

6.3 The E¤ect of Wealth and Background Risk on Ab-

solute Risk Aversion

Because of the �exible polynomial structure of the absolute risk aversion equation,

the e¤ect of the variables are di¢ cult to infer upon examination of the parameter

estimates. To measure the marginal e¤ect, we computed a predicted absolute risk

20Dohmen et al. (2008) is a recent exception. In their paper, the authors investigate the
relation between individual risk aversion and the rate of time preference. However, their estimates
are obtained from various measurements available in the German Socio Economic Panel, and do
not use a factor structure.
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aversion for every individual, and regressed it on all variables (within a linear

regression speci�cation). In general, we �nd that the estimates of Table 6 are

consistent with what is reported in Guiso and Paiella (2008); absolute risk aversion

decreases with wealth, increases with the measure of liquidity constraints, and

increases with our measure of background risk (the variance of the province GDP).

However, the parameter estimates cannot rule out that absolute risk aversion may

decrease with background risk at very low level of background risk, or at very high

levels of wealth.

6.4 The E¤ect of Time Invariant Risk Aversion and School-

ing on Wealth

The estimates of Table 7 indicate that wealth is positively associated with the in-

dividual level of education, as documented by the four dummy variables associated

to di¤erent grade levels (higher education is the reference variable). Not surpris-

ingly, it is also positively correlated with parents�education. Wealth is positively

and signi�cantly associated with the two variables which we use as exogenous

instruments: the amount of money received as payment from insurance and the

capital gain on the property house. Finally, our model allows us to measure the

e¤ect of the individual-speci�c time-invariant degree of risk aversion on wealth. As

more risk averse individuals may sometimes save more, but also invest in less risky

assets, the sign of risk aversion on wealth is ambiguous. Our estimates indicate

that risk aversion and wealth are positively correlated. This result is di¢ cult to

evaluate since there exist very few empirical estimates of the individual-speci�c

degree of risk aversion in the micro-econometric literature.21

Finally, the impact of interview quality on wealth are not as clear as in the

21Evaluating individual-speci�c risk aversion is more common in the experimental literature,
but its relation with wealth is rarely investigated.
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risk aversion equation. Some of the quality variables have a positive impact on

wealth, while others are negative. Overall, their level is small when compared to

other binary indicators.22

6.5 What is the E¤ect of Risk Aversion on Grade Transi-

tions?

Given the form of the hazard speci�cation, the sign of the parameter estimates

indicates the direction of the e¤ect of a variable on the exit rate out of school.

So, for instance, a positive (negative) estimate for the e¤ect of risk aversion will

imply that individuals who are more risk averse tend to have a higher (lower) drop

out rate. For a particular grade level already completed, a positive e¤ect of risk

aversion therefore indicates that individuals regard entering the next grade level

as risky, while a negative estimate would be consistent with the reverse argument

(the insurance hypothesis). Tables 8 and 9 show the parameter estimates at all

grade transitions, risk aversion is assumed to a¤ect only the transition to college

and enters positively both for the older cohort (0.81) as well as the younger cohort

(0.99).

Because the model is highly non-linear and contains a large number of parame-

ters (more than 200), it is more appealing to focus the discussion on the illustration

of the marginal e¤ects on the grade transition probabilities.23 The marginal e¤ects

associated to risk aversion are found in Table 10 for the transition from senior high

school to college. Without loss of generality, we calculate these hazard rates for

type 1 individuals and for the modal occupation and region. The marginal e¤ects

implied by the model parameters, and found in Table 10 are very close to 0.03-0.04

22Indeed, for this reason, and for the sake of robustness checks, we will later estimate a model
where wealth is exogenous.
23The degree of �exibility reached by using mixture of normals when modeling grade transition,

wealth, and relative risk aversion is the main reason for the proliferation of parameters.
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both the young and the old cohort. These values indicate a fairly large e¤ect for

risk aversion in the transition from senior high school to college. Given senior

high school completion, more risk averse individuals are more likely to drop after

senior high school and disregard the higher education option. Returning to the

�rst objective of this paper, this result is therefore consistent with the standard

view that individuals regard higher education as risky.

Table 10 does not show signi�cant di¤erences across cohorts in the marginal

e¤ect of risk aversion on drop out rates at senior high school level. We interpret

this result as follows. The reform of the school leaving age (extended to lower

high school in 1962) and the 1969 liberalization of access to college, which a¤ected

di¤erently the cohorts born before and after 1950, does not seem to have a¤ected

the level of ex-ante risk, or at least, has not induced a di¤erent perception of the

risks attached to investment in higher education.

6.6 How Important is Risk Aversion?

The e¤ect of parental education is the natural benchmark marginal e¤ect to use

for comparison. The marginal e¤ect of parents�education on children drop-out

rates is computed in Table 10 for the drop-out rate at the senior high school

level. As documented in Table 10, having a single parent with a high school

degree has often an insigni�cant e¤ect on the drop out rate. For the older cohort,

the marginal e¤ects are -0.0009 and 0.0064 for the father and the mother with

high school education. For the older cohort, the e¤ects are -0.0140 (father) and

0.0052 (mother). However, having both parents educated has a much bigger and

signi�cant e¤ect on the drop out probability. The e¤ect is close to -0.20 for both

cohorts.

In order to get a clearer picture, we also decomposed the predicted individual

di¤erences in drop out rates into two separate components: risk aversion and
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parents education and occupation. Table 11 shows that between 30% and 32%

(depending on the cohort) of the total variation in drop out rates at the senior

high school level is accounted by di¤erences in risk aversion. In summary, our

results indicate that risk aversion is a key determinant of the decisions to enter

higher education conditional on having completed senior high school (although not

as important as parents�educational background). Finally, the results displayed

in Table 11 do not reveal any signi�cant cohort e¤ects.

7 Further Model Speci�cations and Robustness

In order to evaluate the robustness of the main results, we estimated two other

model speci�cations that use the approximated degree of absolute risk aversion.

First, we estimated the version of the model in which the entire error term of

observed wealth is interpreted as measurement error. As a second step, we re-

estimated the model under the maintained assumption that wealth is exogenous.

We did so mostly because endogenizing wealth brings an extra degree of compli-

cation in our model, which translates into further parameter proliferation. This

may therefore tend to obscure the results.

Finally, and as mentioned in Section 4, we re-estimated the model using an al-

ternative approach based on the solution to the expected utility equation obtained

when preferences belong to the CARA family.

In order to save space, we report the distribution of risk aversion (mean and

standard deviations) as well as marginal e¤ects and variance decomposition. (Ta-

bles 12 and 13). Our presentation stresses the distribution of risk aversion because

it is the main channel by which it may a¤ect the results.
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7.1 Measurement Error in Wealth

In the model where all the wealth error term is imputed to measurement error,

the spread of the risk aversion factor distribution has increased slightly for both

cohorts (the standard deviations are now above 0.04 in both cases). Overall, the

results are still indicative of the importance of risk aversion, although the impact

is reduced. The marginal e¤ects of the individual-speci�c risk aversion factor are

now below, but very close, to 0.03. The contributions of risk aversion to the total

variations in grade termination rates are also slightly lower (20% and 25%).

7.2 Exogenous Wealth

Obviously the model with exogenous wealth is the one that departs the most

from those speci�cations reported earlier. Because it ignores measurement error

in wealth, the model explicitly assumes that a larger portion of measured risk

aversion is explained by wealth. The consequence appears to be a narrowing of

the spread of the estimated distribution of risk aversion. This is illustrated by a

reduction in the standard errors, now below 0.03 for both cohorts. The marginal

e¤ects of risk aversion (between 0.034 and 0.036) are now back to levels that are

now only slightly below those reported in the previous section.

7.3 An Alternative Approach

As mentioned in Section 4, we may also obtain a measure of risk aversion, if we

use the one-to-one correspondence between the value attached to the lottery, and

the degree of risk aversion (given wealth). In order to infer the individual-speci�c

risk aversion factor, we therefore solve the expected utility equation for a given

preference structure (Belzil, 2007). However, in order to take into account that

the answer to the lottery may not be fully reliable, we incorporate non-classical
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measurement error, and we also take into account that di¤erences in risk aversion

error may re�ect di¤erences in background risk and/or di¤erences in liquidity

constraints.

Given the static (single period) nature of the lottery, we assume that the per-

period utility function, along with the value of the bet, recovers an imperfectly

measured degree of risk aversion, denoted ~�
ra

i . We interpret the maximum bet

o¤ered by a given individual as the solution to the expected utility equation driven

by a Constant Absolute Risk Aversion functional form (CARA). The solution is

obtained from the following expression

1

2
�i(wi + g; ~�

ra

i ) +
1

2
�i(wi � beti; ~�

ra

i ) = �i(wi;
~�
ra

i ) (16)

where g=5000 euros is the potential lottery gain and �i(:) = � exp(�~�
ra

i � w):

Given a value of ~�
ra

i for each individual, the objective is to infer the relevant

(true) individual speci�c risk aversion parameter (�rai ). The left-hand side vari-

able ~�
ra

i ; depends on background risk, liquidity constraints and also on a random

component that may represent measurement error. Obviously, it also depends on

the functional form of �i. That is

~�
ra

i (95) = �(Background riski;95;Liquidity constraintsi;95; �
ra
i ) + "

ra
i;95 (17)

where � denotes a second degree polynomial.

This measurement error term, "rai;95; depends explicitly on the quality interview

variables (Q) as well as a purely idiosyncratic error component (~"rai;95). That is

"rai;95 = "
ra0
Q Q+ ~"

ra
i;95

where "ra0Q is a vector of parameters measuring the e¤ect of interview quality vari-

36



ables, and where the residual error term, ~"rai;95; is distributed with density f
ra()

like in equation 11. Again, �rai ; is the time-invariant degree of risk aversion, upon

which, schooling decisions depend. The background risk and liquidity constraint

variables are measured in 1995 and were described earlier in section. Note that this

tightly speci�ed utility function obviates the need for modeling the wealth equa-

tion. We proceed as before by maximizing the joint likelihood of education choices

(equation 5), non-response (equation 7), and the relative risk aversion equation 17

which was just introduced.24

The speci�cation that used the speci�c CARA functional form is comparable

both in terms of the marginal e¤ect of risk aversion (0.0320 and 0.0373) and in the

importance attributable to preference heterogeneity (29% and 32%). However, it

appears to be the speci�cation in which parents�educational achievements account

for the largest share of the probability of accessing higher education. Although the

spread in the degree of relative risk aversion across cohort is higher than before

(0.1241 vs. 0.1445), it does not seem too exagerated.

8 Economic Interpretation and Concluding Re-

marks

In conclusion, all model speci�cations that we have considered imply that, given

senior high school completion, the decision to continue to higher education is

negatively correlated with risk aversion. This result is consistent with standard

theoretical arguments (for example Lehvari and Weiss, 1974). It is also interesting

to note that, conditional on senior high school completion, individual di¤erences

in risk aversion are almost as important as parents�educational background (the

24However, it would still be possible to consider wealth as a useful measurement of the in-
dividual risk aversion factor, and therefore maximize the joint likelihood of education choices,
non-response, risk aversion and wealth. To avoid over-paramaterization, we chose not to do so.
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factor most often cited as the principal determinant of schooling attainments).

We analyzed separately the e¤ects on older (born before 1950) and younger

cohorts (born after 1950) because both the extension of the school leaving age to

lower high school in 1962 and the liberalization of access to college in 1969 a¤ected

directly the cohorts born after 1950 and may therefore have induced a di¤erent

perception of the risks attached to investment in senior high school and college.

However we do not �nd signi�cant di¤erences across cohorts in the marginal e¤ect

of risk aversion on drop out rates at senior high school level.

At this stage, four remarks should be made. First, our results are not incon-

sistent with the conventional wisdom that educational attainments are largely ex-

plained by parents background. Because important di¤erences in children achieve-

ments are known to emerge at a very young age, only a small subset of the popu-

lation actually exercise the decision to enroll in higher education.

Second, and on a similar note, our results are also not incompatible with the

existence of liquidity constraints. E¤ectively, the impact of risk aversion on higher

education enrollment reported in the paper should be seen as a reduced-form ef-

fect. If individual are facing di¤erent levels of �nancial constraints, their individual

willingness to choose higher education may simply re�ect the conjunction of prefer-

ence heterogeneity and �nancial restriction heterogeneity. Indeed, more generally,

although we �nd an important e¤ect of risk aversion on the decision to enroll in

higher education, our semi-structural approach does not allow us to identify the

sources of risk perceived by the agent.

Finally, regardless of liquidity constrainsts, the econometric model is based

on an argumentation that omits heterogeneity in subjective risk evaluation. In

a world where agents di¤er not only with respect to risk aversion, but also with

respect to subjective probability distributions (some regard higher education as

risky, others regard it as an insurance), the e¤ect of risk aversion would be more
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di¢ cult to evaluate. This is a di¢ cult problem to tackle. Disentangling individual

di¤erences in preferences from di¤erences in beliefs is currently at the frontier of

micro-econometrics. As a consequence, future research targeting this issue appears

an interesting avenue for future research.

Appendix: Further Parameterization

In order to estimate the model with normal mixtures and unobserved hetero-

geneity, the following parametrizations have been adopted. Basically, we formulate

the grade transition model as a mixture of normals with unit variance. To obtain

identi�cation, we impose the standard labeling condition (the components are or-

dered in ascending order in terms of their means: �g1 < �g2::: < �g5), and for one

component (the 3rd one), we set the mean (�g3) to 0. We do this because Xi

contains an intercept term (the individual speci�c heterogeneity term).

Finally, we proceed similarly for the wealth and the risk aversion equations.

However, for both cases, we also estimate the variance (the �rm and �
w
m) for each

mixture component. Tables 3 to 5 in the Appendix list the estimated parameters.

Type probabilities:

pk;=
exp(p0k)P6
j=1 exp(p0j)

for k = 1; 2; ::6 and p06 = 0

Grade transition equation (normal mixtures):

P gm =
exp(pg�m )P5
j=1 exp(p

g�
j )
for m = 1; 2 ; ::5 and pg�5 = 0

�g1 = � exp(�
g�
1 )� exp(�

g�
2 );

�g2 = � exp(�
g�
2 );

�g3 = 0;

�g4 = exp(�
g�
4 );

�g5 = exp(�
g�
4 ) + exp(�

g�
5 )

�gm = 1 for m = 1; 2; 3; 4; 5
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Absolute Risk aversion equation (normal mixtures):

PAm =
exp(pA�m )P5
j=1 exp(p

A�
j )
for m = 1; 2 ; ::5 and pA�5 = 0

�A1 = � exp(�A�1 )� exp(�A�2 );

�A2 = � exp(�A�1 );

�A3 = 0;

�A4 = exp(�
A�
4 );

�A5 = exp(�
A�
4 ) + exp(�

A�
5 )

�Am = exp(�
A�
m ) for m = 1; 2; ::5

Wealth equation (normal mixtures):

Pwm =
exp(pw�m )P5
j=1 exp(p

w�
j )
for m = 1; 2 ; ::5 and pw�5 = 0

�w1 = � exp(�w�1 )� exp(�w�2 );

�w2 = � exp(�w�2 );

�w3 = 0;

�w4 = exp(�
w�
4 );

�w5 = exp(�
w�
4 ) + exp(�

w�
5 )

�wm = exp(�
w�
m ) for m = 1; 2; ::5

Response Equation (normal mixtures):

PRm =
exp(pR�m )P5
j=1 exp(p

R�
j )
for m = 1; 2 ; ::5 and pR�5 = 0

�R1 = � exp(�R�1 )� exp(�R�2 );

�R2 = � exp(�R�1 );

�R3 = 0;

�R4 = exp(�
R�
4 );

�R5 = exp(�
R�
4 ) + exp(�

R�
5 )

�Rm = exp(�
R�
m ) for m = 1; 2; ::5
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Table 1: Descriptive statistics

Full sample Cohort born Cohort born
before 1950 after 1950

risk aversion A(:) 0.148 0.149 0.147
college or more (d) 0.103 0.090 0.119
senior highschool (d) 0.312 0.234 0.404
junior highschool (d) 0.309 0.250 0.380
elementary school (d) 0.239 0.367 0.087
no education (d) 0.034 0.057 0.008
highschool father (d) 0.100 0.082 0.121
highschool mother (d) 0.063 0.047 0.082
north (d) 0.398 0.398 0.398
south (d) 0.434 0.440 0.427
female (d) 0.179 0.186 0.172
bluecollar father (d) 0.478 0.469 0.488
selfemployed father (d) 0.304 0.336 0.266
unoccupied father(d) 0.012 0.016 0.006
bluecollar mother (d) 0.134 0.130 0.139
selfemployed mother (d) 0.118 0.128 0.106
unoccupied mother (d) 0.695 0.709 0.679
age 48.312 58.177 36.509
wealth (000 euros) 123.626 132.554 104.384
insurance (000 euros) 0.215 0.180 0.291
capitalgain house (000 euros) 67.098 73.717 53.404
variance provincial gdp 2.018 2.254 1.735
liquidity constrained (d) 0.306 0.285 0.350
response (d) 0.434 0.346 0.622
no understand (d) 0.174 0.215 0.086
di¢ cult answer (d) 0.055 0.070 0.022
no interest (d) 0.222 0.255 0.151
no reliable (d) 0.122 0.135 0.096
no climate (d) 0.063 0.072 0.044

N obs 7,563 5,166 2,397

notes: (d) indicates a dummy.

44



0
10

20
30

40

-.05 0 .05 .1 .15 .2 -.05 0 .05 .1 .15 .2

cohort born before 1950 cohort born after 1950

Density kernel density

Risk Aversion

Graphs by Cohort

Figure 1: The distribution of absolute risk aversion A(:) by cohort
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Figure 2: The distribution of absolute risk aversion A(:) by education level
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Table 2: Actual and Predicted grade termination probabilities

Cohort born Cohort born
before 1950 after 1950

actual predicted actual predicted

no quali�cation 0.0572 0.0714 0.0083 0.0120

elementary school 0.3894 0.4234 0.0878 0.0990

junior high school 0.4358 0.4650 0.4205 0.4560

senior high school 0.7229 0.6743 0.7718 0.7245

Note: The predicted termination (hazard) probabilities are computed from the
model speci�cation.

Table 3: correlation between heterogeneity components

cohort born before 1950
grade transition �S4 �

S
i non response �Ri risk aversion �rai

grade transition �S4 �
S
i 1.0000

non response �Ri -0.6130 1.0000
risk aversion �rai 0.0964 -0.4727 1.0000

cohort born after 1950
grade transition �S4 �

S
i 1.0000

non response �Ri -0.2107 1.0000
risk aversion �rai -0.2342 -0.3847 1.0000
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Table 4: The response equation

Cohort born Cohort born
before 1950 after 1950

wealth 0.0020* -0.0666
no understand (d) -0.2024 -0.6045
di¢ cult answer (d) -0.3763 -0.7345
no interest (d) 0.0406 -0.2843
no reliable (d) -0.0807 -0.2296
no climate (d) 0.0020* -0.2534
age 0.0364 0.1345
age square -0.0211 -0.0524
female (d) -0.2106 -0.0932
type 1 �nr1 0.2712 -0.1356
type 2 �nr2 -0.2792 0.1012
type 3 �nr3 0.3860 0.1276
type 4 �nr4 -0.0508 0.1064
type 5 �nr5 0.4877 0.1924
type 6 �nr6 -0.5022 -0.0356
type 7 �nr7 -0.6325 0.1024
type 8 �nr8 -0.4512 0.1523

Note: The parameters reported with a (*) are those not signi�cant at 5% level.
No_understand is a dummy equal to 1 if, according to the interviewer, the level
of understanding of the questionnaire by the head is poor or just acceptable (as
opposed to satisfactory, good or excellent). Di¢ cult in answering is a dummy
equal to 1 if, according to the interviewer, it was di¢ cult for the head to answer
questions. No_interest is a dummy equal to 1 if, according to the interviewer, the
interest for the questionnaire topics was poor or just acceptable (as opposed to
satisfactory, good or excellent). No_reliable is a dummy equal to 1 if, according
to the interviewer, the information regarding income and wealth are not reliable.
No_climate is a dummy equal to 1 if, according to the interviewer, the overall
climate when the interview took place was poor or just acceptable (as opposed to
satisfactory or good).
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Table 5: The distribution of time invariant risk aversion

Type �ra Estimated proportions

Cohort born Cohort born
before 1950 after 1950

1 -0.02 0.0018 0.0009

2 0.05 0.0412 0.0345

3 0.08 0.1611 0.1556

4 0.12 0.2731 0.2812

5 0.14 0.2534 0.2395

6 0.16 0.1356 0.1316

7 0.18 0.0611 0.1002

8 0.20 0.0727 0.0538

average 0.1307 0.1318
st. dev. 0.0375 0.0368

49



Table 6: The absolute risk aversion equation

Cohort born Cohort born
before 1950 after 1950

wealth -0.1253 -0.1183
wealth square '0.0000� 0.0008�

variance gdp 0.0050� -0.0283
variance gdp square -0.0007 0.0004
liquidity constr. 0.0902 0.3012
wealth*variance gdp -0.0010 '0.0000�
wealth*liquidity constr. 0.0099 '0.0000�
liquidity constr.*variance gdp -0.0090 0.0545
�rai 0.1286 -0.0880
�rai square -0.0634 0.0347
�rai *wealth 0.0450 0.0256
�rai *liquidity constr. 0.0976 -0.1430
�rai *variance gdp -0.0055 0.0008�

no understand (d) 0.1233 0.1412
di¢ cult answer (d) 0.1316 0.1245
no interest (d) 0.1237 0.1003
no reliable (d) 0.1134 -0.0337�

no climate (d) -0.0601� 0.1321

Variance measurement error 0.9245 0.8623
Variance regression 0.6233 0.7422

Note: The measurement error indicator is the ratio of the variance of the error
term of the variance of observe absolute risk aversion. All parameters, except those
identi�ed by a (*) are signi�cant at 1%. The variance of the regression includes
the e¤ect of the interview quality variables.
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Table 7: The wealth equation

Cohort born Cohort born
before 1950 after 1950

senior highschool (d) -1.9112 -1.9181
junior highschool (d) -2.6870 -1.9814
elementary (d) -2.7451 -2.2727
no quali�cation (d) -2.9857 -3.0350
highschool father (d) 0.8305 -0.5126
highschool mother (d) 1.7645 1.9076
bluecollar father (d) 0.0586 -0.4012
bluecollar mother (d) 2.8611 1.0057
selfemployed father (d) 0.6040 0.0893
selfemployed mother (d) 2.8297 2.0443
unemployed father (d) -0.5618 -0.4093
unemployed mother (d) 2.6353 1.2124
north (d) -0.0476 0.0107
south (d) -0.5180 -0.7326
female (d) -0.7420 -0.1902
insurance money 0.0112 0.0146
capitalhouse gain 1.5259 0.6779
risk aversion (�rai ) 0.3001 0.4566

no understand (d) 0.0123 0.0118
di¢ cult answer (d) 0.0284� 0.0322�

no interest (d) -0.0235 0.0119
no reliable (d) 0.0021 -0.0128
no climate (d) -0.0213� -0.0015�

Note: All parameters, except those identi�ed by a (*) are signi�cant at 5%.
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Table 8: Grade transition: cohort born before 1950

Transition to Elem. to Junior to Senior high
elementary junior high senior high to college

�g1 -3.1533 -1.9035 -0.3702 -0.1705
�g2 -3.0221 -2.0822 0.0504 -0.2934
�g3 -2.8426 -1.5001 -0.2276 0.5012
�g4 -3.1528 -1.7216 -0.2629 0.5610
�g5 -2.9056 -1.5728 -0.4140 -0.4600
�g6 -3.1992 -2.0022 -0.5104 0.4004
�g7 -3.2178 -2.0348 -0.7234 0.7111
�g8 -3.2934 -2.0278 -0.3332 0.6612

highschool father (d) -0.0676 -1.1293 0.0815 -0.1429
highschool mother (d) -0.0726 -1.1132 0.0912 -0.1467
highsch. father and mother (d) -1.4162 -1.5085 -1.2965 -1.2752
bluecollar father (d) 1.8778 0.9367 0.7237 0.5929
bluecollar mother (d) -0.5552 0.1123 0.4442 0.8005
selfemployed father (d) 1.3745 0.6329 0.5924 0.4378
selfemployed mother (d) -0.8823 0.1376 0.4003 0.3729
unemployed father (d) 0.0778 0.4418 1.5484 3.2222
unemployed mother (d) -0.6737 -0.2721 0.2724 0.2937
north (d) -0.0367 -0.1329 -0.2890 -0.2478
south (d) 0.6897 0.0732 -0.2239 -0.3993
female (d) 0.3425 0.3329 0.0009 -0.1923
risk aversion (�rai ) - - - 0.8103

Note: All parameters, except those identi�ed by a (*) are signi�cant at 5%.
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Table 9: Grade transition: cohort born after 1950

Transition to Elem. to Junior to Senior high
elementary junior high senior high to college

�g1 -3.4969 -2.2734 0.4034 0.1511
�g2 -3.1962 -2.3278 0.1923 0.0366
�g3 -3.9364 -2.6638 -0.4003 0.6011
�g4 -3.0538 -2.1003 -0.3922 0.6613
�g5 -3.0888 -1.8674 -0.4429 -0.4011
�g6 -3.1025 -2.0035 -0.5562 -0.1037
�g7 -3.1429 -1.9538 -0.4835 0.4556
�g8 -3.0098 -1.8346 -0.4462 0.6016

highschool father (d) -0.1278 -0.9821 -0.8037 -0.3133
highschool mother (d) -0.1002 -0.5824 -0.1129 0.2648
highsch. father and mother (d) -1.5214 -1.5512 -0.3227 -1.3023
bluecollar father (d) 1.2193 1.0626 0.8026 0.7324
bluecollar mother (d) -1.5622 0.1088 0.4048 0.9178
selfemployed father (d) 1.1129 0.9724 0.8423 0.0032*
selfemployed mother (d) -0.8924 -0.0422* 0.0739 0.7328
unemployed father (d) -0.0321* 0.5823 0.8092 3.1221
unemployed mother (d) -0.1794 0.1023 0.4421 0.0887
north (d) -0.4398 0.3239 -0.1729 0.1328
south (d) 1.1005 0.8739 0.1826 0.3754
female (d) -0.4493 0.1835 0.0835 0.2235
risk aversion (�rai ) - - 0.9932

Note: All parameters, except those identi�ed by a (*) are signi�cant at 5%.
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Table 10: The Determinants of grade termination at senior high school: Marginal
e¤ects

Cohort born Cohort born
before 1950 after 1950

highschool father (d) -0.0009* -0.0140
highschool mother (d) 0.0064* 0.0052*
highschool father and mother (d) -0.2236 -0.1867
risk aversion (�rai ) 0.0356 0.0302

Note: the marginal e¤ects are computed at the average value (or mode) of the
regressors and at the average value of the grade transition heterogeneity term. All
marginal e¤ects, except those identi�ed by a * are signi�cant at 5%.

Table 11: The relative explanatory power of risk aversion and parents�education:
The decision to terminate at senior high school

Cohort born Cohort born
before 1950 after 1950

parents�background 50% 56%
risk aversion 30% 32%

Note: To obtain the explanatory power of parent�s background variable and risk
aversion, we used simulated hazard rates at level 3 and level 4, and evaluated the
relative variance for each component with respect to the total variance of predicted
hazard rates.
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Table 12: Robustness check: Marginal e¤ects of the determinants of grade termi-
nation at senior high school

measurement exogenous CARA
error only wealth preferences

Cohort Cohort Cohort Cohort Cohort Cohort
51950 >1950 51950 >1950 51950 >1950

Distribution of risk aversion
Mean 0.1296 0.1364 0.1286 0.1397 0.1241 0.1445
St- dev. 0.0549 0.0503 0.0273 0.0228 0.0303 0.0318

Marginal e¤ects
highschool father (d) 0.0005* -0.0238 0.0003* -0.0082 0.0009* -0.0225
highschool mother (d) 0.0030* 0.0040 0.0066* 0.0038* 0.0025* 0.0046*
highsch. father and mother (d) -0.2002 -0.2206 -0.2001 -0.2319 -0.1922 -0.2352
risk aversion (�rai ) 0.0281 0.0290 0.0338 0.0356 0.0320 0.0373

Note: The marginal e¤ects are computed at the average value (or mode) of the
regressors and at the average value of the grade transition heterogeneity term. All
marginal e¤ects, except those identi�ed by a * are signi�cant at 5%.

Table 13: Robustness checks: The relative explanatory power of risk aversion and
parents�education in the decision to terminate at senior high school

measurement exogenous CARA
error only wealth preferences

Cohort Cohort Cohort Cohort Cohort Cohort
51950 >1950 51950 >1950 51950 >1950

parents�background 49% 55% 50% 54% 63% 60%
risk aversion 20% 25% 31% 34% 29% 32%

Note: In the model "insurance settlement" wealth is instrumented using only the
amount of money received as insurance settlements. To obtain the explanatory
power of parent�s background variable and risk aversion, we used simulated hazard
rates at level 3 and level 4, and evaluated the relative variance for each component
with respect to the total variance of predicted hazard rates.
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Table 1: Appendix. Percentage of children aged 19-29 living at home. Source:
SHIW 1995

age % who live at home % student % students
who live at home

19 98.5% 45.0% 45.0%
20 98.5% 43.1% 42.8%
21 96.0% 39.9% 39.3%
22 92.8% 30.6% 30.3%
23 90.6% 30.1% 29.5%
24 86.2% 26.7% 26.2%
25 72.8% 30.1% 27.5%
26 73.5% 26.8% 25.1%
27 65.5% 21.3% 18.9%
28 56.5% 19.5% 15.0%
29 45.0% 17.7% 13.2%

Source: SHIW 1995.
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Table 2: Appendix. Linear probability models of interview quality variables

nounderstand di¢ cult nointerest noreliable noclimate

college -0.298*** -0.016 -0.169*** -0.038 -0.001
(0.035) (0.018) (0.043) (0.036) (0.024)

high school -0.280*** -0.016 -0.165*** -0.050 -0.021
(0.031) (0.016) (0.038) (0.032) (0.021)

junior high school -0.231*** -0.023 -0.136*** -0.008 0.005
(0.030) (0.016) (0.037) (0.031) (0.021)

elementary -0.139*** -0.005 -0.045 -0.002 0.000
(0.029) (0.015) (0.036) (0.030) (0.020)

age 0.002*** 0.001** 0.002*** 0.001 0.001**
(0.000) (0.000) (0.001) (0.000) (0.000)

female 0.013 0.001 0.043** -0.024 -0.002
(0.013) (0.007) (0.016) (0.014) (0.009)

father education -0.008 0.002 -0.024* -0.024** -0.002
(0.009) (0.005) (0.011) (0.009) (0.006)

mother education -0.002 -0.005 0.008 0.011 -0.009
(0.010) (0.005) (0.012) (0.010) (0.007)

wealth -0.012*** 0.000 -0.010** 0.003 -0.004*
(0.003) (0.001) (0.003) (0.003) (0.002)

risk aversion 0.062* -0.011 0.048 -0.042 0.023
(0.027) (0.014) (0.034) (0.028) (0.019)

constant 0.248*** 0.019 0.223*** 0.125** 0.027
(0.040) (0.021) (0.050) (0.041) (0.027)

N 3285 3285 3285 3285 3285
r2 0.106 0.008 0.055 0.014 0.015

Note: Linear probability models: each column corresponds to a di¤erent
regression. *,**,*** correspond to 10%, 5% and 1% signi�cance levels.
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Table 3: Appendix. Type probabilities and Normal Mixtures

Cohort born Cohort born
before 1950 after 1950

type probabilities
coe¤ coe¤

P01 -3.2805 -4.9723
P02 0.4045 1.2842
P03 0.1863 1.2184
P04 0.0132 0.9676
P05 0.7455 0.8056

grade transition
P g�1 -0.1002 -0.5041
P g�2 0.6634 -0.3338
P g�3 3.5537 -0.2443
P g�4 -2.4355 0.1934
P g�5 0 0

�g�1 1.8031 -0.2936
�g�2 -1.9045 -0.6005
�g�3 0 0
�g�4 32.0001 2.0516
�g�5 23.5523 1.1002
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Table 4: Appendix. Normal Mixtures: risk aversion equation and wealth equation

Risk aversion equation Wealth equation
Cohort born Cohort born Cohort born Cohort born
before 1950 after 1950 before 1950 after 1950

coe¤ coe¤ coe¤ coe¤
PA�1 -0.6057 -0.3256 Pw�1 -0.8148 -0.8184
PA�2 0.1003 0.1374 Pw�2 -0.1258 -0.1727
PA�3 0.1467 0.0354 Pw�3 -0.4221 -0.4318
PA�4 0.1553 0.0748 Pw�4 -0.5323 -0.5258
PA�5 0 0 Pw�5 0 0

�A�1 -1.9856 -1.9004 �w�1 -1.4988 -1.4989
�A�2 -2.0012 -1.9251 �w�2 -1.4928 -1.4955
�A�3 -1 -1 �w�3 0 0
�A�4 -1.9026 -1.9812 �w�4 -1.5122 -1.5092
�A�5 -1.0035 -1.3287 �w�5 -1.5048 -1.5045

�A�1 0.2172 0.3026 �w�1 0.9648 1.2227
�A�2 -0.0316 0.0056 �w�2 0.4957 0.9929
�A�3 -0.1689 -0.0555 �w�3 0.7937 1.1485
�A�4 -0.2846 -0.0349 �w�4 0.9523 1.2398
�A�5 -0.2623 -0.0773 �w�5 1.6648 1.6153
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Table 5: Appendix. Normal Mixtures: non-response equation

Cohort born Cohort born
before 1950 after 1950

coe¤ coe¤
PR�1 -0.6342 -0.3689
PR�2 0.1402 0.0836
PR�3 0.1552 0.0902
PR�4 0.1701 0.0973
PR�5 0 0

�R�1 -1.8826 -1.9903
�R�2 -1.4724 -1.9951
�R�3 -1 -1
�R�4 -1.6542 -1.9956
�R�5 -1.0006 -1.0016

�R�1 0.2233 0.3246
�R�2 -0.0045 0.0178
�R�3 -0.1899 -0.033
�R�4 -0.2278 -0.0777
�R�5 -0.2945 -0.0773
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