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Abstract. A new method to analytically solve the anisotropic MHD system of equations

describing shock transitions is presented. As this system is known to be under-determined

(there is more unknown parameters than available equations) free parameters must be cho-

sen. From observational contraints it appears that the magnetic amplitude jump is a good

candidate as it is generally available more frequently and more precisely than other jump5

variables. With this approach we obtain an explicit expression for the density compression

ratio for arbitrary upstream parameters and shock geometry. Downstream anisotropy and

pressure are also calculated. The results are tested against an other approach and compared

with observations from the Earth’s bow shock and the solar wind termination shock.

1 Introduction10

The MHD formalism describing transitions across shocks has been employed successfully

in many astrophysical situations. The general goal is to predict downstream conditions from

the knowledge of upstream conditions and shock geometry. The latter is characterized by

the shock angle θBn between the upstream magnetic field and the shock normal. From this

prediction it is possible, for instance, to get insight on the wave generation processes at work15

in the downstream regions of planetary bow shocks or solar wind termination shock, namely

magnetosheaths or the heliosheath. Temperature anisotropy instabilities are among the most

common means to generate waves. Consequently the formalism adopted must account for

pressure variations in directions parallel and perpendicular to the ambiant magnetic field.

1



Here we shall use the modified MHD Rankine-Hugoniot (RH) relations including pressure20

anisotropy (Hudson, 1970). Other approaches are however possible. For instance Siewert

and Fahr (2008) developed a kinetic approach which includes CGL invariance. Direct sim-

ulations in the MHD, hybrid and (recently) full kinetic formalisms are also commonly used

to study shock physics but will not be discussed here; indeed we shall focus on an analytical

approach.25

Solving the anisotropic MHD system by direct analytical means is an approach rarely

investigated. Indeed this system is under-determined, hence the need to specify the problem

for particular situations, to use free parameters or to employ extra equations to close the

system. Recently Liu et al. (2007) proposed analytical expressions for the downstream

anisotropy as a function of the density compression ratio but only in the extreme cases30

of parallel and perpendicular shocks. Génot (2008) reviewed this approach and extended

it to arbitrary shock angle by numerical means. Vogl et al. (2001) supplemented the RH

system of equations by the mirror and firehose instabilities threshold conditions. Chao et

al. (1995) proposed an expression linking upstream, downstream, and shock geometry in a

single equation which is finally solved numerically. Finally, to date, previous works require35

either a numerical solver to be employed at the end of a demanding algebraic analysis,

or the knowledge of downstream parameters, or are valid close to marginal stability of

specific plasma instabilities. Reinvestigating this issue we show in this paper how to express

the density compression ratio as an explicit function of upstream parameters, the shock

geometry and the magnetic compression ratio. One motivation to choose these parameters40

is that magnetic measurements from spacecraft have generally less uncertainties and a better

resolution than those from plasma instruments.

In the next section we present the anisotropic jump relations at a shock. In section 3

we detail the steps required to derive the analytical expression for the density compression

ratio, downstream anisotropy and pressure. In the last section before the conclusion we45

present observational tests of the methods and comparison with the earlier work of Chao et

al. (1995) (in the Earth’s bow shock context). An application to the heliosheath plasma state

with respect to the mirror instability illustrates the sensitivity of the RH system of equations.
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2 Anisotropic jump relations at a shock

Considering a bi-Maxwellian plasma, the jump relations across a shock are (Hudson, 1970)50

:

[Bn] = 0 (1)

[ρvn] = 0 (2)

[vnBt − vtBn] = 0 (3)

[
P⊥ +

(
P‖ − P⊥

) B2
n

B2
+

B2
t

2µ0
+ ρv2

n

]
= 0 (4)

[
BnBt

µ0

(
P‖ − P⊥
B2/µ0

− 1
)

+ ρvnvt

]
= 0 (5)

[
ρvn

(
2P⊥
ρ

+
P‖
2ρ

+
v2

2
+

B2
t

µ0ρ

)
+

B2
nvn

B2

(
P‖ − P⊥

)− (Bt · vt)Bn

µ0

(
1− P‖ − P⊥

B2/µ0

)]
= 0

(6)

The square brackets indicate the difference between pre-shock (upstream) and post-shock

(downstream) states, µ0 is the permeability of the vacuum, k is the Boltzmann constant,

n = ρ/mp is the plasma density, v and B are the plasma velocity and magnetic field vec-

tors respectively, P = ρkT/mp is the plasma pressure, and mp the proton mass; subscripts55

t and n denote the tangential and normal components with respect to the shock surface, and

subscripts 1 and 2 in the following correspond to upstream and downstream states respec-

tively. Without loss of generality the conservation relations are expressed in the frame where

the upstream flow is parallel to the shock normal, i.e. vt1 = 0. We define the temperature

anisotropy by A = T⊥/T‖, the upstream Alfvén Mach number MA1 = (µ0ρ1)1/2v1/B160

and β1 = 2µ0P1/B2
1 . As mentioned previously the system of equations above is under-

determined : 6 equations, 7 unknowns (= vn2, vt2, Bn2, Bt2, P‖2, A2, ρ2).

Chao et al. (1995) tackled the analytical resolution of this system with the objective of

expressing the downstream anisotropy, similarly to Liu et al. (2007) and Génot (2008).

They obtain an expression F such that F (B2/B1, θBn, β1, A1, β2, A2) = 0. For measured65
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B2/B1 and θBn, A2 is numerically determined as a function of β1 and β2 (from contours

plots). Applied to actually observed shock parameters this method gives good estimations

of A2, r = ρ2/ρ1 and MA (see Table 1). The drawback of the method is that (see F above)

the knowledge of the downstream parameter β2 is required which restrains the generality

of the approach. Moreover a numerical solver must be finally applied. In the following we70

show how to remove this constraint and formulate for the first time a full analytic expression

of the density compression ratio as a function of the magnetic compression ratio, the shock

angle and upstream parameters only.

3 Full analytical resolution

The main challenge in solving the system of Eq. 1-6 is to eliminate the right unknown at75

each step. To get a full analytical solution in the end one should look for simple expressions

(first or second order) of each variable.

We define m which requires information of the shock itself (strength and angle)

m = Bt2/B1 =

((
B2

B1

)2

− cos2 θBn

)1/2

(7)

In our approach m is considered as an input of the problem. From Eq. 3 one can express

vt2 :80

vt2 =
vn1

Bn1

(
1
r
Bt2 −Bt1

)
(8)

In Eq. 4 upstream parameters are grouped together to define C :

C = P‖1
(
A1 + (1−A1) cos2 θBn

)
+

B2
t1

2µ0
+ ρ1v

2
1

(
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r

)
(9)

It is then possible to express P‖2 in terms of C, A2 and B2 components. Plugging this

expression into Eq. 5 and making use of the expression for vt2, we obtain

A2 =
E −DB2

1 cos2 θBn

E + Dm2B2
1

(10)

with

D =
(

M2
A1

cos2 θBn
− 1 +

1
2
β‖1(1−A1)

)
sin θBn

m
+ 1− M2

A1

r cos2 θBn
(11)
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and85

E = µ0(C − m2B2
1

2µ0
) (12)

It should be recognized that D is a function of r therefore so is A2. It is indeed the

generalization of the expressions given in Génot (2008) for the (upstream isotropic) parallel

and perpendicular shock cases. Similarly we obtain :

P‖2 =
Dm2B2

1 + E

µ0
(13)

P⊥2 can also be expressed by

P⊥2 = P‖2A2 =
E −DB2

1 cos2 θBn

µ0
(14)

Finally plugging the expressions of P‖2 and A2 (functions of r) into Eq. 6 leads to a90

quadratic equation in 1/r whose terms are the following :

– constant term :

c = −6A1 + 9
8A1 + 4

β1 − M2
A1

2 cos2 θBn
(15)

– term in 1/r :
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5
4
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3
2
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×

(
M2
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3(1−A1)
4A1 + 2

β1

)

– term in 1/r2 :

a = −M2
A1

(
1 +

m2

cos2 θBn

)
(17)

We used 3β1 = (1 + 2A1)β‖1 in Eq. 15 and Eq. 16. By solving the quadratic equation95

a/r2 + b/r + c = 0, the compression ratio can be explicitly obtained as a function of

upstream parameters, the shock angle and the magnetic compression ratio. The physical

solution is :
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r =
2a

−b +
√

b2 − 4ac
= F

(
B2

B1
, θBn, A1,MA1, β1

)
(18)

For exactly perpendicular shock (r = B2/B1 = m) the method diverges (because of

the terms in 1/ cos θBn). For exactly parallel shock (B1 = B2, m = 0) the method is not100

appropriate. Simplified approaches (Liu et al., 2007; Génot, 2008) must therefore be used

for θBn = 0◦ and θBn = 90◦. However the present approach gives consistent results even

for angle very close to 90◦. For a given set of upstream parameters all oblique shocks are

not physical and the positivity of the discriminant (b2 − 4ac) will determine their validity.

Knowing r, D (Eq. 11) and E (Eq. 12) are fully determined and so are the downstream105

anisotropy and pressure. Explicit solutions are too lengthy to be written but are straightfor-

ward from Eq. 10 and Eq. 13.

4 Observational tests

4.1 Comparison with Earth’s bow shock data

The applicability of R-H jump conditions to observed shocks has been verified (for instance110

Winterhalter et al. (1984)). To validate the present approach we use six bow shocks cross-

ings referenced in Chao et al. (1995) (see Table 1). They all correspond to low Mach number

solar wind conditions. Alfvén Mach numbers in Table 1 are computed from Eq. 12 in Chao

et al. (1995). The last three columns of Table 1 display the density compression ratio as it is

observed, from our Eq. 18 and from equations of Chao et al. (1995) respectively. For a given115

shock, differences between the three values are very small. First, our (direct) method gives

results very close to those obtained by the method of Chao et al. (1995). Slight discrepan-

cies may come from our use of calculated MA (round values instead of exact). Second, our

calculated ratios agree very well with observed values.

4.2 Comparison with Termination Shock data120

In the following we illustrate the sensitivity of downstream conditions (mainly the pressure

and anisotropy) to the input parameters. On 2004, December 16 Voyager 1 crossed the solar

wind termination shock at 94 AU and entered the heliosheath. Magnetic field measurements

revealed similarities with planetary magnetosheath : fluctuations resembling holes and

peaks associated with the mirror instability were observed (Burlaga et al., 2006; Génot et al.,125
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2009). This led several authors to investigate whether the heliosheath plasma was unstable

with respect to this instability, i.e. wether the mirror condition CM = β⊥2(A2−1) > 1 was

fulfilled. However due to the lack of plasma data, simulations were performed to infer the

upstream plasma conditions (MA1 = 16.3 and β1 = 32.8 (Whang et al., 2004)) and jump

conditions were used to determine the downstream ones (Liu et al., 2007; Génot, 2008).130

For this crossing the magnetic jump is observed to be B2/B1 = 3. Assuming isotropic

upstream solar wind and an exactly perpendicular shock (case 1 in Table 2) gives an unsta-

ble heliosheath plasma. For the same shock a slightly anisotropic solar wind gives an even

more unstable heliosheath plasma (case 2 equivalent to the analysis of Liu et al. (2007)).

However it has been inferred for this crossing that θBn = 86◦ rather than θBn = 90◦. It can135

be seen from case 3 and 4 that this situation corresponds to a stable heliosheath plasma in

contradiction with previous conclusions. Case 5 completes the demonstration showing the

extreme sensitivity of the RH system : the magnetic ratio is decreased to B2/B1 = 2.99 to

recover an unstable plasma. This analysis shows that one must be very cautious with results

obtained from the RH jump relations. It is necessary to precisely evaluate the error bars140

on downstream parameters from the uncertainties on input quantities (to be developed in

a forthcoming paper). Due to this sensitivity the upstream wave turbulence may also have

important consequences on the downstream solutions of the RH system. The way MHD

fluctuations may affect the shock properties has been analyzed, for instance, in Lerche et al.

(2000) for isotropic plasma.145

5 Conclusion

The analysis developed in this work is intended to complete general studies on anisotropic

MHD shocks by giving, for the first time, a full analytic expression of the density com-

pression ratio as a function of the upstream parameters and shock angle and strength. It has

been validated by comparison with another method and observations in different astrophysi-150

cal contexts. Such compact formula may be used to easily compute downstream parameters

when only magnetic measurements are available and when upstream parameters can be

inferred (when plasma data are absent, in the case of Voyager 1 for instance). It is also

possible to analyze the sensitivity of the results to uncertainties in the inputs and to propose

error bars. This works could pave the way to further analytical analysis of more complex155

Rankine-Hugoniot systems, taking into account the waves and/or turbulence and/or heat
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flow (Chao and Goldstein, 1972).
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pressure anisotrophy and comparison with the Earth’s bow shock, Nonlin. Proc. Geophys., 8, 3,

2001.180

Whang, Y. C., Burlaga L. F., Wang Y.-M.,

Sheeley Jr. N. R.: The termination shock near 35◦ latitude, Geophys. Res. Lett., 31, L03805,

doi:10.1029/2003GL018679, 2004.

Winterhalter, D., Kivelson M. G., Walker R. J., and Russell C. T.: The MHD Rankine-Hugoniot jump

conditions and the terrestrial bow shock - A statistical comparison, Advances in Space Research,185

vol. 4, no. 2-3, p. 287-292, 1984.

9



Tables

Event B2/B1 θBn (◦) β1 MA1 r (obs.) r (this method) r (Chao et al. (1995))

1 2.65 71.4 0.17 3.3 2.70 2.71 2.70

2 2.78 79.9 0.15 3.8 2.70 2.80 2.78

3 2.72 86.1 0.12 3.5 2.63 2.72 2.70

4 2.25 65.5 0.17 2.4 2.27 2.32 2.27

5 2.18 64.5 0.16 2.2 2.33 2.25 2.27

6 1.99 53.7 0.10 2.0 2.13 2.08 2.08

Table 1. Six Earth’s bow shock crossings referenced in Chao et al. (1995) and associated parame-

ters : observed magnetic amplitude ratio, shock angle and upstream β, calculated upstream Alfvén

Mach number (see text) and observed density compression ratio; the last two columns are the cal-

culated density compression ratio obtained from Eq. 18 and from the method of Chao et al. (1995)

respectively.

Case θBn (◦) A1 r CM = β⊥2(A2 − 1)

1 90 1 3 1.17

2 90 0.94 3 1.25

3 86 1 3.006 0.83

4 86 0.94 3.006 0.92

5 86 0.94 2.996 1.48

Table 2. Observed and calculated parameters for the solar wind Termination Shock crossed by

Voyager 1 in 2004. The shock angle (row 2) and upstream anisotropy (row 3) are slightly varied

to reveal the sensitivity of the RH system of equations : this is expressed in the large variations of

the mirror mode criterion CM (row 5) while the density compression ratio (row 4) remains almost

constant. For this crossing it was inferred that MA1 = 16.3 and β1 = 32.8 (Whang et al., 2004)

and observed that B2/B1 = 3 (Burlaga et al., 2006). This later value is used for cases 1-4 whereas

B2/B1 = 2.99 is used in case 5.
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