
HAL Id: hal-00411061
https://hal.science/hal-00411061

Preprint submitted on 25 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A parameterization process as a categorical construction
Dominique Duval, César Dominguez

To cite this version:
Dominique Duval, César Dominguez. A parameterization process as a categorical construction. 2009.
�hal-00411061�

https://hal.science/hal-00411061
https://hal.archives-ouvertes.fr

A parameterization process as a categorical construction

César Domı́nguez ∗ Dominique Duval †

August 25., 2009

Abstract. The parameterization process used in the symbolic computation systems Kenzo and EAT is
studied here as a general construction in a categorical framework. This parameterization process starts
from a given specification and builds a parameterized specification by transforming some operations
into parameterized operations, which depend on one additional variable called the parameter. Given
a model of the parameterized specification, each interpretation of the parameter, called an argument,
provides a model of the given specification. Moreover, under some relevant terminality assumption,
this correspondence between the arguments and the models of the given specification is a bijection. It is
proved in this paper that the parameterization process is provided by a free functor and the subsequent
parameter passing process by a natural transformation. Various categorical notions are used, mainly
adjoint functors, pushouts and lax colimits.

1 Introduction

Kenzo [8] and its predecessor EAT [20] are software systems developed by F. Sergeraert. They are devoted
to Symbolic Computation in Algebraic Topology. In particular, they carry out calculations of homology
groups of complex topological spaces, namely iterated loop spaces. By means of EAT and Kenzo, some
homology groups that had never been obtained with any other method, neither theoretical nor automatic,
have been computed. In view of the obtained results, some years ago, the first author of this paper began the
formal study of the programs, in order to reach a good understanding on the internal calculation processes
of these software systems. In particular, our study of the data types used in EAT and Kenzo [14, 5, 6]
shows that there are two different layers of data structures in the systems. In the first layer, one finds the
usual abstract data types, like the type of integers. In the second layer, one deals with algebraic structures,
like the structure of groups, which are implemented thanks to the abstract data types belonging to the
first layer. In addition, we realized that in a system such as EAT, we do not simply implement one group,
but more generally parameterized families of groups. In [14] an operation is defined, which is called the
imp construction because of its role in the implementation process in the system EAT. Starting from a
specification Σ in which some operations are labelled as “pure” [6], the imp construction builds a new
specification ΣA with a distinguished sort A which is added to the domain of each non-pure operation. It
follows that each implementation of ΣA defines a family of implementations of Σ depending on the choice of
a value in the interpretation of A. Besides, working with the imp construction in [14] we were able to prove
that the implementations of EAT algebraic structures are as general as possible, in the sense that they are
ingredients of terminal objects in certain categories of models; this result is called the exact parameterization

∗Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio Vives, Luis de Ulloa s/n, E-26004 Logroño,
La Rioja, Spain, cesar.dominguez@unirioja.es.

†Laboratoire Jean Kuntzmann, Université de Grenoble, 51 rue des mathématiques, BP 53, F-38041 Grenoble Cédex 9,
France, Dominique.Duval@imag.fr.

1

property. Later on, led by this characterization of EAT algebraic structures, in [14] we reinterpreted our
results in terms of object-oriented technologies like hidden algebras [13] or coalgebras [21].

This paper deals with generalization by parameterization in the sense of Kenzo and EAT, so that our pa-
rameters are symbolic constants of a given type, that will be replaced by arguments which are elements in a
given set. The notion of parameterization in programming and specification languages bears several mean-
ings, where the parameter may be a type or a specification. For instance, in object-oriented programming,
parametric polymorphism is called generic programming, in C++ it is characterized by the use of template
parameters to represent abstract data types. On the other hand, in algebraic specifications, a parameterized
specification is defined as a morphism of specifications where the parameter is the source and the parameter
passing is defined as a pushout [2].

The framework for this paper is provided by equational logic, considered from a categorical point of view. An
equational theory, or simply a theory, is a category with chosen finite products. A model M of a theory Θ is
a functor M : Θ→ Set which maps the chosen products to cartesian products. A theory Θ can be presented
by a specification Σ, this means that Σ generates Θ. In this paper, we are not interested in specifications
for themselves, but as presentations of theories. So, specifications are used mainly in the examples, and we
feel free to modify a specification whenever needed as long as the presented theory is not changed.

The parameterization process studied in this paper is essentially the “imp construction” of [14]. Starting
from a theory Θ it provides a parameterized theory ΘA by adding a type of parameters A and by transforming
each term f : X → Y in Θ into a parameterized term f ′: A × X → Y in ΘA. Then clearly ΘA generalizes
Θ: the models of Θ can be identified to the models of ΘA which interpret the type of parameters A as a
singleton. There is another way to relate Θ and ΘA, called the parameter passing process, which runs as
follows. By adding to ΘA a constant a (called the parameter) of type A we get a theory with parameter Θa,
such that for each parameterized term f ′: A×X → Y in ΘA there is a term f ′(a,−): X → Y in Θa. Then
the parameter passing morphism j: Θ → Θa maps each term f : X → Y in Θ to f ′(a,−): X → Y in Θa.
Given a model MA of ΘA an argument α is an element of the set MA(A), it provides a model MA,α of Θa

which extends MA and satisfies MA,α(a) = α. Thanks to the parameter passing morphism, the model MA,α

of Θa gives rise to a model M of Θ such that M(f) = MA(f ′)(α,−) for each term f in Θ. Moreover, under
some relevant terminality assumption on MA, this correspondence between the arguments α ∈ MA(A) and
the models of Θ is a bijection: this is the exact parameterization property.

The parameterization process and its associated parameter passing process have been described for each
given theory Θ, but in fact they have the property of preserving the theory structure, which can be stated
precisely in a categorical framework: this is the aim of this paper. The parameterization process is defined
as a functor : the construction of the parameterized theory ΘA from the given theory Θ is a functor left
adjoint to the construction of a coKleisli category, and more precisely it is a free functor in the sense of
section 4. The parameter passing process is defined as a natural transformation, along the following lines.
First, the construction of the theory with parameter Θa from the parameterized theory ΘA is simply a
pushout construction, such that the construction of Θa from Θ is a functor. Then, each parameter passing
morphism j : Θ → ΘA is defined from a lax colimit of theories, in such a way that the parameter passing
morphisms are (essentially) the components of a natural transformation from the identity functor to this
functor.

A first version of this approach can be found in [7], it relies on diagrammatic logic [9, 10]. In this paper,
the explicit use of diagrammatic logic is postponed to the appendix. With respect to the previous papers
like [14], we provide a new interpretation of the parameterization process and in addition an interpretation
of the parameter passing process. Moreover, we take into account the fact that there is a pure part in the
given theory, and we derive the exact parameterization property from a more general result which does not
rely on the existence of a terminal model.

In section 2 equational theories are defined and several examples are presented. The parameterization process
and the parameter passing process are defined categorically in section 3. In section 4 free functors are defined
as left adjoint functors associated to morphisms of limit sketches, and it is proved that the parameterization

2

functor is free. The diagrammatic point of view on equational logic is presented in appendix A. Most of the
categorical notions used in this paper can be found in [17] or in [1]. We omit the size issues: for instance
most colimits should be small. A graph always means a directed multigraph, and in order to distinguish
between various kinds of structures with an underlying graph, we speak about the objects and morphisms of
a category, the types and terms of a theory (or a specification) and the points and arrows of a limit sketch.

2 Examples and definitions

2.1 Equational theories and specifications

In this paper, equational logic is seen from a categorical point of view, as for instance in [19].

Definition 2.1 The category Teq of equational theories is made of the categories with chosen finite products
together with the functors which preserve the chosen finite products. In addition, Teq can be seen as a 2-
category with the natural transformations as 2-cells.

Equational theories are called simply theories. For instance, the theory Set is made of the category of sets
with the cartesian products as chosen products.

Remark 2.2 The correspondence between equational theories in the universal algebra style (as in [16]) and
equational theories in the categorical style (as defined here) can be found in [19]. Basically, the sorts and
products of sorts become objects, still called types, the operations and terms become morphisms, still called
terms (the variables correspond to projections, as in example 2.6) and the equations become equalities: for
instance a commutative square g1 ◦ f1 = g2 ◦ f2 means that there is a term h such that g1 ◦ f1 = h and
g2 ◦ f2 = h. However a more subtle point of view on equations is presented in appendix A.

Definition 2.3 A (strict) model M of a theory Θ is a morphism of theories M : Θ → Set and a morphism
m: M →M ′ of models of Θ is a natural transformation. This forms the category Mod(Θ) of models of Θ.

For every morphism of equational theories θ: Θ1 → Θ, we denote by θ∗:Mod(Θ) → Mod(Θ1) the functor
which maps each model M of Θ to the model θ∗(M) = M ◦ θ of Θ1 and each morphism m: M → M ′ to
m ◦ θ. In addition, for each model M1 of Θ1, the category of models of Θ over M1 is denoted Mod(Θ)|M1

,
it is the subcategory of Mod(Θ) made of the models M such that θ∗(M) = M1 and the morphisms m such
that θ∗(m) = idM1

. Whenever θ is surjective on types, the category Mod(Θ)|M1
is discrete.

A theory Θ can be described by some presentation: a presentation of an equational theory Θ is an equational
specification Σ which generates Θ; this is denoted Θ ⊣ Σ. Two specifications are called equivalent when
they present the same theory. An equational specification can be defined either in the universal algebra
style as a signature (made of sorts and operations) together with equational axioms, or equivalently, in a
more categorical style, as a finite product sketch, see [15], [1], and also section 4.1 and appendix A.1. The
correspondence between the universal algebra and the categorical points of view runs as in remark 2.2.

Definition 2.4 The category Seq of equational specifications is the category of finite product sketches. With
(generalized) natural transformations as 2-cells, Seq can be seen as a 2-category.

Equational specifications are called simply specifications. The category Teq can be identified to a subcategory
of Seq (more precisely, to a reflective subcategory of Seq). When Σ is a presentation of Θ, a model of Θ is
determined by its restriction to Σ, which is called a model of Σ, and in fact Mod(Θ) can be identified to the
category Mod(Σ) of models of Σ.

We will repeatedly use the fact that Teq and Seq , as well as other categories of theories and of specifications,
have colimits, and that left adjoint functors preserve colimits. In addition every specification is the colimit

3

subscript E ΣE

type (or sort) Type X

term (or operation) Term X
f

Y

selection of identity Selid X
idX

X

composition Comp X
f

g◦f

=
Y

g
Z

binary product 2-Prod X

X×Y

pX

pY

Y

pairing (or binary tuple) 2-Tuple X

Z

f

g

〈f,g〉

=

=

X×Y

pX

pY

Y

Figure 1: Elementary specifications

of a diagram of elementary specifications. The elementary specifications are the specifications respectively
made of: a type, a term, an identity term, a composed term, a n-ary product and a n-ary tuple, for all n ≥ 0,
as in figure 1 (where only n = 2 is represented). Let us consider a theory Θ presented by a specification Σ,
then Σ is the colimit of a diagram ∆ of elementary specifications, and Θ is the colimit of the diagram of
theories generated by ∆.

2.2 Examples

Example 2.5 Let us consider the theory Θop,0 presented by two types X, Y , and the three following the-
ories extending Θop,0 (the subscript op stands for “operation”, since Θop is presented by the elementary
specification for terms or operations ΣTerm). The unit type is denoted 1 and the projections are not given
any name.

Θop,A ⊣ A A×X
f ′

X Y

Θop,a ⊣ A A×X
f ′

1

a

X Y

Θop ⊣ X
f

Y

These theories are related by various morphisms (all of them preserving Θop,0): θop,A: Θop,A → Θop maps A
to 1 and θop,a: Θop,a → Θop extends θop,A by mapping a to id1, while jop,A: Θop,A → Θop,a is the inclusion.
In addition, here are two other presentations of the theory Θop,a (the projections are omitted and 1×X is
identified to X):

4

A A×X
f ′

1

a

X
=

a×idX

f ′′ Y

A A×X
f ′

=

Y

1

a

X

a×idX

f ′′ Y

idY

It is clear from anyone of these new presentations of Θop,a that there is a morphism jop : Θop → Θop,a which
maps f to f ′′. In addition, θop,a ◦ jop,A = θop,A and there is a natural transformation top : jop ◦θop,A ⇒ jop,A

defined by (top)X = idX , (top)Y = idY and (top)A = a: 1→ A.

Θop,A

θop,A

Θop

Θop,A
jop,A

θop,A = Θop,a

θop,a

Θop

Θop,A
jop,A

θop,A ⇑top Θop,a

Θop

jop

Parameterization process (construction of Θop,A from Θop). The theory Θop,A is obtained from Θop by
adding a type A, called the type of parameters, to the domain of the unique term in Θop . Then Θop,A can
be seen as a generalization of Θop , since each model M of Θop can be identified to a model of Θop,A where
M(A) is a singleton. We will also say that Θop,A is the expansion of Θop .

Parameter passing process (construction of Θop,a from Θop,A and of a morphism from Θop to Θop,a).
The theory Θop,a is obtained from Θop,A by adding a constant term a: 1→ A, called the parameter. A model
Ma of Θop,a is made of a model MA of Θop,A together with an element α = Ma(a) ∈ MA(A), so that we
can denote Ma = (MA, α). Now, let MA be some fixed model of Θop,A, then the models Ma of Θop,a over
MA correspond bijectively to the elements of MA(A) by Ma 7→Ma(a), so that we get the parameter adding
bijection (the category Mod(Θop,a)|MA

is discrete):

Mod(Θop,a)|MA

≃
→MA(A) by Ma = (MA, α) 7→Ma(a) = α .

On the other hand, each model Ma = (MA, α) of Θop,a gives rise to a model jop
∗(Ma) of Θop such that

jop
∗(Ma)(X) = Ma(X) = MA(X), jop

∗(Ma)(Y) = Ma(Y) = MA(Y) and jop
∗(Ma)(f) = Ma(f ′′) =

MA(f ′)(α,−). Now, let MA be some fixed model of Θop,A and M0 its restriction to Θop,0, then for each
model Ma = (MA, α) of Θop,a over MA the model jop

∗(Ma) of Θop is over M0. This yields the parameter
passing function (the categories Mod(Θop,a)|MA

and Mod(Θop)|M0
are discrete):

Mod(Θop,a)|MA
→ Mod(Θop)|M0

by Ma 7→ jop
∗(Ma) .

Exact parameterization. Let M0 be any fixed model of Θop,0, it is made of two sets X = M0(X) and
Y = M0(Y). Let MA be the model of Θop,A over M0 such that MA(A) = YX and MA(f ′): YX×X→ Y is the
application. It can be noted that MA is the terminal model of Θop,A over M0. Then the parameter passing
function is a bijection, and composing it with the parameter adding bijection we get (where pM(f)q ∈ YX

corresponds by currying to M(f): X→ Y):

Mod(Θop)|M0

∼= MA(A) by MA,α ↔ α i.e., by M ↔ pM(f)q .

Example 2.6 Let Θsgp be the theory for semigroups presented by one type G, one term prd : G2 → G and
one equation prd(x, prd(y, z)) = prd(prd(x, y), z) where x, y, z are variables of type G. As usual with the
categorical point of view, in fact the variables are projections; here, x, y, z: G3 → G are the three projections
and for instance prd(x, y) is prd ◦ 〈x, y〉: G3 → G, composed of the pair 〈x, y〉: G3 → G2 and of prd : G2 → G
(more details are given in the appendix, example A.3).

5

Parameterization process. In order to get parameterized families of semigroups, we consider the theory
Θsgp,A presented by two types A and G, one term prd ′: A×G2 → G and one equation prd ′(p, x, prd ′(p, y, z)) =
prd ′(p, prd ′(p, x, y), z) where x, y, z are variables of sort G and p is a variable of sort A.

Parameter passing process. The theory Θsgp,a is Θsgp,A together with a parameter a: 1→ A, hence with
prd ′′ = prd ′ ◦ (a× idG2): G2 → G (where 1×G2 is identified to G2). Each model MA of Θsgp,A gives rise to a
family of models of Θsgp,a, all of them with the same underlying set MA(G) but with different interpretations
of a in MA(A). Mapping prd to prd ′′ defines a morphism from Θsgp to Θsgp,a. So, each model Ma of Θsgp,a

gives rise to a model M of Θsgp such that M(G) = Ma(G) and M(prd)(x, y) = Ma(prd
′)(α, x, y) for each

x, y ∈Ma(G), where α = Ma(a) is the argument.

Example 2.7 This example motivates the existence of pure terms in the given theory. Let us consider the
theory Θnat “of naturals” presented by a type N and two terms z: 1 → N and s: N → N , and let us say
that z is pure. Let Θnat,0 be the subtheory presented by N and z, it is called the pure subtheory of Θnat .
We define the theory Θnat,A as made of two types A and N and two terms z: 1→ N and s′: A×N → N . It
should be noted that Θnat,A contains ε1: A× 1→ 1 and z′ = z ◦ ε1: A× 1→ N . Then Θnat,A is a theory “of
lists of A”, with z for the empty list and s′ for concatenating an element to a list. In this way, the theory of
lists of A is built as a generalization of the theory of naturals; indeed the naturals can be identified to the
lists over a singleton.

Example 2.8 Here is another example where pure terms are required, this is a simplified version of many
structures in Kenzo/EAT. Let Θmon be the theory for monoids presented by one type G, two terms prd : G2 →
G and e:→ G, and the equations prd(x, prd(y, z)) = prd(prd(x, y), z), prd(x, e) = x, prd(e, x) = x where x,
y, z are variables of type G. Let Θdm be the theory for differential monoids, presented by Θmon together with
one term dif : G→ G and the equations dif (prd(x, y)) = prd(dif (x), dif (y)), dif (e) = e, dif (dif (x)) = e, and
with the terms in Θmon as its pure terms. In order to get parameterized families of differential structures
on one monoid, we define the theory Θdm,A presented by two types G, A and three terms prd : G2 → G,
e: 1 → G and dif ′: A × G → G and the equations prd(x, prd(y, z)) = prd(prd(x, y), z), prd(x, e) = x,
prd(e, x) = x, dif ′(p, (prd(x, y))) = prd(dif ′(p, x), dif ′(p, y)), dif ′(p, e) = e, dif ′(p, dif ′(p, x)) = e. Each
model MA of Θdm,A gives rise to a family of models of Θdm , all of them with the same underlying monoid
(MA(G), MA(prd), MA(e)): there is a model Ma of Θdm over MA for each element α in MA(A), with its
differential structure defined by Ma(dif) = MA(dif ′)(α,−).

Example 2.9 In the next sections we will use the theories with the following presentations:

ΠA ⊣ A

Πa ⊣ A

1

a

Π ⊣ 1

These theories are related by several morphisms: πA: ΠA → Π maps A to 1, both i: Π→ Πa and iA: ΠA → Πa

are the inclusions, and πa: Πa → Π extends πA by mapping a to id1, so that πA and πa are epimorphisms.
In addition, πa ◦ iA = πA and there is a natural transformation p: i ◦ πA ⇒ iA defined by pA = a: 1 → A.
The diagram below on the right is the lax colimit of πA, which means that it enjoys the following universal
property: for each Π′

a with i′A: ΠA → Π′
a, i′: Π→ Π′

a and p′: i′ ◦ πA ⇒ i′A, there is a unique h: Πa → Π′
a such

that h◦iA = i′A, h◦i = i′ and h◦p = p′. For instance, given Π, πA: ΠA → Π, idΠ: Π→ Π and idπA
: πA ⇒ πA,

then πa: Πa → Π is the unique morphism such that πa ◦ iA = πA, πa ◦ i = idΠ and πa ◦ p = idπA
.

ΠA

πA

Π

ΠA
iA

πA = Πa

πa

Π

ΠA
iA

πA ⇑p Πa

Π
i

6

2.3 Some other kinds of theories

For every theory Θ, the coslice category of theories under Θ is denoted Θ↓Teq . It can be seen as a 2-category,
with the natural transformations which extend the identity on Θ as 2-cells.

Definition 2.10 A parameterized theory ΘA is a theory Θ with a distinguished type, called the type of
parameters and usually denoted A. The 2-category of parameterized theories is the coslice 2-category TA =
ΠA↓Teq of theories under ΠA. A theory with a parameter Θa is a parameterized theory with a distinguished
constant of type A, called the parameter and usually denoted a: 1 → A. The 2-category of theories with a
parameter is the coslice 2-category Ta = Πa↓Teq of theories under Πa.

According to the context, ΘA usually denotes the parameterized theory γA: ΠA → ΘA, and sometimes it
denotes the equational theory ΘA itself. Similarly for Θa, which usually denotes γa: Πa → Θa and sometimes
Θa itself.

In addition, it can be noted that Π is the initial theory (which may also be presented by the empty specifi-
cation) so that Π↓Teq is isomorphic to Teq .

The 2-categories SA and Sa of parameterized specifications and specifications with a parameter, respectively,
are defined in a similar way.

On the other hand, the input of the parameterization process is a theory Θ together with a wide subtheory
Θ0 (wide means: with the same types), such a structure is called a decorated theory.

Definition 2.11 A decorated theory is made of a theory Θ with a wide subtheory Θ0 called the pure
subtheory of Θ. A morphism of decorated theories is a morphism of theories θ: Θ→ Θ′ which maps the pure
part of Θ to the pure part of Θ′. This forms the category Tdec of decorated theories.

So, a decorated theory Θ is endowed with a distinguished family of terms, called the pure terms, such that
all the identities and projections are pure and every composition or tuple of pure terms is pure. Pure terms
are denoted with “ ”. When there is no ambiguity we often use the same notation Θ for the theory Θ itself
and for the decorated theory made of Θ and Θ0.

The decorated specifications are defined in a straightforward way. For instance, we may consider the deco-
rated specification made of a type N , a pure term z: 1 N and a term s: N → N (see example 2.7).

3 Constructions

3.1 The parameterization process is a functor

In this section we prove that the parameterization process is functorial, by defining a functor Fexp :Tdec → TA

(“exp” for “expansion”) which adds the type of parameters to the domain of every non-pure term. In
addition, theorem 3.2 states that Fexp is left adjoint to the functor Gexp :TA → Tdec, which builds the
coKleisli category of the comonad A × −. Moreover, we will see in section 4 that Fexp is a free functor
associated to a morphism of limit sketches, and in appendix A that this morphism of limit sketches underlies
a morphism of diagrammatic logics.

In order to define the functor Fexp we use the fact that it should preserve colimits. It has been seen
in section 2.1 that every specification is the colimit of a diagram of elementary specifications. Similarly,
every decorated specification is the colimit of a diagram of elementary decorated specifications, denoted
ΣE.x where x = p for “pure” or x = g for “general”. Informally, the functor Fexp explicits the fact that
every general feature in a decorated specification gets parameterized, while every pure feature remains
unparameterized. Figure 2 defines the parameterized specification FexpΣE.x for each elementary decorated

7

index E.x ΣE.x FexpΣE.x

type Type.p X X

pure term Term.p X
f

Y X
f

Y

term Term.g X
f

Y A×X
f ′

Y

sel. of identity Selid.p X
idX

X X
idX

X

pure composition Comp.p X
f

g◦f

=
Y

g
Z X

f

g◦f

=
Y

g
Z

composition Comp.g X
f

g◦f

=
Y

g
Z A×X

〈prX ,f ′〉

g′◦〈prX ,f ′〉

=
A×Y

g′

Z

binary product 2-Prod.p X

X×Y

pX

pY

Y

X

X×Y

pX

pY

Y

pure pairing 2-Tuple.p X

Z

f

g

〈f,g〉

=

=

X×Y

pX

pY

Y

X

Z

f

g

〈f,g〉

=

=

X×Y

pX

pY

Y

pairing 2-Tuple.g X

Z

f

g

〈f,g〉

=

=

X×Y

pX

pY

Y

X

A×Z

f ′

g′

〈f ′,g′〉

=

=

X×Y

pX

pY

Y

Figure 2: The functor Fexp on elementary decorated specifications

specification ΣE.x (many projection arrows are omitted, and when needed the projections from A × X are
denoted prX : A×X → A and εX : A×X → X). The morphisms of parameterized specifications Fexpσ, for
σ between elementary decorated specifications, are straightforward. For instance, let c: ΣTerm.g → ΣTerm.p be
the conversion morphism, which corresponds to the fact that every pure term can be seen as a general term,
then Fexpc maps f ′: A×X → Y in FexpΣTerm.g to f ◦ εX : A×X → Y in FexpΣTerm.p. Now, given a decorated
theory Θ presented by the colimit of a diagram ∆ of elementary decorated specifications, we define FexpΘ
as the parameterized theory presented by the colimit of the diagram Fexp∆ of parameterized specifications.

Definition 3.1 The functor Fexp : Tdec → TA defined above is called the parameterization functor.

Clearly the parameterization functor preserves colimits. In addition, let ΘA be the parameterized theory
FexpΘ, it follows from the definition of Fexp that the equational theory ΘA is a theory under Θ0.

Now the functor Gexp is defined independently from Fexp . Let ΘA be a parameterized theory. The endofunc-
tor of product with A forms a comonad on ΘA with the counit ε made of the projections εX : A ×X → X
and the comultiplication made of the terms δX : A × X → A × A × X induced by the diagonal on A. Let
Θ be the coKleisli category of this comonad: it has the same types as ΘA and a term [f]: X → Y for each

8

term f : A×X → Y in ΘA. There is a functor from ΘA to Θ which is the identity on types and maps every
g: X → Y in ΘA to [g ◦ εX]: X → Y in Θ. Then every finite product in ΘA is mapped to a finite product in
Θ, which makes Θ a theory. Let Θ0 denote the image of ΘA in Θ, it is a wide subtheory of Θ. In this way,
any parameterized theory yields a decorated theory. The definition of Gexp on morphisms is straightforward.
The next result can be derived directly, or as a consequence of theorem 4.5.

Theorem 3.2 The parameterization functor Fexp and the functor Gexp form an adjunction Fexp ⊣ Gexp :

Tdec

Fexp

⊥ TA

Gexp

The next result states that Θ can be easily recovered from ΘA, by mapping A to 1.

Proposition 3.3 Let Θ be a decorated theory with pure subtheory Θ0 and γA: ΠA → ΘA the parameterized
theory FexpΘ. Let γ: Π→ Θ be the unique morphism from the initial theory Π to the theory Θ. Then there
is a morphism θA: ΘA → Θ under Θ0 such that the following square is a pushout:

ΠA

[P.O.]πA

γA

ΘA

θA

Π
γ

Θ

Proof. It can easily be checked that this property is satisfied by each elementary specification. Then the
result follows by commuting two colimits: on the one hand the colimit that defines the given theory from its
elementary components, and on the other hand the pushout. �

When there is an epimorphism of theories θ: Θ1 → Θ2, we say that Θ1 is the generalization of Θ2 along θ.
Indeed, since θ is an epimorphism, the functor θ∗:Mod(Θ2)→ Mod(Θ1) is a monomorphism, which can be
used for identifying Mod(Θ2) to a subcategory of Mod(Θ1).

Corollary 3.4 With notations as in proposition 3.3, ΘA is the generalization of Θ along θA.

Proof. Clearly πA: ΠA → Π is an epimorphism. Since epimorphisms are stable under pushouts, proposi-
tion 3.3 proves that θA: ΘA → Θ is also an epimorphism. �

Let Fexp : Tdec → TA be the parameterization functor and let U :TA → Teq be the functor which simply
forgets that the type A is distinguished, so that U ◦ Fexp :Tdec → Teq maps the decorated theory Θ to the
equational theory ΘA.

Tdec

Fexp

TA
U

Teq

Every theory Θ can be seen as a decorated theory where the pure terms are defined inductively as the
identities, the projections, and the compositions and tuples of pure terms. Let I:Teq → Tdec denote the
corresponding inclusion functor. Then the endofunctor U ◦ Fexp ◦ I:Teq → Teq corresponds to the “imp
construction” of [14], which transforms each term f : X → Y in Θ into f ′: A×X → Y for a new type A.

3.2 The parameter passing process is a natural transformation

A theory Θa with a parameter is built simply by adding a constant a of type A to a parameterized theory
ΘA. Obviously, this can be seen as a pushout.

9

Definition 3.5 Let γA: ΠA → ΘA be a parameterized theory. The theory with parameter extending γA is
γa: Πa → Θa given by the pushout of γA and iA:

ΠA

[P.O.]iA

γA

ΘA

jA

Πa

γa

Θa

The pushout of theories in definition 3.5 gives rise to a pullback of categories of models, hence for each model
MA of ΘA the function which maps each model Ma of Θa over MA to the element Ma(a) ∈ MA(A) defines
a bijection:

Mod(Θa)|MA

≃
→MA(A) . (1)

Let us assume that the parameterized theory γA: ΠA → ΘA is FexpΘ for some decorated theory Θ with pure
subtheory Θ0. Then the pushout property in definition 3.5 ensures the existence of a unique θa: Θa → Θ
such that θa ◦ γa = γ ◦ πa (which means that θa maps A to 1 and a to id1) and θa ◦ jA = θA. Then ΘA is a
theory under Θ0 and the composition by jA makes Θa a theory under Θ0 with jA preserving Θ0.

ΘA
jA

θA = Θa

θa

Θ

Lax cocones and lax colimits in 2-categories generalize cocones and colimits in categories. For each decorated
theory Θ with pure subcategory Θ0, let ΘA = FexpΘ and θA: ΘA → Θ be as in section 3.1, and let Θa and
jA: ΘA → Θa be as above. Let j: Θ → Θa be the morphism under Θ0 which maps each type X to X and
each term f : X → Y to f ′ ◦ (a × idX): X → Y . Let t: j ◦ θA ⇒ jA be the natural transformation under Θ0

such that tA = a: 1→ A. Then the following diagram is a lax cocone with base θA in the 2-category Θ0↓Teq ,
for short it is denoted (Θa, jA, j, t), and it is called the lax colimit associated to Θ because of lemma 3.6.

ΘA
jA

θA ⇑t Θa

Θ
j

Lemma 3.6 Let Θ be a decorated theory with pure subcategory Θ0. The lax cocone (Θa, jA, j, t) with base
θA defined above is a lax colimit in the 2-category of theories under Θ0.

Proof. This means that the given lax cocone is initial among the lax cocones with base θA in Θ0↓Θ, in
the following sense. For every lax cocone (Θ′

a, j′A, j′, t′) with base θA under Θ0 there is a unique morphism
h: Θa → Θ′

a such that h ◦ jA = j′A, h ◦ j = j′ and h ◦ t = t′, it is defined from the pushout in definition 3.5
by h ◦ jA = j′A, so that h(A) = A, and h ◦ γa(a) = t′A : 1→ A. �

For instance, given Θ, θA: ΘA → Θ, idΘ: Θ → Θ and idθA
: θA ⇒ θA, then θa is the unique morphism such

that θa ◦ jA = θA, θa ◦ j = idΘ and θa ◦ t = id θA
.

Let Θ be a decorated theory with pure subtheory Θ0 and let (Θa, jA, j, t) be its associated lax colimit, with
base θA: ΘA → Θ. Let MA be a model of ΘA and M0 its restriction to Θ0, and let {(M, m) | m: θA

∗M →
MA}|M0

(where as before θA
∗M = M ◦ θA) denote the set of pairs (M, m) with M a model of Θ over M0

10

and m a morphism of models of ΘA over M0. A consequence of the lax colimit property is that the function
which maps each model Ma of Θa over MA to the pair (j∗Ma, t

∗Ma) = (Ma ◦ j, Ma ◦ t) defines a bijection:

Mod(Θa)|MA
∼= {(M, m) | m: θA

∗M →MA}|M0
. (2)

The bijections 1 and 2 provide the next result, which does not involve Θa.

Proposition 3.7 Let Θ be a decorated theory with pure subtheory Θ0 and let ΘA = FexpΘ and θA: ΘA → Θ.
Then for each model MA of ΘA, with M0 denoting the restriction of MA to Θ0, the function which maps each
element α ∈ MA(A) to the pair (M, m), where M is the model of Θ such that M(f) = MA(f ′)(α,−) and
where m : θA

∗M → MA is the morphism of models of ΘA such that mA : M(1) → MA(A) is the constant
function ⋆→ α, defines a bijection:

MA(A) ∼= {(M, m) | m: θA
∗M →MA}|M0

. (3)

As an immediate consequence, we get the exact parameterization property from [14].

Corollary 3.8 Let Θ be a decorated theory with pure subcategory Θ0, and let ΘA = FexpΘ. Let M0 be a
model of Θ0 and MA a terminal model of ΘA over M0. Then there is a bijection:

MA(A) ∼= Mod(Θ)|M0
(4)

which maps each α ∈ MA(A) to the model MA,α of Θ defined by MA,α(X) = M0(X) for each type X and
MA,α(f) = MA(f ′)(α,−) for each term f , so that MA,α(f) = MA(f) for each pure term f .

The existence of a terminal model of ΘA over M0 is a consequence of [21] and [11]. Corollary 3.8 corresponds
to the way algebraic structures are implemented in the systems Kenzo/EAT. In these systems the parameter
set is encoded by means of a record of Common Lisp functions, which has a field for each operation in the
algebraic structure to be implemented. The pure terms correspond to functions which can be obtained from
the fixed data and do not require an explicit storage. Then, each particular instance of the record gives rise
to an algebraic structure.

Clearly the construction of γa from γA is a functor, which is left adjoint to the functor which simply forgets
that the constant a is distinguished. So, by composing this adjunction with the adjunction Fexp ⊣ Gexp from
theorem 3.2 we get an adjunction F ′

exp ⊣ G′
exp where F ′

exp maps each decorated theory Θ to Θa, as defined
above:

Tdec

F ′
exp

⊥ Ta

G′
exp

Let U ′:Ta → Teq be the functor which simply forgets that the type A and the constant a are distinguished.
Then the functor U ′ ◦ F ′

exp :Tdec → Teq maps the decorated theory Θ to the equational theory Θa.

Tdec

F ′
exp

Ta
U ′

Teq

The morphism of theories j: Θ → Θa depends on the decorated theory Θ, let us denote it j = JΘ. Let
H :Tdec → Teq be the functor which maps each decorated theory Θ to the equational theory Θ. The next
result is easy to check.

Theorem 3.9 The morphisms of theories JΘ: Θ → Θa form the components of a natural transformation
J : H ⇒ U ′ ◦ F ′

exp :Tdec → Teq .

Tdec

F ′
exp

H

⇑J

Ta
U ′

Teq

11

Definition 3.10 The natural transformation J : H ⇒ U ′ ◦ F ′
exp :Tdec → Teq in theorem 3.9 is called the

parameter passing natural transformation.

Example 3.11 Starting from Θop and Θop,0 as in example 2.5, the pushouts of theories from proposition 3.3
and definition 3.5 are respectively:

A −→ A A×X
f ′

X Y

A −→ A A×X
f ′

X Y

↓ ↓ ↓ ↓

1

−→

X
f

Y

A

1

a

−→ A A×X
f ′

1

a

X Y

We have seen in example 2.5 two other presentations of the vertex Θop,a of the second pushout, with
f ′′ = f ′ ◦ (a× idX) : X → Y . For each decorated theory Θ, the morphism of equational theories jop = JΘop

:
Θ→ Θa maps f to f ′′, as in example 2.5.

A model M0 of Θop,0 is simply made of two sets X = M0(X) and Y = M0(Y). On the one hand, a model
of Θ over M0 is characterized by a function ϕ: X → Y. On the other hand, the terminal model MA of
Θop,A over M0 is such that MA(A) = YX and MA(f ′): YX × X → Y is the application. The bijection
Mod(Θ)|M0

∼= MA(A) then corresponds to the currying bijection ϕ 7→ pϕq.

Example 3.12 Let Θdm be the theory for differential monoids from example 2.8, with the pure subtheory
Θdm,0 = Θmon of monoids. They generate the parameterized theory Θdm,A as in example 2.8. Let M0 be
some fixed monoid and MA any model of Θdm,A over M0, then each element of MA(A) corresponds to a
differential structure on the monoid M0. If in addition MA is the terminal model of Θdm,A over M0, then
this correspondence is bijective.

Example 3.13 When dealing with an imperative language, the states for the memory are endowed with an
operation lookup for observing the state and an operation update for modifying it. There are two points of
view on this situation: either the state is hidden, or it is explicit. Let us check that the parameterization
process allows to generate the theory with explicit state from the theory with hidden state.

First, let us focus on observation: the theory Θst is made of two types L and Z (for locations and integers,
respectively) and a term v: L → Z for observing the values of the variables. The pure subtheory Θst,0 is
made of L and Z. We choose a model M0 of Θst,0 made of a countable set of locations (or addresses, or
“variables”) L = M0(L) and of the set of integers Z = M0(Z). Let A = ZL, then as in example 3.11 the
terminal model MA of Θst,A over M0 is such that MA(A) = A and Mst,A(v′): A× L→ Z is the application,
denoted lookup. The terminal model MA does correspond to an “optimal” implementation of the state.

Now, let us look at another model NA of Θst,A over M0, defined as follows: NA(A) = A×L×Z and NA(v′): A×
L × Z × L → Z maps (p, x, n, y) to n if x = y and to lookup(p, y) otherwise. The terminality property of
MA ensures that there is a unique function update: A × L × Z → A such that lookup(update(p, x, n), y) is
n if x = y and lookup(p, y) otherwise. So, the updating operation update is defined coinductively from the
observation operation lookup.

4 Free functors

In this section some basic facts about limit sketches and their associated adjunction are mentioned, and it
is proved that the parameterization functor Fexp from section 3.1 is a free functor, in the sense that it is the
left adjoint associated to a morphism of limits sketches.

12

4.1 Limit sketches

It is quite usual to define a free functor as the left adjoint of a forgetful functor, but there is no unique
definition of a forgetful functor. In this section forgetful functors are defined from morphisms of limit
sketches, they are not always faithful.

There are several definitions of limit sketches (also called projective sketches) in the litterature, see for
instance [3] or [1]. These definitions are different but all of them serve the same purpose: each limit sketch
generates a category with limits, so that limit sketches generalize equational specifications in allowing some
interdependence between the variables. In this paper, limit sketches are used at the meta level, in order
to describe each category of theories or specifications as the category of realizations (or models) of a limit
sketch. While a category with limits is a graph with identities, composition, limit cones and tuples, satisfying
a bunch of axioms, a limit sketch is a graph with potential identities, composition, limit cones and tuples,
which are not required to satisfy any axiom. Potential limit cones, or simply potential limits, may also be
called specified limits or distinguished cones.

Definition 4.1 A limit sketch is a graph where some points X have an associated potential identity arrow
idX : X → X , some pairs of consecutive arrows f : X → Y , g: Y → Z have an associated potential composed
arrow g ◦ f : X → Z, some diagrams ∆ have an associated potential limit, which is a cone with base ∆, and
when there is a potential limit with base ∆ then some cones with base ∆ have an associated potential tuple,
which is a morphism of cones with base ∆ from the given cone to the potential limit cone. A morphism of
limit sketches is a morphism of graphs which preserves the potential features. This yields the category of
limit sketches.

Whenever this definition is restricted to potential limits with a finite discrete base (called potential finite
products), we get the category of finite product sketches : this is the category Seq of equational specifications,
from section 2.1.

Definition 4.2 Given a limit sketch E and a category C, a realization (or loose model) of E with values
in C is a graph homomorphism which maps the potential features of E to real features of C. A morphism
of realizations is (an obvious generalization of) a natural transformation. This gives rise to the category
Real(E,C) of realizations of E with values in C. By default, C is the category of sets.

By default, C is the category of sets. A category is called locally presentable if it is equivalent to the category
of set-valued realizations of a limit sketch E; then E is called a limit sketch for this category.

Let E denote the category generated by E such that every potential potential feature of E becomes a real
feature of E. The Yoneda contravariant realization YE of E is the contravariant realization of E with values
in Real(E) such that YE(E) = Hom

E
(E,−) for every point or arrow E in E. Then for each theory Θ

and each point E in E, the set Θ(E) is in bijection with HomReal(E)(YE(E), Θ). The Yoneda contravariant
realization is injective on objects and faithful. In addition it is dense: although Real(E) may be “much
larger” than E, every realization of E is the vertex of a colimit with its base in the image of YE.

Let e:E1 → E2 be a morphism of limit sketches and Ge:Real(E2) → Real(E1) the precomposition with e.
A fundamental result due to Ehresmann states that there is an adjunction, that will be called the adjunction
associated with e:

Real(E1)

Fe

⊥ Real(E2)
Ge

Moreover, the functor Fe (contravariantly) extends e via the Yoneda contravariant realizations, in the sense
that there is an isomorphism:

Fe ◦ YE1

∼= YE2
◦ e .

Our definition of forgetful and free functors relies on this adjunction.

13

Definition 4.3 A forgetful functor is a functor of the form G = −◦e:Real(E2)→ Real(E1) for a morphism
of limit sketches e:E1 → E2. A free functor is a left adjoint to a forgetful functor (as every adjoint functor,
it is unique up to a natural isomorphism).

Remark 4.4 It is easy to describe the forgetful functor Ge, using its definition: for each realization R2 of
E2, the realization R1 = Ge(R2) of E1 is such that R1(E) = R2(e(E)) for every point or arrow E in E1.
It is also quite easy to describe the left adjoint functor Fe, using the fact that Fe extends e: let R1 be a
realization of E1 and R2 = Fe(R1), if R1 = YE1

(E) for some point E in E1 then R2 = YE2
(e(E)), and the

general case follows thanks to the density of YE1
and to the fact that Fe preserves colimits (since it is a left

adjoint).

4.2 A limit sketch for equational theories

The construction of various “sketches of categories” and “sketches of sketches” is a classical exercise about
sketches [3, 4, 1]. Here we build (a significant part of) a limit sketch Eeq for the category Teq of equational
theories, i.e., for the category of categories with chosen products.

• Graphs

Let us start from the following limit sketch Egr for the category of graphs, simply made of two points Type
and Term (for types and terms) and two arrows dom and codom (for domain and codomain):

Type Term
dom

codom

The image of Egr by its Yoneda contravariant realization is the following diagram of graphs:

X
X 7→X

X 7→Y

X
f

Y

• Categories

First, let us build a limit sketch E′
gr by adding to Egr a point Cons for consecutive terms, as the vertex of

the following potential limit, where the projections fst and snd stand for the first and second component of
a pair of consecutive terms and middle stands for its “middle type” (codomain of the first component and
domain of the second one):

Cons
fst snd

middle

Term
codom

Type Term
dom

hence the equations codom ◦ fst = middle , dom ◦ snd = middle hold, so that middle may be omitted.
Adding such a potential limit, with new vertex and projections over a known base, is an equivalence of limit
sketches: the realizations of E′

gr are still the graphs. Now, a limit sketch Ecat for categories is obtained
by adding to E′

gr two arrows selid for the selection of identities and comp for the composition and several
equations:

Type

selid

Term
dom

codom

Cons
fst

snd

comp

dom ◦ selid = idType , codom ◦ selid = idType , dom ◦ comp = dom ◦ fst , codom ◦ comp = codom ◦ snd ,

14

and with the equations which ensure that the three axioms of categories are satisfied. The image of this part
of Ecat by its Yoneda contravariant realization is the following diagram of categories:

X

idX

X 7→X

X 7→Y

f 7→idX

X

idX

f
Y

idY

f 7→f

f 7→g

f 7→g◦f

X

idX

f

g◦f

Y

idY

g
Z

idZ

• Theories

We build a limit sketch E′
cat by adding to Ecat for each n ∈ N the following potential limits, with vertex

Typen for n-tuples of types and n-Cone for n-ary discrete cones:

Typen

b1 bn

Type Type

n-Cone
c1 cn

vertex
Term

dom

. Term

dom
Type

The arrow vertex may be omitted when n > 0. When n = 0, the potential limits mean that Type0

is a unit type (also denoted Unit) and 0-Cone is isomorphic to Type. We also add the tuple n-base =
〈codom ◦ c1, . . . , codom ◦ cn〉 which maps each cone to its base:

Typen n-Cone
n-base

The realizations of E′
cat are still the categories. Now, a limit sketch Eth for equational theories is obtained

by adding to E′
cat the following features, for each n ∈ N. First an arrow n-prod: Typen → n-Cone together

with the equation n-base ◦ n-prod = idTypen , for building the product cone of each family of n types. Then
for building tuples, an arrow n-tuple: n-Cone→ Term together with the equations dom ◦ n-tuple = vertex

and codom◦n-tuple = vertex◦n-prod◦n-base and with several additional equations for ensuring that the
universal property of a product is satisfied. So, here is a relevant part of this limit sketch Eth for theories
(equations are omitted, and only one arity n is represented):

Type

selid

Term
dom

codom

Cons
fst

snd

comp

Typen

b1 ... bn

n-prod

n-Cone

c1 ... cn n-tuple

n-base

vertex

Let us focus on the following part of Eth :

Type2

2-prod

2-Cone
2-base

2-tuple
Term

and its image by the Yoneda contravariant realization (only presentations are given):

15

X

X×Y

p

q

Y

⊆

Z 7→X×Y

X

Z

f

g

〈f,g〉

=

=

X×Y

p

q

Y

h 7→〈f,g〉
W

h
T

4.3 The parameterization process is a free functor

• Parameterized theories

A limit sketch EA for parameterized theories is obtained by adding to Eth an arrow A: Unit→ Type.

• Decorated theories

A limit sketch Edec for decorated theories comes with a morphism eundec:Edec → Eth which forgets about
the decorations (“undec” for “undecoration”). Here are two slightly different choices, the first one is simpler
but the second one better reflects the idea of decoration.

A limit sketch Edec for decorated theories is made of two related copies of Eth : one copy E.p for the
pure features and another copy E.g for the general features, together with a monomorphic transition arrow
tE: E.p→ E.g for each point E in Eth with tType an identity and with the transition equations tE′ ◦e.p = e.g◦tE
for each arrow e: E→ E′ in Eth . The morphism eundec maps both copies E.p and E.g to E.

Another limit sketch for decorated theories, still denoted Edec, is the sketch of elements (similar to the more
usual category of elements) of a model ∆ of Eth with values in Teq , then the morphism eundec is provided
by the construction. This model ∆ formalizes the fact that identities and projections are always pure while
the composition or pairing of pure terms is pure. Precisely, the theory ∆(Type) is generated by one type D
and the theory ∆(Term) by two types p, g (for “pure” and “general”, respectively) and a monomorphism
p → g (for “every pure term can be seen as a general term”). As for the functors, ∆(selid) maps D to p,
∆(n-prod) maps 〈D, . . . , D〉 to p, while ∆(comp) maps 〈p, p〉 to p and 〈p, g〉, 〈g, p〉, 〈g, g〉 to g and ∆(n-tuple)
maps 〈p, . . . , p〉 to p and everything else to g. The resulting sketch of elements Edec is made of one point
Type.D over the point Type of Eth , two points Term.p and Term.g over the point Term of Eth , four points
over Cons, 2n over Typen and n-Cone, a monomorphic arrow Term.p→ Term.g, and so on.

• From decorated theories to parameterized theories

Let us consider the functors Fexp :Tdec → TA and Gexp :TA → Tdec from section 3.1. We can now prove
that Gexp is a forgetful functor and Fexp is its associated free functor, in the sense of definition 4.3.

Theorem 4.5 There is a morphism of limit sketches eexp :Edec → EA such that the associated adjunction
is Fexp ⊣ Gexp from section 3.1.

Proof. In section 3.1 the functor Fexp has been defined on Y(Edec) (see figure 2). Since Fexp extends
eexp via the Yoneda contravariant realizations, this provides the definition of a unique morphism eexp with
associated left adjoint Fexp . For instance, the point Term.p is mapped to Term and the point Term.g to the
point of EA characterized by the fact that its image by Yoneda is presented by X , Y and f ′: A ×X → Y .
Then it is easy to check that the precomposition with eexp is the functor Gexp . �

16

• A span of limit sketches

Altogether, the following span of limit sketches provides a framework for the process that starts from an
equational theory, choose the pure terms, and forms the corresponding parameterized theory:

Eeq Edec

eundec eexp

EA

4.4 A limit sketch for equational specifications

In this section we build a limit sketch Esp for equational specifications from the limit sketch Eth for theories,
thus providing another point of view on the elementary specifications in section 2.1. This construction can
be seen as an illustration of the factorization theorem in [9]. A direct detailed construction of a limit sketch
for equational specifications can be found in appendix A.2.

In the part of Eth shown in section 4.2 there are four arrows that are neither in Egr nor projections in a
potential limit: selid, comp, n-prod, n-tuple. These arrows stand for features that are always defined in
a theory but only partially defined in a specification. So, Esp is obtained by replacing each of these arrows
e: E1 → E2 by a span:

E1 E′1
e
′
1 e

′

E2

where the arrow “֌” stands for a potential monomorphism (which can be expressed as a potential limit).
So, here is (a relevant part of) Esp :

Selid

selid

Type Term
dom

codom

Cons
fst

snd

Comp

comp

n-Prod

n-prod

Typen

b1 ... bn

n-Cone

c1 ... cn

n-base

vertex

n-Tuple

n-tuple

The elementary specifications from section 2.1 are the images by the Yoneda contravariant realization of the
points in Esp which are not vertices of potential limits, namely: Type, Term, Selid, Comp, n-Prod, n-Tuple:
our notations are such that ΣE = Y(E) for each of these points E.

5 Conclusion

This paper provides a neat categorical formalization for the parameterization process in Kenzo and EAT.
Future work includes the generalization of this approach from equational theories to other families of theories,
like distributive categories, and to more general kinds of parameters, like data types.

References

[1] Michael Barr, Charles Wells. Category Theory for Computing Science. Centre de Recherches Mathéma-
tiques (CRM) Publications, 3rd Edition, 1999.

17

[2] Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, Jesse Wright. Parameterized Data
Types in Algebraic Specification Languages. Springer. Lecture Notes in Computer Science 85, p. 157–168
(1980).

[3] Laurent Coppey, Christian Lair. Leçons de Théorie des Esquisses. Diagrammes 12 (1984).

[4] Laurent Coppey, Christian Lair. Leçons de Théorie des Esquisses. Diagrammes 19 (1988).

[5] César Domı́nguez, Laurenano Lambán, Julio Rubio. Object-Oriented Institutions to Specify Symbolic
Computation Systems. Rairo - Theoretical Informatics and Applications 41, p. 191–214 (2007).

[6] César Domı́nguez, Julio Rubio, Francis Sergeraert. Modeling Inheritance as Coercion in the Kenzo
System. Journal of Universal Computer Science 12 (12), p. 1701–1730 (2006).

[7] César Domı́nguez, Dominique Duval, Laureano Lambán, Julio Rubio. Towards Diagrammatic Specifi-
cations of Symbolic Computation Systems. In: Mathematics, Algorithms, Proofs. T. Coquand, H. Lom-
bardi, M. Roy (Eds.). Dagstuhl Seminar 05021 (2005). http://drops.dagstuhl.de/portals/index.
php?semnr=05021.

[8] Xavier Dousson, Francis Sergeraert, Yvon Siret. The Kenzo Program. Institut Fourier, Grenoble (1999).
http://www-fourier.ujf-grenoble.fr/∼sergerar/Kenzo.

[9] Dominique Duval. Diagrammatic Specifications. Mathematical Structures in Computer Science 13,
p. 857–890 (2003).

[10] Dominique Duval. Diagrammatic Inference. arXiv:0710.1208v1 (2007).

[11] Ulrich Hensel, Horst Reichel Defining Equations in Terminal Coalgebras. In Recentr Trends in Data
Type Specifications, Springer. Lecture Notes in Computer Science 906, p. 307–318 (1995).

[12] Peter Gabriel, Michel Zisman. Calculus of Fractions and Homotopy Theory. Springer (1967).

[13] Joseph Goguen, Grant Malcolm. A Hidden Agenda. Theoretical Computer Science 245 (1), p. 55–101
(2000).

[14] Laurenano Lambán, Vico Pascual, Julio Rubio. An Object-Oriented Interpretation of the EAT System.
Applicable Algebra in Engineering, Communication and Computing, 14 (3), p. 187–215 (2003).

[15] S.K. Lellahi. Categorical Abstract Data Type (CADT). Diagrammes 21, SKL1-SKL23 (1989).

[16] Jacques Loeckx, Hans-Dieter Ehrich, Markus Wolf. Specification of Abstract Data Types. Wiley and
Teubner, New York (1996).

[17] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 2th edition, 1998.

[18] Michael Makkai. Generalized Sketches as a Framework for Completeness Theorems (I). Journal of Pure
and Applied Algebra 115, p. 49–79 (1997).

[19] Andrew M. Pitts. Categorical Logic. Chapter 2 of S. Abramsky and D. M. Gabbay and T. S. E. Maibaum
(Eds). Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical Structures. Oxford
University Press, 2000.

[20] Julio Rubio, Francis Sergeraert, Yvon Siret. EAT: Symbolic Software for Effective Homology Compu-
tation. Institut Fourier, Grenoble (1997). ftp://fourier.ujf-grenoble.fr/pub/EAT.

[21] J.J.M.M. Rutten. Universal Coalgebra: a Theory of Systems. Theoretical Computer Science 249 (1),
p. 3–80 (2000).

18

http://drops.dagstuhl.de/portals/index.php?semnr=05021
http://drops.dagstuhl.de/portals/index.php?semnr=05021
http://www-fourier.ujf-grenoble.fr/~ sergerar/Kenzo
ftp://fourier.ujf-grenoble.fr/pub/EAT

A Diagrammatic logics

In this paper we have introduced the equational logic in a categorical way, considering equational theories as
categories with chosen finite products. An equational theory can be presented by an equational specification,
which means that this specification generates the theory. In section 4 we have outlined the construction first
of a limit sketch for the equational theories and then of a limit sketch for the equational specifications.
This appendix provides a detailed description of these limit sketches, with slightly more subtle definitions of
equational theories and specifications, which are better suited for formalizing equational proofs. In addition,
as often in the framework of algebraic specifications (as for instance in [16] and in [7]) we consider first
the specifications, then we get the theories by using the inference rules of the equational logic. Finally, the
parameterization process is presented from this point of view. The framework of diagrammatic logics [9, 10]
is well suited for dealing with “usual” logics like the equational logic as well as with more “unusual” ones
like the decorated equational logic, and also for dealing with various morphisms of logics, for instance we
will see that the parameterizing functor stems from a morphism of logics. This appendix can be seen as an
introduction to diagrammatic logics, based on section 4.1 about limit sketches.

A.1 Equational logic, revisited

As in section 2, instead of the algebraic definition of equational specifications given for instance in [16], we
define equational specifications from finite product sketches. In the main text we have defined equational
specifications exactly as finite product sketches, so that the equations become equalities of arrows: this is all
right for defining models but this makes every proof trivial. In this appendix we give a more subtle definition
of equational specifications as finite product sketches with equations ; then definition 2.4 is easily recovered
by mapping equations to equalities. In spite of this minor difference, we use the same notations (Seq , Teq)
in this appendix as in the main part of the paper.

Definition A.1 An equational specification is a limit sketch (definition 4.1) where all the potential limits
are potential finite products, together with a set of pairs of parallel terms called the equations and denoted
t1 ≡ t2. A morphism of equational specifications is a morphism of limit sketches which preserves the
equations. This yields the category of equational specifications Seq .

Similarly, in this appendix, the equations in an equational theory need not be equalities. Roughly speaking,
an equational theory is an equational specification where the equations form an equivalence relation and all
the potential features become real up to equations. For this reason the relation ≡ is called a congruence.
So, an equational theory is not a category, it is only a bicategory (the congruence defines its 2-cells), but
it becomes a category with chosen finite products, as in definition 2.1, as soon as both members in each
equation get identified. Conversely, every category with chosen finite products can be seen as an equational
theory where the equations are the equalities.

Definition A.2 An equational theory is an equational specification where each type has a potential identity,
each pair of consecutive terms has a potential composition, each list of types has a potential product, each
list of terms with a common domain has a potential tuple, and in addition the equations form a congruence,
which means that the relation ≡ is an equivalence relation compatible with composition and that the usual
axioms for categories with products are satisfied up to ≡. The category of equational theories Teq is the full
subcategory of Seq with objects the equational theories.

It may be noted that the inclusion of Teq in Seq is faithful. In fact, for products and tuples, only the arities
n = 2 and n = 0 will be considered: the general case may easily be guessed, or alternatively one can use
the fact that all finite products may be recovered from the binary products and a terminal object. A set of
inference rules for the equational logic, for generating an equational theory from an equational specification,
is presented in figure 3. When there is no ambiguity, we often omit “equational” and “potential”.

19

name rules

composition f :X→Y g:Y →Z
g◦f :X→Z

identity X
idX :X→X

equivalence f
f≡f

f≡g
g≡f

f≡g g≡h
f≡h

substitution f :X→Y g1≡g2:Y →Z
g1◦f≡g2◦f :X→Z

replacement f1≡f2:X→Y g:Y →Z
g◦f1≡g◦f2:X→Z

associativity f :X→Y g:Y →Z h:Z→W
(h◦g)◦f≡h◦(g◦f)

unit rules f :X→Y
f◦idX≡f

f :X→Y
idY ◦f≡f

binary product Y1 Y2

Y1×Y2

Y1 Y2

pr
1
:Y1×Y2→Y1

Y1 Y2

pr
2
:Y1×Y2→Y2

pairing f1:X→Y1 f2:X→Y2

〈f1,f2〉:X→Y1×Y2

f1:X→Y1 f2:X→Y2

pr
1
◦〈f1,f2〉≡f1

f1:X→Y1 f2:X→Y2

pr
2
◦〈f1,f2〉≡f2

pairing uniqueness f1:X→Y1 f2:X→Y2 f :X→Y1×Y2 pr
1
◦f≡f1 pr

2
◦f≡f2

〈f1,f2〉≡f

terminal type 1

collapsing X
〈 〉X :X→1

collapsing uniqueness f :X→1
〈 〉X≡f

Figure 3: The rules for equational logic

The models of a specification Σ with values in a theory Θ are defined as the morphisms of specifications from
Σ to Θ. In addition, the morphisms of models of Σ with values in Θ can be defined in the usual natural way,
so that there is a category of models Mod(Σ, Θ) of Σ with values in Θ. The category of set-valued models of
Σ is the category of models of Σ with values in the category of sets seen as an equational theory, with the
cartesian products as potential products and the equalities of functions as equations.

Each equational specification in the algebraic sense Sp gives rise to an equational specification Σ: each sort
of Sp becomes a type of Σ, each list of sorts X1, . . . , Xn of Sp becomes a type X1 × . . . × Xn of Σ, each
operation or term f : X1 . . .Xn → Y of Sp becomes a term f : X1 × . . . ×Xn → Y of Σ, and each equation
f1 ≡ f2 of Sp becomes an equation f1 ≡ f2 of Σ; for this purpose, both terms f1 and f2 in Sp must be
considered as terms in all the variables that appear in f1 or in f2, as explained for instance in [1]. Then, the
category of models of Sp in the algebraic sense is isomorphic to the category of set-valued models of Σ.

Example A.3 The equational specification Σsgp for semigroups can be represented as a graph with an
equation:

Σsgp = G2
prd

G prd ◦ 〈x, prd ◦ 〈y, z〉〉 ≡ prd ◦ 〈prd ◦ 〈x, y〉, z〉

However, many details are implicit in this illustration. More precisely, the equational specification Σsgp

can be built as follows. First an equational specification Σmgm for magmas (a magma is simply a set with
a binary operation) is made of two types G and G2, three terms u, v, prd : G2 → G and one potential

20

product G
u
←− G2 v

−→ G. Then, a second equational specification Σ′
mgm is obtained by adding to Σmgm

a type G3, terms x : G3 → G, w : G3 → G2, a potential product G
x
←− G3 w

−→ G2, and also the terms
f1 = prd ◦ 〈x, prd ◦ w〉 : G3 → G and f2 = prd ◦ 〈prd ◦ 〈x, u ◦ w〉, v ◦ w〉 : G3 → G. We also add y = u ◦ w
and z = v ◦w, and the equations w ≡ 〈y, z〉, f1 ≡ prd ◦ 〈x, prd ◦ 〈y, z〉〉 and f2 ≡ prd ◦ 〈prd ◦ 〈x, y〉, z〉. Then
Σ′

mgm is equivalent to Σmgm . Finally Σsgp is made of Σ′
mgm with the equation f1 ≡ f2, or equivalently with

the equation prd ◦ 〈x, prd ◦ 〈y, z〉〉 ≡ prd ◦ 〈prd ◦ 〈x, y〉, z〉.

In sections A.2 and A.3, these notions are embedded in the definition of a diagrammatic equational logic Leq

[10]. This means that we build a limit sketch Eeq,S for Seq , a limit sketch Eeq,T for Teq , and a morphism
of limit sketches eeq : Eeq,S → Eeq,T such that the inclusion functor Geq : Teq → Seq is the precomposition
with eeq and its left adjoint Feq : Seq → Teq (as we saw in section 4.1) maps each equational specification
to its generated theory.

A.2 Equational specifications

In this section we provide a detailed construction of a limit sketch Eeq,S for the category Seq of equational
specifications; except for equations, we will get essentially the same sketch as Esp in section 4.3. We begin
with the sketch Egr for graphs:

Type Term
dom

codom

Then, we extend Egr for each kind of potential features; each limit sketch is followed by its image by its
Yoneda contravariant realization. Finally, by glueing together these extensions of Egr (by a colimit of limit
sketches) we get the limit sketch Eeq,S .

• Composites

A sketch Egr comp for graphs with potential composites is obtained by extending Egr as follows, with its
potential limit and equalities:

Comp

i

comp

Type Term
codom

dom

Cons
snd

fst

Cons
fst snd

middle

Term
codom

Type Term
dom

dom ◦ comp = dom ◦ fst ◦ i

codom ◦ comp = codom ◦ snd ◦ i

The point Comp stands for the set of composable terms, the potential mono i for the inclusion, and the
arrow comp for the composition of composable terms. The image of Egr comp by its Yoneda contravariant
realization is the following morphism of realizations of Egr comp ; as required, the image of the mono i is an
epimorphism.

X
f

g◦f

Y
g

Z

f 7→g◦f

⊆

X

X 7→X

X 7→Y

X
f

Y

f 7→f

f 7→g

X
f

Y
g

Z

21

• Identities

A sketch Egr id for graphs with potential identities is obtained by extending Egr as follows:

Selid

i0

selid

Type Term
codom

dom

dom ◦ selid = idSelid

codom ◦ selid = idSelid

The point Selid stands for the set of types with a selected identity, the potential mono i0 for the inclusion,
and the arrow selid for the selection of the identities.

XidX
⊆

f 7→idX

X

X 7→X

X 7→Y

X
f

Y

• Binary products

A sketch Egr prod for graphs with potential binary products is obtained by extending Egr as follows:

2-Prod

j

2-prod

Type Term
codom

dom

2-Cone
c2

c1
2-base

Type2

b2

b1

Type2
b1 b2

Type Type

2-Cone
c1 c2

vertex

Term
dom

Type Term
dom

b1 ◦ 2-base = codom ◦ c1

b2 ◦ 2-base = codom ◦ c2

The point 2-Prod stands for the set of binary products, the mono j for the inclusion, and the arrow 2-prod

for the operation which maps a binary product to its underlying binary cone.

Y1×Y2

pr1 pr2

Y1 Y2

fi 7→pri

X 7→Y1×Y2

⊆

X

X 7→X

X 7→Y

X
f

Y

f 7→f1

f 7→f2

X
f1 f2

Y1 Y2

⊇

Y1 Y2

22

• Pairing

Now, a sketch Egr pair for graphs with potential binary products and with potential pairings (or 2-tuples)
is obtained by extending Egr prod as follows:

Pair 2-codom

2-dom
pair

2-Prod

j

2-prod

Type Term
codom

dom

2-Cone
c2

c1
2-base

Type2

b2

b1

j ◦ 2-codom = 2-base ◦ 2-dom

dom ◦ pair = vertex ◦ 2-dom

codom ◦ pair = vertex ◦ 2-prod ◦ 2-codom

Y1×Y2

pr1 pr2

Y1 Y2

X

f1 f2

g

⊇
Y1×Y2

pr1 pr2

Y1 Y2

f 7→g

⊆

fi 7→pri

X 7→Y1×Y2

⊆

X

X 7→X

X 7→Y

X
f

Y

f 7→f1

f 7→f2

Y1 Y2

X

f1 f2

⊇
Y1 Y2

• Terminal type

A terminal (or final) type is a nullary product, and a nullary cone is simply a type (its vertex). With this
correspondence in mind, the construction of Egr fin below is similar to the construction of Egr prod above,
with 0-Cone = Type, Type0 = Unit and 0-base : Type→ Unit, where Unit is the vertex of a potential limit
cone with an empty base, and in addition 0-Prod = Final and 0-prod = final

Final

j0

final

Unit Type Term
codom

dom

Unit

(empty base)

The point Unit stands for a singleton, the point Final with the arrow j0 for a set with at most one element,
and the arrow final stands for the selection of the terminal type.

1

⊆

X 7→1

⊆
X

X 7→X

X 7→Y

X
f

Y

23

• Collapsing

Now, a sketch Egr coll for graphs with a potential terminal type and with potential collapsings (or 0-tuples)
is obtained by extending Egr fin as follows:

0-Prod

j0

0-prod
Coll0-dom

0-codom
coll

Unit Type
0-base

Term
codom

dom

dom ◦ coll = 0-codom

0-prod ◦ 0-dom

1

⊆
X

g
1

⊆

X 7→1

⊆

f 7→g

⊆
X

X 7→X

X 7→Y

X
f

Y

• Equations

A sketch Egr eq for graphs with equations is obtained by extending Egr with two points Para and Equa

which stand for the set of pairs of parallel arrows and the set of equations, respectively. The arrows left

and right extract the two terms from a pair of parallel terms. The potential limit establishes that Para

represents pairs of parallel terms.

Type Term
codom

dom

Para
right

left

Equa
equa Para

left right

Term

codom

dom
Type Type Term

dom

codom

X

X 7→X

X 7→Y

X
f

Y

f 7→f

f 7→g

X

f

g

Y
⊆

X

f

≡

g

Y

• Equational specifications

Finally, a sketch Eeq,S for equational specifications is obtained as the colimit of the sketches Egr comp, Egr id ,
Egr eq , Egr pair and Egr coll over Egr . Here is its underlying graph (with Type repeated twice for readablity),
in addition it has all the potential limits and all the equalities from the component sketches.

24

Equa

equa

Final

j0 final

Coll0-codom

0-dom

coll

Selid

i0
selid

Para
left right

Comp

i
comp

Pair 2-codom

2-dom

pair

2-Prod

j
2-prod

Unit Type
0-base

Type Term
codom

dom

Cons
snd

fst

2-Cone

c2

c1

2-base
Type2

b2

b1

Example A.4 Let us consider the equational specification Σnat :

Σnat : N ′

p

1
z

N

s
terminal type : 1

equation: p ◦ s ≡ idN

The specification Σnat has a model “of naturals” Mnat which maps the type 1 to a singleton {⋆}, the type
N to the set N of non-negative integers, the type N ′ to the set N∗ of positive integers, the term z to the
constant function ⋆ 7→ 0, and the terms s and p to the functions x 7→ x + 1 and x 7→ x − 1, respectively.
So, the model Mnat of Σnat is illustrated by a diagram in the equational theory of sets, which has the same
form as the diagram for Σnat :

Mnat : N∗

x 7→x−1

{⋆}
⋆ 7→0

N

x 7→x+1

Besides, Σnat can be seen as a set-valued realization of Eeq,S :

Σnat : {p ◦ s ≡ idN}

{⋆}

⋆ 7→1

∅ {N}

N 7→idN

{〈p ◦ s, idN 〉, . . .} {〈s, p〉}

<s,p> 7→p◦s

∅ ∅

{⋆} {1, N, N ′} {1, N, N ′} {z, s, p, idN , p ◦ s} {〈z, s〉, 〈s, p〉, . . .} {〈s, idN 〉, . . .} {〈N ′, N〉, . . .}

A.3 Equational logic

In section A.2, a limit sketch Eeq,S for equational specifications has been defined. Now, we describe simulta-
neously a limit sketch Eeq,T for equational theories and a morphism eeq : Eeq,S → Eeq,T , by translating at
the sketch level the fact that the equational theories are the equational specifications which satisfy the rules
of the equational logic, as described in section A.1. It happens that this can be done simply by mapping

25

some arrows in Eeq,S to identities, thereby some pairs of points in Eeq,S get identified in Eeq,T . Let us call
(syntactic) entailment any arrow t in Eeq,S which will become an identity in Eeq,T . Let us look more closely
at the rules of the equational logic (figure 3). Each rule may be considered as a fraction in the sense of [12],
i.e., as a span r = s/t from the hypothesis H to the conclusion C, where the denominator t is an entailment,
which is illustrated as follows:

H H ′
t

s
C

The image of a fraction r = s/t by the Yoneda contravariant realization is a cospan ρ = σ\τ in the category
Seq of equational specifications, where τ = Y(t), which will become an idenitity in Teq , is also called an
entailment ; this is illustrated in a similar way:

H τ H′ C
σ

The numerators of the rules are used for easily composing the rules, but here only the denominators matter,
and in addition it may happen that several rules have the same denominator. Let Feq ⊣ Geq be the adjunction
associated to eeq , then the functor Feq is obtained by mapping the denominators of the rules to identities.
A similar approach can be found in [18].

For instance, the reflexivity rule means that “for each term f there is an equation f ≡ f”, the corresponding
fraction is:

Term Refl
t

s
Equa

where Refl, s and t are defined by the potential limit:

Refl

t s

Term Para
right

left

Equa
equa

The specification Y(Refl) is made of a term f : X → Y and an equation f ≡ f , which is represented as

X
f
≡ Y . The image of this rule by Yoneda is:

X
f

Y
f 7→f

X
f

≡ Y
f 7→f

g 7→f
X

f

g

≡ Y

In figure 4, for several rules of the equational logic we give the corresponding denominator in Eeq,S (on the
left) and its image by Y in Seq (on the right). This entailment has the form H τ H′ and can be read

as: “as soon as there is an occurrence of H in a specification Σ, it may be extended (up to equivalence) as
an occurrence of H′”.

26

entailment image by Y

composition: “each pair of consecutive terms is composable”

Cons Comp
i

X
f

Y
g

Z
⊆

X
f

g◦f

Y
g

Z

identity: “each type is a type with identity”

Type Selid
i0

X
⊆

XidX

reflexivity: “for each term f there is an equation f ≡ f”

Term Refl
t

X
f

Y
⊆

X
f

≡ Y

binary product: “each pair of types has a product”

Type2 2-Prod
j

Y1 Y2

⊆

Y1 × Y2

pr1 pr2

Y1 Y2

pairing: “each binary cone has a pairing”

2-Cone Pair
2-dom

Y1 Y2

X

f1 f2

⊆

Y1 × Y2

pr1 pr2

Y1 ≡ ≡ Y2

X

f1 f2

〈f1,f2〉

terminal type: “there is a terminal type”

Unit 0-Prod
j0 ⊆

1

collapsing: “each type is collapsing”

Type Coll
0-codom

X
⊆

X
g

1

Figure 4: Some rules for equational logic, diagrammatically

27

