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Abstract — Convoys are military objects of interests
in certain applications like battlefield surveillance, that
is why it is important to detect and track them in the
midst of civilian traffic as part of the situation assess-
ment. Qur purpose is a process in two steps. The
first is an original tracking algorithm appropriate for
Ground Moving Target Indicator (GMTI) data based on
the hybridization of a labeled GMCPHD (Gaussian Miz-
ture Cardinalized Probability Hypothesis Density) and
the VS-IMMC-MHT (Variable Structure - Interacting
Multiple Model with Constraints - Multiple Hypothesis
Tracking): one is very efficient to estimate the num-
ber of targets and the other for the state estimates.
Then, by using algorithm outputs and other data like
video or SAR if they are available, vehicle aggregates
are detected and their characteristic are introduced into
a Dynamic Bayesian Network which processes the prob-
ability for an aggregate to be a convoy. Finally, the
number of targets belonging to the convoy is evaluated.
This process is tested on a compler simulated scenario,
our tracking algorithm is compared to classical ones and
used to compute the probability to have convoys.

Keywords: Multitarget Tracking, GMTI, Convoy
detection, GMCPHD, VS-IMMC-MHT, dynamic
bayesian network

1 Introduction

In the battlefield surveillance domain, ground target
tracking is a first challenging task to assess the situation
[1]. Data used for tracking comes from Ground Moving
Target Indicator (GMTI) sensors which detect moving
targets only by measuring their Doppler frequency. The
goal is to have a real ground picture: the number of
targets, their dynamics, their relationship... in order to
discover military events of interests. In this article, we
focus on convoy detection.

Some studies on convoy detection based on GMTI
signatures already exist [2, 3, 4], but our purpose is con-
voy detection by using target tracks. In this context,

Michele Rombaut
Image and Signal Department
GIPSA-lab
Grenoble, France
michele.rombaut@gipsa-lab.inpg.fr

two steps are proposed : (1) process a hardy multi-
target tracking algorithm in order to detect vehicle ag-
gregates with precision in term of cardinality and state
estimation, (2) check if the detected aggregates are con-
voys or not, by introducing other data types (Synthetic
Aperture Radar (SAR), video,...) and by using a data
fusion method. This purpose is summarized in Figure
1.

Very efficient tracking algorithms exist today and
they have to be adaptated to the very complex ground
environment. First, the traffic density is very high and
generates a large number of measurements. This char-
acteristic eliminates, in our application, Monte-Carlo
techniques [5, 6, 7]. Moreover measurements are noisy
and can contain many false alarms. Also vehicles on the
ground are usually quite manoeuvrable over short pe-
riods of time according to the sensor scanning time 7.
Finally, vehicles are detected by the sensor with prob-
ability Pp and according to the sensor resolution. In
other words, when vehicles are very close together, one
measurement can be missing generating the spawned
targets. This phenomena added to the problem of
data association make the classical algorithms, like SD-
assignment [8] or MHT [9] less efficient to track convoys.
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Figure 1: Convoy detection process

However, recently, a new filter class appears, open-
ing a lot of opportunities. The Probability Hypoth-
esis Density (PHD) Filter was developped by Ronald
Mabhler by using his work on Flnite Set STatistics [10]
(FISST) and Random Sets. This filter leads to a new



class of algorithms [11] based on the study of joint den-
sity probability of the Random Finite Sets (RFS) de-
scribing target dynamics and measurements. The first
order moment of this RF'S, called the intensity function,
is the function whose the integral in any region on state
space is the expected number of targets in that region.
Points with highest density are then expected targets.
To improve the number of targets estimation, Mahler
proposes a generalization of the PHD called the CPHD
[12], which jointly propagates the intensity function and
the entire probability distribution of the number of tar-
gets. Under Gaussian assumptions on target dynamics
and birth process, Vo proposes a CPHD recursion called
the Gaussian Mixture Cardinalized PHD [13, 14] (GM-
CPHD). This approach gives very encouraging results,
in particular for the estimation of the number of targets
and seems adaptated to convoy tracking.

Nevertheless, as we will show in Table 7, with ma-
noeuvring targets, the GMCPHD has problems with
velocity estimation. From this point of view, the GM-
CPHD and the IMM-MHT can be seen as complemen-
tary algorithms: the first for the estimation of the num-
ber of targets and for an approximate position estima-
tion, and the latter can be used to specify state es-
timation. The proposed hybridization is described in
Figure 1. In this approach, we use a special version of
the MHT: the VS-IMMC-MHT [15] (Variable Structure
- Interacting Multiple Model with Constraints - Multi-
ple Hypothesis Tracking) which uses road segment po-
sition from Geographical Information System (GIS) to
improve the state estimation. Other authors proposed
to combine a PHD filter with other filters [16]. By us-
ing outputs of our algorithms, we are able to detect
aggregates with precision. The second step is to define
if they are convoys or not.

Before discuss our approach, we define a convoy as
a group of vehicles, evolving on the road, having the
same dynamics and generally composed of more than
two military vehicles. The distance between two vehi-
cles depends on the environment, but most of the time
it is over 100m. Giving these restrictions, we want to
produce a general convoy model, able to discriminate
convoys from a group of vehicles. We use the Dynamic
Bayesian Network (DBN) formalism which seems adap-
tated to this problematic [17].

The paper is organized as follows: Section 2 is a de-
scription of the existing GMCPHD filter, Section 3 de-
tails how we use this algorithm in a hybrid version,
Section 4 explains how DBNs are used for convoy de-
tection. Finally Section 5 describes our simulation and
compares results before we conclude in Section 6.

2 Background on the GMCPHD
filter

2.1 The PHD filter

A Random Finite Set (RFS) is a finite-set valued ran-
dom variable which can be generally characterized by
a discrete probability distribution and a family of joint
probability densities representing the existence proba-
bilities of the target set. Considering the RFS of sur-
vival targets Sy 1 between iterations k —1 and k, the
RFS of spawned targets By,_1 and the RFS of spon-
taneous birth targets oy, the global RFS characterizing
the multitarget set can be written as:

Xe=| U S1(O| U

CEX)K_1

U Brs-1(Q)| Vo

CEXk_1

In the same manner, the multitarget set observation
Z, can be seen as a global RFS composed by the RFS
of measurements originally from the targets X, and by
the RFS of false alarms Kj.:

U k()

re Xy

Zk = UKk (2)

The PHD traditionally evolves in two steps: predic-
tion and estimation that propagate the multitarget pos-
terior density of the target RF'S also called the intensity
function v. The prediction state is based on the a poste-
riort intensity function vi_; at the previous time k—1,
the probability Pg for a target to survive between times
k—1 and k, the transition function fj,_1(.|¢) given the
previous state ( and the intensity of target birth .

el (@) = ( / PS<<>.fk|k1<x|<>.vk_1<<>dc) @)
3)

Knowing the measurement random set Zj, it is pos-
sible to update the intensity function as follows:

vr(z) = (1 — Pp)vgjp—1(z)+
Pp.g(z|x)vgp—1 () (4)
z2E€Zy, I{k(z) + f PD'g(Z|<)vk|k—1 (C)dg

where g(z|x) is the likelihood of a measurement z know-
ing the state of a target x, ki is the clutter intensity
which is modeled by a Poisson process.

2.2 The GMCPHD filter

The GMCPHD, proposed by Vo [13], combines a
Gaussian mixture model for the intensity function with
the Cardinalized generalization of the PHD filter. That
means that the posterior target intensity can be written
as a Gaussian mixture:

Ji
vg(T) = Zwm/\/ (5 M5 Pri) (5)
=1



where wy, ;, my,; and Py ; are the weight, mean and co-
variance of the current Gaussians and Jj is their num-
ber.

Moreover, added to the operations (3) and (4), the
probability to have n targets is predicted and estimated
in the same way, as, Vn € N*,

n

Prjk—1(n) = ZOPF(” —J)x
=
<Psu Uk—1>j<1 - Psu Uk—1>l_j
<17’kal>l

(6)

o0

> Cj pr—1(0)

i=j

with pr(n — j) the birth probability of (n — j) target
and C]l< the binomial coefficient with parameters (n, 7).
Following the Bayes theorem, the estimated cardinality
distribution py; can be written as a likelihood ratio:

E(Zk|n)
= —————"Dkk— 7
pk|k(”) L(Zy) Pk|k 1(n) (7)
where L£(Z|n) is the likelihood of the measurements
set Zj knowing that there are n targets and £(Zy) is a
normalizing constant.

3 The VS-IMMC-MHT / GM-
CPHD hybridization

3.1 The labeled GMCPHD

In the classical version of the GMCPHD, the problem
of track labeling is not considered. Yet, this step is quite
important for complex multitarget scenario. Clark and
Panta [18, 19] proposes method but not adaptated to
Gaussian mixture and to a large number of targets.
Also, we propose, as an alternative, using the track
score for the track initialization and in addition to the
statistical distance between peak and predicted track
to take into account the global weight for the peak to
track association.

Let G be the Gaussian set given by the GMCPHD
written:

(8)
where N is the number of Gaussians (N¢ > Nj) at
time k. A track can be defined as a sequence of es-
timated states describing the dynamics of one target.
The goal of tracking is to offer a list of tracks corre-
sponding to all of the targets. That is why this labeling
step is necessary in order to provide a track set chosen
amongst the Gaussian set Gi. A track 7y, is defined
at time k by a state £, a covariance Py ; and a score
Sk,i-

Thyi = A{dki> Pris Skiticqn, . Ny 9)

.....

The track set is finally written:

T T Ty, )

with Ny the estimation of the number of targets given
by the GMCPHD.

We define a set of association matrices A; of size
Nk X N,g to associate the Gaussian set to the tracks.
V(m,n) < (N, NY), an association matrix Ay,; is writ-
ten as:

_ _ J 1 if Ggn can be associated to Tyjr—1,m
Ap,i(m,n) = { 0 otherwise
(11)

with 7y|x—1,, the predicted track m and knowing that a
track is associated at most to one Gaussian. A Gaussian
peak n is said associable to a track m if it satisfies a
gating test around the predicted position of the track.

We define a weight matrix Wy, of size Nk x N kg defined

as follows, ¥(m, n) < (Ni, N):

W, if Gr . can be ass. to Tyk_1.m
Wi(m, n) = { 0 otherwise |
(12)
If Nk > ]\A]k,l, one or more new tracks must be ini-
tialized and each Gaussian is a potential new track. In
matrix Wy, ¥m € {1,..., N}, ¥l € {Np_1+1,..., Ni},
Wk(m, Z) = Wk,1 (13)
In the same way, if Ni < Nkfl, some tracks must be
deleted. Weakly weighted tracks cannot be deleted be-
cause of the detection probability, which is why tracks
with the lowest score are deleted.
Finally, we compute the set of global weight of an
association:

N NY

Wi = Z ZAk(m,n).Wk(m,n)

m=1n=1

(14)
And the association matrices which maximize the
weight are written as:

A}, = argmax W/
Ag

(15)

Similarly, the cost matrix C}, of size Nk x N g is writ-
ten as, V(m,n) \ (Ng, NY),

c(m,n) if Gy, can be ass. to Tyjp—1,m
Cr(m, n) = { O( otl)lerwise |
(16)
with ¢(m, n) the cost of the association of the predicted
track m with the Gaussian n written as the negative
Napierian logarithm of the likelihood ratio, ¥(m,n) €
(N kN kg )7

Bra (a7

c(m.n) = —In <PD-A(Qk,n|Tkk—1,m))

with Spa the spatial false alarm density and A(Gg.,)
the likelihood of the Gaussian n knowing the predicted



position of the track m, calculated as a Gaussian den-
sity.
Finally, the global association cost is computed as:

SEP

m=1

(m,n).Cx(m,n) (18)

ﬁmsm

And the best association A** is computed like the min-
imal cost matrix:
W= argmin Cf (19)
Ay

3.2 The hybridization

The GMCPHD produces a reliably estimation of the
number of targets, whereas the VS-IMMC-MHT is ef-
fective to give a good estimation of the target state by
introducing road coordinates when targets are not close
together, because of the problem for MHT algorithm to
evaluate the number of targets. We propose therefore
to use these two algorithms as complementary filters:
the first estimates the number of targets and the ap-
proximate target position and the second increases the
accuracy for the target state estimation. The two al-
gorithms are running simultaneously. Then, a gating
process is applied around the target position given by
the GMCPHD, to select MHT tracks. Finally, MHT
tracks which have the highest score are selected. If a
PHD track is not associated to any MHT track, the
GMCPHD track is kept.

This approach combines the advantages of the differ-
ent algorithms without increasing the processing time:

e Robust to target maneuvers by using IMM

e Good precision for state estimation by using road
coordinates

e Good estimation of the number of targets

e No performance decrease when targets are close
together

Different algorithms performances are compared in
Section 5 in a complex scenario. But before let us define
the proposed convoy detection method.

4 Description of a convoy

4.1 Some definitions

A convoy is defined as a vehicle set evolving approx-
imatively with the same dynamics during a long time.
These vehicles are moving on the road under a limited
velocity (<20m/s). They must stay at sight with almost
constant distances between them (mostly 100m). Cri-
teria describing a convoy are manifold and of different
natures, moreover variables are discrete. That is why,
bayesian networks represent an interesting formalism in
our application as in similar thematics [20, 21, 17, 22].

A Bayesian Network (BN) is a graphical model for
representing dependency relation between a set of ran-
dom variables. Graphically, each variable is represented
by a node and an arc, from a node X; to a node X},
means that X; “causes” X;, ¥(i,j) € {1,...,N}>. Fi-
nally, the joint probability is computed as:

N
P(Xi,..., Xn) = [[ P(Xi Pa(Xy)) (20)
i=1

where Pa(X;) are parent nodes of Xj.

The Dynamic Bayesian Networks (DBN) are an ex-
tension of BN, which take into account the time evo-
lution of random variables. The convoy detection ap-
proach is bounded to the time evolution as shown in
Figure 2. For example, variable X5 is time depending,
because the type information can come from heteroge-
neous sources (SAR, video, ...) with different scanning
times, and variable Xy is confirmed with time.

() @ @@@@

X1: Velocity < 80km/h {yes, no}

X2: Constant velocity {yes, no}

Xs: Velocity criteria {yes,no}

X4: On the road {yes,no}

5: Military vehicles {yes, no}

Xes: Constant distance between vehicles {yes, no}
X7: Constant convoy length over time {yes, no}
Xs: Distance criteria {yes, no}

Xk: Convoy {yes, no}

Figure 2: Dynamic bayesian network for convoy de-
tection. The gray nodes represent states depending on
their previous state.

4.2 Conditional Probability Distribu-
tion evaluation

If independency relation between variables can be
very intuitively established, one difficulty with DBN
is to evaluate the Conditional Probability Distribution
(CPD) of each node given its parents. If data sets are
available, these prior probabilities can be learned, but
in our case, they are evaluated by experts, according
to a certain weight to each parameters. For example,
if a convoy is detected at time k£ — 1, the probability to
detect one at time k is high and the prior probability
given to this parameter must be “relatively” high. As
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described in [23], we propose heuristic rules to represent
relationships between variables :

5X XE 415 % Xs4+ Xy 4+ X5 +1.5x Xg = XF (21)

As said, this rule means that the probability to have a
convoy at time k is half-depending on the fact to have a
convoy at time k£ — 1, and that we care more criteria on
distance and velocity than criteria “on road” or “vehicle

type”.

4.3 Probability transformation

Another difficulty is the transformation of numerical
data (number of targets, target position and velocity,
road position) into a probability. This step is done by
using probability distributions or fuzzy transformations
like linear transformation (c¢f. Fig 3 (a)) or Gaussian
transformation (cf. Fig 3 (b)):

e p(X;) is computed according to a Rayleigh distri-
bution.

e p(X5) is following a fuzzy linear transform using
the difference between velocity mean at time k and
at previous times.

e p(X4) is computed according to a x? distribution.

e p(Xg) is computed using a fuzzy gaussian trans-
formation by studding the distribution of distances
between vehicles of the aggregate.

e p(X7) is computed using a fuzzy linear transfor-
mation by examining the variation of the convoy
length over time

4.4 Inference

The next step consists to propagate the information
through the network. It is called the inference. Many
algorithms exist like JLO [24] from the names of its
authors or Expectation-Maximization (EM) algorithm.
We choose arbitrarily the JLO algorithm adaptated to
discrete nodes and available in the Murphy’s Bayes net
toolbox [25].

4.5 Targets number estimation

Computing the probability p(Xg) for an aggregate
to be a convoy is a first step (¢f. Figure 9), but it
is possible to take into account the average number of
targets belonging to the convoy. First, we know the
number of targets in the aggregate and moving in the
same direction. If for instance at time k, we detect
N(k) = 5, while there was 4 until there, we have to
propagate the information and to compute simultane-
ously the probability to have a convoy with 5 vehicles,
and a convoy with the 4 best located target tracks.
Mathematically, it means we compute p(Xg, N¢), with
NC€ the set of different values taken by N¥, where
Nk = {N(1),...,N(k)} is the sequence of mean num-
ber of targets in the aggregate, moving in the same
direction.

However, as shown in Figure 11, it is not easy to
discriminate certain cases, here the cases N¢ = 5 and
N¢ = 6 (the reality is N¢ = 6). If, at the beginning
of the simulation, we detect N¢ = 5, we must continue
to compute the probability to have a 5 target convoy,
because we are possibly in the case of an overtaking, but
it is not realistic, to support this assumption against the
6 target convoy if the sequence of measurement never
gives again N (k) = 5. That is why we introduce the
local estimated cardinality of the Gaussian mixture on

Nmaax
the aggregate surface, computed as N = > 4.pj,(7)

i=1

knowing the sequence of average number of targets.
Finally, the probability becomes:

p(XE NC NEINF) = p(Xg, NO).p(NEINF)  (22)

By considering a Markovian assumption and Bayes
theorem, the probability is computed as:

p(NEIN®) = p(N(K)INE, N (k = 1)).p(N{ N (k - 1)).

. (2
with ¢ a normalization constant, p(N¢|Nk-1)
N(N,g, Nk=1.6%) is computed as the normal den-
sity with mean N*~! and variance o%, and
p(N(E)|NE, N*=1) is computed by using a linear trans-
formation.

Ealim

5 Simulation and results

In the following, we present some simulation results
that illustrate the performances of the proposed hy-
bridization. These are compared to the performances
of a classical IMM-MHT, a labeled GMCPHD, a VS-
IMMC-MHT and an hybridization GMCPHD/IMM-
MHT. Then we present some results on the convoy de-
tection.

5.1 Scenario

The GMTTI sensor has a linear trajectory, its ve-
locity is 30m/s and its altitude is 4000m. The typi-
cal measurement error is 20m in range and 0.008rad



in azimuth. The sensor scan time is 7' = 10s. Sce-
nario time is limited to 500s. The false alarm density
is Bra = 8.92.107? and the detection probability is
Pp = 0.9. Target trajectories are illustrated in Figure
4, while cumulated MTI reports are shown in Figure
5. In the scenario, one 6 target convoy (Target 1-6)
is moving on the main road with a constant velocity
of 10m/s from South to North. An independant tar-
get (Target 7) is moving on the same road in the same
direction but with a constant velocity of 15m/s and
overtakes the convoy between time t=150s and t=350s
approximately.

[T

.Isolated tan

o ¥ Gk
Figure 4: Scenario

North

East

Figure 5: Cumulated MTI reports

The simulation parameters are presented in Tables 1
to 5.

Name Value
CV model noise 1 0.05m.s~2
CV model noise 2 0.8m.s~2
Model noise 3 (STOP) Om.s—?2

Table 1: The IMM parameters

5.2 Results

The performances of tracking algorithms have been
compared for 100 independent Monte Carlo runs. Fig-

Name Value
Birth target density 8.92.1077
Threshold for track confirmation 104
Threshold for track deletion 10~ 1
Threshold for hypothesis deletion 10—2
Number of branches to keep 2
Threshold for gloabl track probability 50
Number of scans before pruning 50
Gating probability 0.95
Table 2: The MHT parameters
Name Value
Survival probability 0.98
Initial Gaussian weight 10=3
Pruning threshold 10—2
Merging threshold 20
Maximum number of targets 50
Maximum number of Gaussians 50
Average number of birth 0.6
Model noise 2
Maximum velocity 20
Table 3: The GMCPHD parameters
Name Value
CV model noise 1 in normal direction 0.1
CV model noise 1 in orthogonal direction 0.1
CV model noise 2 in normal direction 0.6
CV model noise 2 in orthogonal direction 0.4
Maximum value for off road velocity 9m.s~ 1
Table 4: The VS-IMMC parameters
Name Value
Number of iterations for score calculation 3
Weight threshold for new track 0.8

Table 5: The hybridization parameters

ure 6 shows the average RMSE (Root Mean Square Er-
ror) of each target in position, Figure 7 average RMSE
in velocity and Figure 8 is the track length ratio of
each target. The IMM-MHT offers acceptable perfor-
mances in state estimation, while the VS-IMMC-MHT
improves highly position estimation. The GMCPHD
produces lower performances in term of state estima-
tion, but the track length ratio is close to 1. The hybrid
version (Hybrid 1 is the hybridization of IMM-MHT
and GMCPHD, Hybrid 2 is the hybridization of VS-
IMMC-IMM-MHT and GMCPHD) is a good compro-
mise between the two sorts of algorithms. The track
length ratios have similar values as the GMCPHD,
whereas, the state estimation are similar for Hybrid 1
to the IMM-MHT and for Hybrid 2 to the VS-IMMC-
MHT.

Concerning the convoy probability, p(Xg) is evolving
progressively from 0.5 to 0.6 (¢f. Figure 9) with some
picks which indicate a change of cardinality in the ag-
gregate. By introducing N€, we begin to estimate the
number of targets in the aggregate (¢f. Figure 11). We
discriminate the case N¢ = 7, but we cannot decide be-
tween N = 5 or 6. Finally, by introducing N,S know-
ing N* (cf. Figure 10), the case N¢ = 6 appears as the
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6 Conclusion

The new approach for convoy detection has shown
its efficiency on a complex multitarget scenario. Sev-
eral theoretical contributions have been proposed. The
first one concerns the labeled version of the GMCPHD
that allows to differentiate the tracks. The second con-
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Figure 11: p(X§, N¢, NS|N*¥)

tribution concerns the hybridization of the GMCPHD
algorithm to the VS-IMMC-MHT algorithm in order to
improve the performances, specially for group of closely
spaced objects. Finally, the third contribution concerns
the convoy model by using DBN that proposes an orig-
inal answer to convoy detection process. This has been
tested on several scenarios not presented in the paper.
The next step is now the problem of make a decision
which stays entire.
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