Can an infinite left-product of nonnegative matrices be expressed in terms of infinite left-products of stochastic ones?

Alain Thomas

To cite this version:

Alain Thomas. Can an infinite left-product of nonnegative matrices be expressed in terms of infinite left-products of stochastic ones?. 2010. hal-00410766v2

HAL Id: hal-00410766
 https://hal.science/hal-00410766v2

Preprint submitted on 10 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CAN AN INFINITE LEFT-PRODUCT OF NONNEGATIVE MATRICES BE EXPRESSED IN TERMS OF INFINITE LEFT-PRODUCTS OF STOCHASTIC ONES?

ALAIN THOMAS

Abstract

If a left-product $M_{n} \ldots M_{1}$ of square complex matrices converges to a nonnull limit when $n \rightarrow \infty$ and if the M_{n} belong to a finite set, it is clear that there exists an integer n_{0} such that the $M_{n}, n \geq n_{0}$, have a common right-eigenvector V for the eigenvalue 1 . Now suppose that the M_{n} are nonnegative and that V has positive entries. Denoting by Δ the diagonal matrix whose diagonal entries are the entries of V, the stochastic matrices $S_{n}=\Delta^{-1} M_{n} \Delta$ satisfy $M_{n} \ldots M_{n_{0}}=\Delta S_{n} \ldots S_{n_{0}} \Delta^{-1}$, so the problem of the convergence of $M_{n} \ldots M_{1}$ reduces to the one of $S_{n} \ldots S_{n_{0}}$. In this paper we still suppose that the M_{n} are nonnegative but we do not suppose that V has positive entries. The first section details the case of the 2×2 matrices, and the last gives a first approach in the case of $d \times d$ matrices.

2000 Mathematics Subject Classification: 15A48.

Introduction

The problem of the convergence of $M_{1} \ldots M_{n}$ or $M_{n} \ldots M_{1}$ for all the sequences $\left(M_{n}\right)$ with terms in a finite set of complex matrices, is studied for instance in [1], [2] and [3]. The same problem in case of stochastic matrices is also classical, see for instance [9, chapter 4]. On the other side there exist much results about the distribution of the product matrix $M_{1} \ldots M_{n}$ where the M_{i} are taken in a set of stochastic matrices endowed with some probability measure. In [6] and [7], Mukherjea, Nakassis and Ratti give conditions for the limit distribution of $M_{1} \ldots M_{n}$ to be discrete or continuous singular; this contains for instance the case of the Erdős measure [4]. It is well known that in much cases the normalized product $M_{1} \ldots M_{n}$, if the M_{i} are taken in a finite set of nonnegative matrices endowed with some positive probability P, converges P-almost everywhere to a rank one matrix; but this general result should be more consistent if one can to specify the P-negligeable set of divergence.

[^0]Notice that the Erdős measure is studied more in detail in [8] by an other method, using a finite set of matrices and the asymptotic properties of the columns in the products of matrices taken in this set.
In the present paper we first consider (§1) the left-products and the right-products of 2×2 matrices (resp. 2×2 stochastic matrices). For the left-products of stochastic matrices, the hypothesis that the matrices belong to a finite set is not necessary. We recover the known results by giving several formulations of the necessary and sufficient conditions of convergence.
In $\S 2$ we associate to any sequence $\left(M_{n}\right)$ of nonnegative $d \times d$ matrices, some sequences of stochastic ones, let $\left(S_{n}^{(i)}\right)$ for $1 \leq i \leq t$. The convergence of $M_{n} \ldots M_{1}$ is equivalent to the one of the $S_{n}^{(i)} \ldots S_{1}^{(i)}$ and some additional condition.

1. Products of 2×2 matrices

1.1. Convergent left-products. Suppose that the left-product $M_{n} \ldots M_{1}$ of some nonnegative matrices $M_{n}=\left(\begin{array}{cc}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right)$ converges to a nonnull limit, let Q, and that the set $\left\{M ; \exists n, M=M_{n}\right\}$ is finite. It is clear that from a rank n_{0}, the M_{n} belong to the set
$\left\{M\right.$; there exists infinitely many n such that $\left.M=M_{n}\right\}$
and consequently, for any M in this set, $M Q=M$. In other words the nonnull columns of Q are eigenvectors - for the eigenvalue 1 - of any $M_{n}, n \geq n_{0}$. If for instance this eigenvector is $\binom{v_{1}}{0}$, then $M_{n}=\left(\begin{array}{cc}1 & b_{n} \\ 0 & d_{n}\end{array}\right)$ and $M_{n} \ldots M_{n_{0}}=\left(\begin{array}{cc}1 & \sum_{i=n_{0}}^{n} b_{i} d_{i-1} \ldots d_{n_{0}} \\ 0 & d_{n} \ldots d_{n_{0}}\end{array}\right)$

Proposition 1.1. $M_{n} \ldots M_{n_{0}}$ converges to a nonnull limit, for any fixed n_{0} and when $n \rightarrow \infty$, if and only if

- either the M_{n} have from a certain rank, a common right-eigenvector $\binom{v_{1}}{v_{2}}$ for the eigenvalue 1 , with $v_{1} v_{2}>0$, and the left-product of the stochastic matrices $S_{n}=\left(\begin{array}{cc}\frac{1}{v_{1}} & 0 \\ 0 & \frac{1}{v_{2}}\end{array}\right) M_{n}\left(\begin{array}{cc}v_{1} & 0 \\ 0 & v_{2}\end{array}\right)$ from any rank n_{0} converges;
- or the M_{n} have from a certain rank $\binom{1}{0}$ for common positive right-eigenvector with respect to the eigenvalue 1 , the sum $\sum_{n=n_{0}}^{\infty} b_{n} d_{n-1} \ldots d_{n_{0}}$ is finite and $d_{n} \ldots d_{n_{0}}$ converges, for any n_{0}, when $n \rightarrow \infty$;

CAN AN INFINITE LEFT-PRODUCT OF NONNEGATIVE MATRICES BE EXPRESSED IN TERMS OF INFINITE LEFT-P

- or the M_{n} have from a certain rank $\binom{0}{1}$ for common positive right-eigenvector with respect to the eigenvalue 1, the sum $\sum_{n=n_{0}}^{\infty} c_{n} a_{n-1} \ldots a_{n_{0}}$ is finite and $a_{n} \ldots a_{n_{0}}$ converges, for any n_{0}, when $n \rightarrow \infty$.
1.2. Case of stochastic matrices. The case of the matrices

$$
S_{n}=\left(\begin{array}{ll}
x_{n} & 1-x_{n} \\
y_{n} & 1-y_{n}
\end{array}\right), x_{n}, y_{n} \in[0,1]
$$

is also trivial because one can compute the left-product

$$
Q_{n}:=S_{n} \ldots S_{1}=\left(\begin{array}{cc}
t_{n} & 1-t_{n} \tag{1}\\
s_{n} & 1-s_{n}
\end{array}\right) \quad \text { where } \quad\left\{\begin{array}{l}
s_{n}:=\sum_{i=1}^{n} y_{i} \operatorname{det} Q_{i-1} \\
t_{n}:=s_{n}+\operatorname{det} Q_{n} \\
Q_{0}:=I
\end{array}\right.
$$

To find the conditions for the sequence of matrices $\left(Q_{n}\right)$ to converge one can use the relation

$$
\begin{equation*}
s_{n}=s_{n_{0}-1}+s_{n_{0}, n} \operatorname{det} Q_{n_{0}-1}, \quad \text { where } s_{n_{0}, n}:=\sum_{i=n_{0}}^{n}\left(y_{i} \prod_{n_{0} \leq j<i} \operatorname{det} S_{j}\right) . \tag{2}
\end{equation*}
$$

$s_{n_{0}, n}$ belongs to $[0,1]$ because it is one of the entries of the stochastic matrix $S_{n} \ldots S_{n_{0}}$. Hence, in case $\operatorname{det} Q_{n}$ has limit 0 the relation (2) implies that $\left(s_{n}\right)$ is Cauchy; so $\left(s_{n}\right),\left(t_{n}\right)$ and $\left(Q_{n}\right)$ converge.
Suppose now that $\operatorname{det} Q_{n}$ do not have limit 0 . Since $\operatorname{det} Q_{n}=\prod_{i=1}^{n}\left(x_{i}-y_{i}\right)$ with $x_{i}-y_{i} \in$ $[-1,1]$, the non-increasing sequence $\left(\left|\operatorname{det} Q_{n}\right|\right)$ has a positive limit δ hence $\left|x_{n}-y_{n}\right|$ has limit $1 ;\left(x_{n}, y_{n}\right)$ cannot have other limit points than $(0,1)$ and $(1,0)$.
In case $(0,1)$ is one of its limit points, $y_{n}\left|\operatorname{det} Q_{n-1}\right|$ do not tend to 0 hence the series $\sum_{n} y_{n} \operatorname{det} Q_{n-1}$ diverges and $\left(Q_{n}\right)$ also do.
In case $(1,0)$ is the unique limit point of $\left(x_{n}, y_{n}\right), x_{n}-y_{n}$ is positive from a rank n_{0}. Since the series $\sum_{n} \log \left|x_{n}-y_{n}\right|$ converges to $\log \delta$, the inequalities $\sum_{n \geq n_{0}} \log \left(x_{n}-y_{n}\right) \leq$ $\sum_{n \geq n_{0}} \log \left(1-y_{n}\right) \leq-\sum_{n \geq n_{0}} y_{n}$ prove that the series $\sum_{n} y_{n}$ converges. Since $\operatorname{det} Q_{n}$ has limit δ or $-\delta$ according to the sign of $\operatorname{det} Q_{n_{0}-1}$, the sequences $\left(s_{n}\right),\left(t_{n}\right)$ and $\left(Q_{n}\right)$ converge.

Consider now the right-product $P_{n}:=S_{1} \ldots S_{n}$ and suppose that the S_{n} belong to a finite set. As noticed in [3] it is clear that the nonnull rows of the limit matrix P, if this matrix exists, are nonnegative left-eigenvectors - for the eigenvalue 1 - of each matrix S such that $S_{n}=S$ for infinitely many n, because the equality $P_{n}=P_{n-1} S$ implies $P=P S$. So P_{n} can converge only if the S_{n}, for n greater or equal to some integer n_{0}, have a common nonnegative left-eigenvector for the eigenvalue 1.

We suppose there exists such a left-eigenvector, let L, and we search the condition for $\left(P_{n}\right)$ to converge. Notice that the S_{n} for $n \geq n_{0}$ commute: since any 2×2 stochastic matrix S has left-eigenvector ($\left.\begin{array}{ll}1 & -1\end{array}\right)$ for the eigenvalue $\operatorname{det} S$, both vectors L and $\left(\begin{array}{ll}1 & -1\end{array}\right)$ are orthogonal to the columns of $S_{n} S_{n^{\prime}}-S_{n^{\prime}} S_{n}$ and consequently this matrix is null. So we fall again in the case of the left-products.
In case $S_{n_{0}} \ldots S_{n}$ diverges, nevertheless the sequence of the row-vectors $L S_{n_{0}} \ldots S_{n}$ converges (it is constant). Let L^{\prime} be some row-eigenvector not colinear to L; considering the invertible matrix M whose rows are L and $L^{\prime}, M S_{n_{0}} \ldots S_{n}$ obviously diverges hence $L^{\prime} S_{n_{0}} \ldots S_{n}$ also do. Consequently $S_{1} \ldots S_{n}$ diverges if and only if at least one of the rows of $S_{1} \ldots S_{n_{0}-1}$ is not colinear to L.
We have proved the following
Proposition 1.2. Let $\left(S_{n}\right)$ be a sequence of 2×2 stochastic matrices, namely

$$
S_{n}=\left(\begin{array}{ll}
x_{n} & 1-x_{n} \\
y_{n} & 1-y_{n}
\end{array}\right)
$$

(i) The left-product $Q_{n}=S_{n} \ldots S_{1}$ converges if and only if $\prod_{k=1}^{n}\left(x_{k}-y_{k}\right)$ has limit 0 or $\left(x_{n}, y_{n}\right)$ has limit $(1,0)$ when $n \rightarrow+\infty$.
(ii) It diverges only in the case where $\sum_{n}\left(1-\left|x_{n}-y_{n}\right|\right)$ converges and S_{n} do not tend to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(iii) If it converges, $\lim _{n \rightarrow \infty} Q_{n}=\left(\begin{array}{cc}s+q & 1-s-q \\ s & 1-s\end{array}\right)$ where $s:=\sum_{n} y_{n} \operatorname{det} Q_{n-1}$ and $q:=\lim _{n \rightarrow \infty}\left(\operatorname{det} Q_{n}\right)$.
(iv) Suppose now that the S_{n} belong to a finite set. Then the right-product $P_{n}=S_{1} \ldots S_{n}$ converges if and only if there exists n_{0} such that

- the matrices S_{n} for $n \geq n_{0}$ have a common left-eigenvector for the eigenvalue 1
- and either $\lim _{n \rightarrow \infty} \prod_{k=n_{0}}^{n}\left(x_{k}-y_{k}\right)=0$, or $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=(1,0)$, or the rows of $S_{1} \ldots S_{n_{0}-1}$ are colinear to the left-eigenvector.
(v) Suppose the $S_{n}, n \geq 1$, have a common left-eigenvector with respect to the eigenvalue 1 . Then the S_{n} commute and $P_{n}=Q_{n}$.

2. Left products of $d \times d$ NONNEGative matrices

Let us first give one example in order to illustrate the proposition that follows: we consider the products $Q_{n}=M_{n} \ldots M_{1}$, where the M_{i} belong to the set of nonnegative matrices of
the form

$$
M=\left(\begin{array}{ccccccc}
a & b & 3-3 a-2 b & e & 4-4 a-3 b-5 e & 1 & 0 \\
c & d & 2-3 c-2 d & f & 3-4 c-3 d-5 f & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & g & 5-5 g & 0 & 1 \\
0 & 0 & 0 & h & 1-5 h & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & x & 1-x \\
0 & 0 & 0 & 0 & 0 & y & \frac{1}{2}-y
\end{array}\right)
$$

where $a, b, c, d, e, f, g, h, x, y$ are some reals such that M has exactly twenty four nonnull
entries. Since the eigenspace associated to the eigenvalue 1 is generated by

$$
\begin{aligned}
& \left(\begin{array}{c}
3 \\
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \text { and } \\
& \text { genvectors: }
\end{aligned}
$$

the submatrix $M^{\{1,2,3\}}$ of the entries of M with row and column indexes in $\{1,2,3\}$ and the submatrix $M^{\{1,2,4,5\}}$ of the entries of M with row and column indexes in $\{1,2,4,5\}$. Then we associate two stochastic matrices $S=\Delta^{-1} M^{\{1,2,3\}} \Delta$ and $S^{\prime}=\Delta^{\prime-1} M^{\{1,2,3\}} \Delta^{\prime}$, where $\Delta=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $\Delta^{\prime}=\left(\begin{array}{cccc}4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$; namely
$S=\left(\begin{array}{ccc}a & 2 b / 3 & 1-a-2 b / 3 \\ 3 c / 2 & d & 1-3 c / 2-d \\ 0 & 0 & 1\end{array}\right) \quad$ and $\quad S^{\prime}=\left(\begin{array}{cccc}a & 3 b / 4 & 5 e / 4 & 1-a-3 b / 4-5 e / 4 \\ 4 c / 3 & d & 5 f / 3 & 1-4 c / 3-d-5 f / 3 \\ 0 & 0 & g & 1-g \\ 0 & 0 & 5 h & 1-5 h\end{array}\right)$.
Now we obtain 21 of the 49 entries of $Q_{n}=M_{n} \ldots M_{1}$ in function of two products of stochastic matrices, and the other entries in the first five columns of Q_{n} are null: indeed Q_{n} has for submatrices $M_{n}^{\{1,2,3\}} \ldots M_{1}^{\{1,2,3\}}=\Delta S_{n} \ldots S_{1} \Delta^{-1}$ and $M_{n}^{\{1,2,4,5\}} \ldots M_{1}^{\{1,2,4,5\}}=$ $\Delta^{\prime} S_{n}^{\prime} \ldots S_{1}^{\prime} \Delta^{\prime-1}$.

The products $S_{n} \ldots S_{1}$ and $S_{n}^{\prime} \ldots S_{1}^{\prime}$ converge to rank 1 matrices: use for instance [5], or use the previous section and the formula for the products of triangular-by-blocks matrices that is,

$$
\prod_{i=n}^{1}\left(\begin{array}{cc}
A_{i} & B_{i} \\
0 & D_{i}
\end{array}\right)=\left(\begin{array}{cc}
\prod_{i=n}^{1} A_{i} & \sum_{i=1}^{n} A_{n} \ldots A_{i+1} B_{i} D_{i-1} \ldots D_{1} \\
0 & \prod_{i=n}^{1} D_{i}
\end{array}\right)
$$

The limit of Q_{n} is a rank 2 matrix of the form $\left(\begin{array}{ccccccc}0 & 0 & 3 & 4 \alpha & 4 \beta & 4 \gamma+6 & 4 \delta+6 \\ 0 & 0 & 2 & 3 \alpha & 3 \beta & 3 \gamma+4 & 3 \delta+4 \\ 0 & 0 & 1 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 5 \alpha & 5 \beta & 5 \gamma & 5 \delta \\ 0 & 0 & 0 & \alpha & \beta & \gamma & \delta \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$.
The following proposition generalizes what we have seen on the example. For any $d \times d$ matrix M and for any $K, K^{\prime} \subset\{1, \ldots, d\}$ we denote by M^{K} the submatrix of the entries of M whose row index and column index belong to K and by $M^{K, K^{\prime}}$ the submatrix of the entries of M whose row index belongs to K and column index belongs to K^{\prime}. By commodity we use the same notation for the row-matrices L (resp. the column-matrices V): L^{K} (resp. V^{K}) is the row-matrice (resp. column-matrice) of the entries of L (resp. V) whose index belong to K.

Proposition 2.1. Let $\left(M_{n}\right)$ be a sequence of nonnegative $d \times d$ matrices that belong to a given finite set. The left-product $Q_{n, n_{0}}:=M_{n} \ldots M_{n_{0}}$ converges to a nonnull limit when $n \rightarrow \infty$ - for each positive integer n_{0} - if and only if $\left(M_{n}\right)$ satisfies both conditions:
(i) there exist some subsets of $\{1, \ldots, d\}$, let K_{1}, \ldots, K_{t} with complementaries $K_{1}^{c}, \ldots, K_{t}^{c}$, and some diagonal matrices with positive diagonals, let $\Delta_{1}, \ldots, \Delta_{t}$, such that the $S_{n}^{(i)}=$ $\Delta_{i}^{-1} M_{n}^{K_{i}} \Delta_{i}$ are stochastic, the $M_{n}^{K_{i}^{c}, K_{i}}$ are null, and $\lim _{n \rightarrow \infty} S_{n}^{(i)} \ldots S_{n_{0}}^{(i)}$ exists for any i and n_{0};
(ii) setting $K=\cup_{i} K_{i}, \lim _{n \rightarrow \infty} M_{n}^{K^{c}} \ldots M_{n_{0}}^{K^{c}}$ is the null matrix for any n_{0} and the series $\sum_{i=n_{0}}^{\infty} M_{n}^{K} \ldots M_{i+1}^{K} M_{i}^{K, K^{c}} M_{i-1}^{K^{c}} \ldots M_{n_{0}}^{K^{c}}$ converges.

Proof. If the conditions (i) and (ii) are satisfied, the entries of $M_{n} \ldots M_{n_{0}}$ with column index in K converges either to 0 or to the entries of the matrices $\lim _{n \rightarrow \infty} \Delta_{i} S_{n}^{(i)} \ldots S_{n_{0}}^{(i)} \Delta_{i}{ }^{-1}$, $i=1, \ldots, t$. Consequently $M_{n} \ldots M_{n_{0}}$ converges, by using the formula of product of
triangular-by-blocs matrices:

$$
\prod_{i=n}^{n_{0}}\left(\begin{array}{cc}
A_{i} & B_{i} \\
0 & D_{i}
\end{array}\right)=\left(\begin{array}{cc}
\prod_{i=n}^{n_{0}} A_{i} & \sum_{i=n_{0}}^{n} A_{n} \ldots A_{i+1} B_{i} D_{i-1} \ldots D_{n_{0}} \\
0 & \prod_{i=n}^{n_{0}} D_{i}
\end{array}\right)
$$

Conversely suppose that $Q_{n, n_{0}}=M_{n} \ldots M_{n_{0}}$ converges to a nonnull limit for any $n_{0} \in \mathbb{N}$. Since the M_{n} belong to a finite set, we can choose n_{0} large enough such that all the matrices M that are equal to M_{n} for at least one $n \geq n_{0}$, are also equal to M_{n} for infinitely many n. Then the nonnull columns of the limit matrix Q are right-eigenvectors of all the M_{n}, $n \geq n_{0}$, for the eigenvalue 1 , because the equality $Q_{n, n_{0}}=M_{n} Q_{n-1, n_{0}}=M Q_{n-1, n_{0}}$ implies $Q=M Q$. Let t be the rank of $Q, t=0$ if Q is null, and denote by V_{1}, \ldots, V_{t} the linearly independent columns of Q. We denote also by K_{i} the set of the indexes of the nonnull entries in V_{i}, and by Δ_{i} the diagonal matrix whose diagonal entries are the nonnull entries of V_{i}. Now (i) results from the equality $M_{n}^{D, K_{i}} V_{i}^{K_{i}}=V_{i}, D:=\{1, \ldots, d\} ; S_{n}^{(i)} \ldots S_{n_{0}}^{(i)}$ converges because $\Delta_{i} S_{n}^{(i)} \ldots S_{n_{0}}^{(i)} \Delta_{i}^{-1}$ is a submatrix of $Q_{n, n_{0}}$.
On the other side, denoting by K the union of the K_{i}, the product $M_{n}^{K^{c}} \ldots M_{n_{0}}^{K^{c}}$ and the sum of products $\sum_{i=n_{0}}^{n} M_{n}^{K} \ldots M_{i+1}^{K} M_{i}^{K, K^{c}} M_{i-1}^{K^{c}} \ldots M_{n_{0}}^{K^{c}}$ converge when $n \rightarrow \infty$ because they are submatrices of $Q_{n, n_{0}}$. The first converges to 0 : by the definitions of K and the vectors V_{i}, the rows of Q whose indexes belong to K^{c} are null.

Remark 2.1. The condition that $\sum_{i=1}^{\infty} M_{n}^{K} \ldots M_{i+1}^{K} M_{i}^{K, K^{c}} M_{i-1}^{K^{c}} \ldots M_{1}^{K^{c}}$ converges cannot be avoided. Suppose for instance that $M_{n}^{K} \ldots M_{1}^{K}$ converges and that $M_{n}^{K, K^{c}}$ is for any n the identity $\frac{d}{2} \times \frac{d}{2}$ matrix, let $I_{\frac{d}{2}}$, d even. Suppose also $M_{n}^{K^{c}}=d_{n} I_{\frac{d}{2}}$ for any n, where the positive reals d_{n} satisfy $\lim _{n \rightarrow \infty} d_{n} \ldots d_{1}=0$ and $\sum_{n=1}^{\infty} d_{n} \ldots d_{1}=\infty$. Then if the M_{n} have a common right-eigenvector for the eigenvalue 1, it has the form $\binom{W}{\theta_{\frac{d}{2}}}$ where W is an eigenvector of the M_{n}^{K} and $\theta_{\frac{d}{2}}$ is the $\frac{d}{2}$-dimensional null columnvector. Since $\left(\sum_{i=1}^{n} M_{n}^{K} \ldots M_{i+1}^{K} M_{i}^{K, K^{c}} M_{i-1}^{K^{c}} \ldots M_{1}^{K^{c}}\right) W=\left(\sum_{i=1}^{n} d_{i-1} \ldots d_{1}\right) W$ diverges, $M_{n} \ldots M_{1}$ also do although $M_{n}^{K^{c}} \ldots M_{1}^{K^{c}}$ converges to the null matrix.

Remark 2.2. The two conditions of (ii) are satisfied - assuming that the ones of (i) are if all the submatrices $M_{n}^{K^{c}}$ have spectral radius less than 1 , or if their eigenvalues greater or equal to 1 disappear in the product $M_{n+h}^{K^{c}} \ldots M_{n}^{K^{c}}$ for some fixed h and for any n.

Remark 2.3. Let us compare now the problem of the convergence of $Q_{n}=M_{n} \ldots M_{1}$ to the one of

$$
R_{n}:=\frac{M_{n} \ldots M_{1}}{\left\|M_{n} \ldots M_{1}\right\|}
$$

Let $\left(M_{n}\right)$ be a sequence of complex-valued matrices such that R_{n} converges. Since the limit matrix R has norm 1, it has some nonnull columns; let us prove that they are righteigenvectors of each matrix M that occurs infinitely many times in the sequence $\left(M_{n}\right)$. The nonnegative real $\lambda_{n}:=\left\|M R_{n-1}\right\|$ is bounded by $\|M\|$ and satisfy $M R_{n-1}=\lambda_{n} R_{n}$ for any n such that $M_{n}=M$, so it has at least one limit point λ that satisfy $M R=\lambda R$, and the columns of R are right-eigenvectors of M for the eigenvalue λ.
Suppose that $\lambda \neq 0$ - perhaps it is not possible that $\lambda=0$. The convergence of R_{n} can hold without the convergence of $\left(\frac{1}{\lambda} M_{n}\right) \ldots\left(\frac{1}{\lambda} M_{1}\right)$, see for instance the case where all the M_{n} are equal to $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. But conversely the convergence of this last product to a nonnull matrix, for some $\lambda \neq 0$, implies obviously the one of R_{n}.

References

[1] I. Daubechies \& J. C. Lagarias, Sets of matrices all infinite products of which converge, Linear Algebra and its Applications 161 (1992), 227-263.
[2] I. Daubechies \& J. C. Lagarias, Corrigendum/addendum to: Sets of matrices all infinite products of which converge, Linear Algebra and its Applications 327 (2001), 69-83.
[3] L. Elsner \& S. Friedland, Norm conditions for convergence of infinite products, Linear Algebra and its Applications 250 (1997), 133-142, download the list of publications
[4] P. Erdős, On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61 (1939), 974-976, download.
[5] J. Lorenz, Convergence of products of stochastic matrices with positive diagonal and the opinion dynamics background (2007), download.
[6] A. Mukherjea, A. Nakassis \& J.S. Ratti, On the distribution of the limit of products of i. i. d. 2×2 random stochastic matrices, J. Theor. Probab. 12 (1999), 571-583.
[7] A. Mukherjea \& A. Nakassis, On the continuous singularity of the limit distribution of products of i. i. d. $d \times d$ stochastic matrices, J. Theor. Probab. 15 (2002), 903-918.
[8] E. Olivier, N. Sidorov, \& A. Thomas, On the Gibbs properties of Bernoulli convolutions related to β-numeration in multinacci bases, Monatsh. Math. 145 (2005), 145-174, download.
[9] E. Seneta, Non-negative matrices and Markov chains, Springer Series in Statistics. New York Heidelberg - Berlin: Springer- Verlag XV (1981), partial download.
(Alain Thomas) LATP, 39, Rue Joliot-Curie, 13453 Marseille, Cedex 13, France
E-mail address: thomas@cmi.univ-mrs.fr

[^0]: Key words and phrases. LCP sets, RCP sets, products of nonnegative matrices, products of stochastic matrices.

