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ABSTRACT

This article introduces a best basis search algorithm in a non-

stationary (NS) wavelet packets dictionary. It computes an

optimized labeled quad-tree that indexes the filters used for

the NS wavelet packets decomposition. This algorithm ex-

tends the classical best basis search by exploring in a hier-

archical manner the set of NS wavelet packets coefficients.

The scale-by-scale variation of the filters adapts the trans-

form to the frequency content of complex textures. The re-

sulting denoising method is made translation invariant by cy-

cle spinning. Numerical results show that NS wavelet packets

give better results than wavelet packets and waveatoms for the

denoising of natural images, in particular in textured areas.

Moreover, the cycle spinning method increases significantly

the denoising abilities of our algorithm1.

Index Terms— wavelet, wavelet packet, best basis, de-

noising

1. INTRODUCTION

Fixed basis denoising. Wavelet bases capture efficiently

transient parts of signals and images. In particular, orthog-

onal wavelet bases are optimal for the approximation and de-

noising of piecewise smooth signals and images with bounded

variations [1].

Natural images contain complex structures such as regular

edges and oscillating textures. In the image setting, wavelets

are sub-optimal to represent both textures and edges. Elon-

gated oriented atoms such as curvelets [2] should be used to

capture efficiently cartoon edges. Locally oscillating atoms

such as local DCT [1], brushlets [3] or waveatoms [4] should

be preferred to process oscillating oriented textures,.

Best basis denoising. Each of these fixed bases are well

suited to process a specific kind of structures in images. A

best basis algorithm computes an adapted orthogonal basis

within a structured dictionary. This best basis selection is

applied to a noisy image to perform an adaptive denoising.

This adaptive processing can alleviate some of the difficulties

that faces a fixed representation. For instance, a best wavelet

1This work is supported by ANR grant NatImages ANR-08-EMER-009.

packet denoising [5] is useful to denoise oscillating textures

such as fingerprints by performing an adapted segmentation

of the frequency domain.

Contribution. This paper extends the best wavelet packet

adaptivity for image denoising by using non-stationary (NS)

wavelet packets introduced by Cohen and Séré [6]. We show

that the set of all bases is parameterized by a set of labeled

quadtrees. We propose a new best basis selection method

that extends classical dynamical programming method to the

non-stationary setting. This algorithm shares similarities with

the search in multi-tree dictionaries [7]. A translation invari-

ant extension of the best NS wavelet packets thresholding

further enhances the denoising quality by reducing denois-

ing artifacts. Numerical results show that the resulting adap-

tive NS denoising method improves over wavelet packets and

waveatoms denoising over textured areas.

2. NON-STATIONARY WAVELET PACKETS

Quadtree parameterization. A 2D NS wavelet packet basis

B(λ) is parameterized by a quad-tree λ. The nodes (j, i) of λ
are indexed by a scale 0 6 j 6 J = log2(n)/2 representing

the depth in the tree, and a position 0 6 i < 4j .

Each node (j, i) is assigned a label λj,i ∈ {0, . . . , S −
1} ∪∅. A leaf node is such that λj,i = ∅, and it has no child

node. We denote by L(λ) the set of leaves. An interior node

(j, i) is such that λj,i ∈ {0, . . . , S − 1} and it has 4 children

nodes indexed as (j + 1, 4i), . . . , (j + 1, 4i + 3). We denote

by I(λ) the set of interior nodes. Figure 1 shows an example

of such a quadtree λ.

Wavelet filters. Each label λj,i indexes a 1D low pass filter

chosen in a set {hℓ}
S−1
ℓ=0 . For each index ℓ, the corresponding

high pass quadrature filter is gℓ, and 2D orthogonal tensorial

filters {hη
ℓ }

3
η=0 are computed as

h0
ℓ = hℓ ⊗ hℓ, h1

ℓ = hℓ ⊗ gℓ, h2
ℓ = gℓ ⊗ hℓ, h3

ℓ = gℓ ⊗ gℓ.

NS wavelet packet transform. The forward NS wavelet

packet transform computes coefficients

Wλ(f) = {fj,i}(j,i)∈L(λ)



Fig. 1. Example of quadtree λ that defines a 2D NS wavelet

packet basis B(λ).

of a discrete image f ∈ R
n of n pixels, that are stored on

the leaves L(λ) of the tree λ. The computation is performed

with an iterative algorithm that follows the edges of the tree

λ. It starts at scale j = 0, where f0,0 = f . For each scale

0 < j < J = log2(n)/2, for each interior node (j, i) ∈ I(λ),
the signals on the children nodes is defined as

∀ 0 6 η < 4, fj+1,4i+η = (fj,i ∗ hη
ℓ ) ↓ 2 (1)

where ℓ = λj,i is the index of the filter, and ↓ 2 is the operator

that subsamples an image by a factor 2 along each direction.

The backward NS wavelet packet transforms retrieves an

image f = W∗
λ(F ) ∈ R

n from a set of coefficients F =
{fj,i}(j,i)∈L(λ). For each scale J > j > 0, the signal on the

interior node (j, i) ∈ I(λ) is recovered as

fj,i =
3

∑

η=0

(fj+1,4i+η ↑ 2) ∗ h̃η
ℓ (2)

where h̃[n] = h[−n] and ↑ 2 is the upsampling operator

that inserts a zero at each odd location along each direction.

The image is recovered on the root node as f = f0,0. Both

the forward and the backward transform are computed in

O(n log2(n)) operations.

3. BEST NS WAVELET PACKET BASIS

Processing an image f ∈ R
n is performed by modify-

ing the coefficients of f in an optimized NS wavelet packet

basis B(λ⋆). The quadtree λ⋆ is selected by minimizing a

Lagrangian

L(f,B(λ)) =
∑

(j,i)∈L(λ)

(

ρ +

n/4j
−1

∑

m=0

Φ(fj,i[m])
)

(3)

where {fj,i}(j,i)∈L(λ) = Wλ(f) and where Φ : R → R is

a cost function that depends on the application (denoising,

compression, . . . ). The parameter ρ > 0 is a penalization that

reduces the complexity of the best basis tree.

The tree λ⋆ adapted to an image f is computed by ex-

ploiting the hierarchical structure of the wavelet packet coef-

ficients.

Step 1 - Computing all the coefficients. The set of all pos-

sible NS wavelet packets coefficients is obtained by a top to

bottom filtering process. The coefficients on the root node

are F0,0 = f . For each scale 0 < j < J , for each index

0 6 k < (4S)j , the coefficients on the 4S children nodes of

Fj,i are obtained by computing all possible filterings

∀ 0 6 ℓ < S,∀ 0 6 η < 4, Fj+1,4Sk+4ℓ+η = (Fj,i ∗h
η
ℓ ) ↓ 2.

Step 2 - best filters selection. A bottom to top recursive

selection process selects the best filters for each scale j and

index 0 6 k < (4S)j . The Lagrangian is evaluated for each

index k at the finest scale j = J

∀ 0 6 k < (4S)J , LJ,k =

n/4J
−1

∑

m=0

Φ(FJ,i[m]).

For each J < j 6 0, the cumulated Lagrangian is computed

for each application of a filter indexed by 0 6 ℓ < S

Lℓ
j,k = ρ +

3
∑

η=0

Lj+1,4Sk+4ℓ+η.

The best filter index defines the Lagrangian at the next scale

for each 0 6 k < (4S)j that minimizes the cumulative La-

grangian

Lj,k = min
(

min
06ℓ<S

Lℓ
j,k,

n/4j

∑

m=0

Φ(Fj,k[m])
)

.

If Lj,k = Lℓ
j,k for some 0 6 ℓ < S, the best filter choice is set

to ℓj,k = ℓ, otherwise, the filtering is stopped and ℓj,k = ∅.

Step 3 - Best tree construction. Once the best filter choices

ℓj,k are computed for all j and all 0 6 k < (4S)j , the best

tree λ⋆ with indexes λ⋆
j,i is computed for all j and all 0 6

i < 4j . The initial tree is initialized with a single root node

L(λ⋆) = {(0, 0)}, together with a filter choice λ⋆
0,0 = ℓ0,0

and with a link π0,0 = 0.

For each 0 6 j < J , for each node (j, i) such that ℓ =
λ⋆

j,i 6= ∅, we retrieve the link k = πj,i, and add the children

nodes to the leaves of the optimal tree λ⋆,

L(λ⋆)← L(λ⋆) ∪ {(j + 1, 4i + η)}3η=0.

The label for each new node is set to

∀ 0 6 η < 4, λj+1,4i+η = ℓj+1,4Sk+4ℓ+η

and the link is defined as πj+1,4i+η = 4Sk + 4ℓ + η.



Complexity. The numerical complexity of this best basis

algorithm is dominated by the computation of the set of coef-

ficients {Fj,k}(j,k) for all possible 0 6 j < J = log2(n)/2
and 0 6 k < (4S)j . For each scale j = 1, . . . , J , one needs

to compute (4S)j filterings of vectors of size n/4j , where n
is the size of the input vector f . The overall complexity is

thus

log
2
(n)/2

∑

j=0

(4S)j n

4j
=

{

O(n log2(n)) if S = 1,
O(n1+log

2
(S)/2) if S > 1.

(4)

4. BEST NS WAVELET PACKET DENOISING

We consider an additive noise model, where a noisy image

is obtained as f = f0 + ε where ε is a Gaussian white noise

of variance σ2.

Thresholding estimator. Following Donoho and Johnstone

[8], an estimator f̄λ of f0 is obtained by hard thresholding

at T > 0 the coefficients of the decomposition of f in a NS

wavelet packet basis B(λ)

f̄λ =W∗
λ

(

ST (Wλ(f))
)

, (5)

where the hard thresholding operator ST applies to each coef-

ficient the non-linearity ST (x) = x if |x| > T and ST (x) = 0
otherwise.

Asymptotically minimax optimal estimators are ob-

tained by choosing T = σ
√

2 loge(P ) where P is num-

ber of atoms in all NS wavelet packets basis, see [8]. For

NS wavelet packet bases, this number is of the order of

P = O(n1+log
2
(S)/2). In practice, good numerical results are

obtained with T ≈ 3σ, and in the numerical results, we select

in an oracle manner the T value that minimizes ||f0 − f̄λ||.

Best basis for denoising. The best average denoising re-

sult is obtained by selecting the basis B(λ) that minimizes the

risk Eε(||f0 − f̄λ||
2). Following Krim et al. [9], an approxi-

mation of the risk is obtained by considering the Lagrangian

L(f,B(λ)) defined in (3), with the cost function

Φ(x) =

{

x2 − σ2 if |x| 6 T,
σ2 if |x| > T.

(6)

In the numerical experiments, we set ρ = T 2 to penalize the

complexity of the basis.

The best NS wavelet packet denoising is defined as f̄λ⋆

where λ⋆ is the tree that minimizes L(f,B(λ)) with the cost

(6).

Translation invariant denoising. Once λ⋆ is computed, the

denoising quality is greatly improved by using a cycle spin-

ning scheme to reduce thresholding artifacts. For each trans-

lation vector τ = (τ1, τ2), we denote as θτf [n] = f [n − τ ]
the translated image, with periodic boundary conditions. The

cycle spinning denoising is obtained with

f̃λ⋆ =
1

K2

K−1
∑

τ1=0

K−1
∑

τ2=0

θ−τ (θτf)λ⋆

For the numerical results, we use K = 4, which increases

by K2 = 16 the numerical complexity of the last step of our

method.

Original PSNR=19.6dB WaveAtoms PSNR=24.4dB

WavePackets PSNR=23.7dB NSWP PSNR=25.4dB

Fig. 2. Comparison of denoising methods on Barbara image.

5. NUMERICAL RESULTS

For the numerical experiments, we use S = 6 Daubechies

orthogonal filters {hℓ}
S−1
ℓ=0 , where hℓ is a filter of length 2ℓ +

2.

Figure 2 shows denoising results on a natural image that

contains oscillating textures, that is degraded with a noise

level σ = 0.15||f ||∞. The translation invariant NS wavelet

packets improves both over a translation invariant wavelet

packet denoising [5] and over the WaveAtoms denoising [4],

that are both known for their efficiency to restore oscillating

textures.

Figure 3 shows an example of denoising of a fingerprint

texture, for σ = .2||f ||∞. Switching from orthogonal NS

wavelet denoising to translation invariant denoising leads to

a PSNR improvement of 2dB on this texture. This shows the

importance of this cycle spinning extension.



Original PSNR=18.0dB

NSWP PSNR=24.5dB

Fig. 3. Denoising of a fingerprint texture using the NS

wavelet packet algorithm with cycle spinning.

6. CONCLUSION

This article has presented a new algorithm to compute

a best basis in a non-stationary wavelet packets dictionary.

Thresholding the NS wavelet packets coefficients in a best

basis computed from a noisy observation performs an adap-

tive denoising of the image. The translation extension of this

thresholding is competitive with the state of the art methods

to denoise oscillating textures.
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