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Abstract

We address the problem of optimally mapping uniform DAGs to

systolic arrays, given an affine timing function. We introduce an auto-

matic allocation method based on a preprocessing by reindexing that

transforms the initial DAG into a new one that enables the well known

projection method to minimize the number of processors along a num-

ber of directions. We demonstrate its superiority to other methods,

and establish the space-optimality of the proposed method. We also

show an upper bound on the number of processors that corresponds

to the best space complexity that both the projection method and

the so-called grouping method can give for the initial DAG. We also

describe how the new allocation method can be implemented in tools.
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1 Introduction

Embedded systems are information processing devices that are integral
parts of complex applications: consumers buy them for the functionality
they provide, not because there is a computer inside. Embedded systems are
becoming more and more important from both the economic and technical
side. They are tailored to do a particular task that can be squeezed into
an extremely compact space, and are often specialized to a given task. The
proliferation of computational devices have pushed for specialization to meet
constraints on speed, power, energy, and area. For example, a mobile phone
contains a specialized embedded architecture consisting of several different
processors such as a DSP for wireless channel processing, a micro-controller
that is responsible for the user interface and communication protocol, as well
as several custom hardware components e.g., in the receiver/transmitter. The
performance of this heterogeneous architecture exceeds that of any existing
PC at lower power consumption, size, weight, and production cost. It is spe-
cialization that makes the mobile phone feasible and economical. Embedded
systems are also ubiquitous in automotive electronics, robotics, aerospace
applications and video game platforms, to name just a few prominent exam-
ples.

Many candidates for embedded systems in signal processing and multi-
media applications are compute-bound. In order to meet higher performance
computing speeds, an important option is to use highly parallel architectures
(VLSI processor arrays, FPGA, etc.) This is shown by the relative maturity
achieved by academic research systems such as MMAlpha [22], Compaan [24],
VASS [48], PARO [43, 1] as well as industrial tools such as PICO-N sys-
tem [38] developed at HP Labs, and now commercialized as PICO Express
by Synfora. In these systems, the target (virtual) architecture is usually
a systolic array, i.e., a locally interconnected grid of elementary processors
called Processing Elements (PEs) or cells. In addition to full custom ASICs,
FPGAs and other reconfigurable platforms also serve as physical target ar-
chitectures for such PE arrays.

In designing systolic arrays, one usually first seeks the fastest schedule,
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and then chooses an allocation function that maps the computation to the
PEs. The problem of minimizing the number of PEs, for a given optimal
schedule, has been widely studied in the literature. The techniques pro-
posed have been either linear allocation functions [29, 31, 33, 40, 47], called
projection methods, as well as non-linear allocation functions, namely group-
ing [5, 7, 9], instruction shifts [8], piling [2, 7] and partition [37, 42]. Of these,
the last three are special cases of piecewise linear allocation functions, where
different linear allocations are applied to different regions of the domain. It
has been conjectured that the optimal allocation function is always piecewise
linear, but this has never been proved.

The projection method, the grouping method and the instruction shift
method can, and have been implemented in automatic synthesis tools, but
the others have not, primarily because there is no clear way of describing the
“pieces.” Moreover, all the existing methods require human insight and are
therefore not automatic. None of the methods yields provably space-optimal
arrays in general [12, 10]. Nevertheless, they have all been used to obtain
space-optimal arrays for many specific problem instances. Of these, the pil-
ing method usually produces arrays with spiral interconnections, leading to
somewhat poorer locality. For many problems, the instruction shift method
and the partition method [2, 3, 4, 6, 8, 10] have proved to be superior to the
piling method, yielding arrays with fewer PEs, although the power of these
methods have not been formally compared previously.

In this paper, we resolve the standing open problem of deriving space-
optimal arrays for a given uniform dependence DAG with a given affine sched-
ule. Our method is constructive and consists of two steps applied recursively,
dimension by dimension. The steps are: (i) a sequence of re-indexations ap-
plied to specific pieces of the domain (our method describes how to determine
the pieces); and (ii) projections along canonical directions. Because of this,
we are able to describe how the method may be automated and incorporated
in a tool such as MMAlpha [22]. The proof of space optimality de facto proves
the superiority of this method over the previous ad hoc techniques. We also
systematically compare our method with the projection and grouping meth-
ods. The idea behind this allocation method was originally introduced, for
specific problem instances, by Tayou Djamegni [11, 12, 19].

The rest of the paper is organized in the following way. Section 2 il-
lustrates our method (without the dimension by dimension recursion) on a
simple sorting example. In Section 3, we introduce the notation, summa-
rize how parallel algorithms are synthesized from recurrence equations, and
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present previous allocation methods. Section 4 describes our method, and in
Section 5 we illustrate it on a number of examples. In Section 6, we compare
the new allocation method with other methods. Section 7 describes how to
resolve an important problem if one is to implement the method in tools like
MMAlpha [22], and we conclude in Section 8.

2 Illustrative Example
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Figure 1: Illustration of the allocation method on the bubble sort

We first illustrate the main idea of the reindexing scheme through a sim-
ple sorting example. It has been deliberately chosen so that the recursion is
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not needed (the problem is two-dimensional). Figure 1.a shows the bubble
sort algorithm and its triangular shaped dependence graph, together with
the optimal timing function, t(i, j) = i + j. The maximum number of active
points is n

2
, so an optimal allocation function should have n

2
PEs. All projec-

tions (including the standard ones—orthogonal along the axes, or along the
diagonal) yield arrays with at least n PEs, and are suboptimal. However,
note that the diagonal projection yields an array where every PE is active
only on alternate clock cycles, and two adjacent PEs can be grouped into a
single PE, with no slowdown. Thus, the projection method combined with
grouping yields an optimal array. However, we do not know how to discover
this projection automatically.

Another optimal allocation is obtained if we partition the triangle into
a family of L-shaped lines and allocate all nodes along each such line to a
single PE: the left and bottom boundary of the triangle would be computed
on the leftmost PE, and so on. The corners of these L-shaped lines all lie on
the line, i + j = n, and this allocation corresponds to the piecewise linear
allocation function

a(i, j) =

{

i + j ≤ n : i
i + j > n : n− j

This is the essence of the partition method, and the key difficulty is that
discovering the i + j = n line to cut the domain requires designer insight.

For our example, the instruction shift method and the piling method
yield another array which is also optimal (both of them follow very similar
reasoning for this example and produce the same array). To explain these
methods, it is useful to first produce a suboptimal array, say by the canonical
projection (as shown in Figure 1.b). Every vertical line in this “skewed”
triangle is the temporal activity of a PE. We observe that PEs have different
starting and ending times. In fact, the i-th PE starts at 2i− 1 and finishes
at n + i − 1. This means that the i′-th PE in the “right half of the array”
(i.e., one whose coordinates are n

2
+ i′) starts just as the i′-th PE (in the left

half) stops. Thus they can both be executed by a single physical PE.
The problem is that all these approaches need some human intuition.

Our method finds the optimal allocation as follows. We first choose some
arbitrary allocation, such as the one in Figure 1.b (the method is insensitive
to this choice). Each row in this triangle represents the set of simultaneous
activity of some subset of PEs. We translate each such line (i.e., reindex
the domain) so that it is flush with the vertical axis. This yields the graph
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shown in Figure 1.c, and corresponds to our optimal array (Figure 1.d). The
partition method also gives us the same array.

The remainder of this paper formally proves that this approach is guar-
anteed to produce arrays with the minimal number of PEs, and that the
method can be generalized to higher dimensions.

3 Background

Algorithms that are good candidates for systolic implementations are
characterized by regular and repetitive operations on large sets of data. They
are usually written in the form of nested loops [30] and more generally in the
form of a System of Recurrence Equations (SREs) [23, 36]. These formalisms
and the problem they involve were first developed by Lamport [25] and by
Karp et al. [23].

The standard methodology for systolic array synthesis developed over the
past 25 years [29, 31, 33, 34, 35, 37, 40] proceeds in four steps.

• Specify the problem as an SRE or as a loop program.

• Uniformize/localize the dependences in the specification [33, 34, 35, 45,
46]. This leads to a so called System of Uniform Recurrence Equations
(SURE) which has a uniform dependence graph: a Directed Acyclic
Graph (DAG), G = (D, U) where D is the set of tasks and U the set
of edges. D is the set of integer points in a polyhedral region of Zn,
and U is a set of constant n-vectors.

• Define a timing function (or schedule) t : D → N that gives the com-
putation date t(v) of each task v of D, assuming that all tasks are of
unit delay.

• Define an allocation function D → Zn−1 that assigns the tasks to PE
coordinates so as to avoid conflict, i.e., no two tasks with the same
execution date are assigned to the same PE.

For the purpose of this paper, we assume that the first three steps have
been performed, and we seek optimal allocation function(s).

Definition 1 A timing function is said to be optimal with respect to a de-
pendence graph, G iff it minimizes the number of time steps needed to execute
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all the tasks of G, i.e., the total execution time is equal to the length of the
longest path of G. We restrict ourselves to affine timing functions, i.e., func-
tions of the form t(z) = λtz + α, where z ∈ Zn, λ = (λ1, λ2, . . . , λn)t and λ1,
λ2, . . . , λn, α are integral constants. The vector λ is called the timing vector
or scheduling vector.

The schedule vector λ is orthogonal to (n − 1)-dimensional hyperplanes
of Zn whose points have the same execution instant. These hyperplanes are
called the timing surfaces. The maximum number of tasks on any timing
surface defines the potential parallelism. To satisfy the causal dependencies,
any affine timing function must satisfy the following dependence constraint.

Definition 2 A vector v = (v1, v2, . . . , vn)t is said to be unimodular (or
primitive) iff its components are relatively prime, i.e., gcd(v1, v2, . . . , vn) =
1. An integral square matrix U is said to be unimodular iff |det(U)| = 1.
The affine timing function t = [λ, α] is normalized iff its linear part λ is
unimodular.

Proposition 1 An affine timing function specified by [λ, α] is valid if it sat-
isfies λtdz > 0 for any dependence vector dz associated with the problem.

A linear allocation is realized by projecting the iteration domain along a
direction called allocation direction or projection direction. It is defined by a
constant n-dimensional vector ξ.

Proposition 2 Let [λ, α] be a valid affine timing function. A constant n-
dimensional vector ξ defines a valid allocation direction if and only if λtξ 6= 0.

Definition 3 Given a timing function, we call potential parallelism the
maximum number of tasks having the same computation date. An alloca-
tion function is said to be optimal with respect to a dependence graph G
and a timing function iff it minimizes the number of PEs, i.e., the PE count
is equal to the potential parallelism of the timing function.

Definition 4 The minimum number of PEs over all possible allocation func-
tions described by projections, defines the potential parallelism by projection.

Throughout this paper we assume without loss of generality that the affine
timing function t = [λ, α] is normalized and that vector ξ is unimodular. We
now provide a number of definitions that allow us to study the activities of
PEs and arrays.
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Definition 5 A working date of a PE is any date at which that PE executes
a task of the iteration domain D. The working interval of a PE is the interval
defined by the first and last working dates of that PE. An activation date of
an array is a date at which at least one PE executes a task of D. The working
rate of a PE is the ratio of the number of working dates of the PE and its
working interval. The pipelining rate of an array is defined as the average of
the working rates of its PEs.

The working rate of a PE is 100% if it is active at all dates within its
working interval. The pipelining rate of an array is 100% if the working rate
of all its PEs is 100%. This is not often achieved. For example, the pipelining
rates of both optimal sorting arrays described in the previous section, is 50%.

3.1 Minimizing the number of PEs

We now summarize previous work related to the minimization of the
number of PEs in regular arrays.

1. Projection method [29, 31, 33, 40, 47]. This method corresponds to
linear allocations. As stated earlier it is realized by projecting the de-
pendence graph G along a direction ξ. All the tasks belonging to a same
line of direction ξ are assigned to a same PE. The main drawback of this
allocation technique is the low PE utilization occurring in the resulting
array [8]. Wong and Delosme [47], Shang and Fortes [40], Ganapathy
and Wah [21] use integer programming to get the best linear allocation
possible. However, such a linear allocation may not correspond to an
optimal allocation.

For instance, the minimal number of PEs obtained by projecting the
dependence graphs of the Cholesky Factorization (henceforth called
CF) [8], Triangular Matrix Inversion (henceforth TMI) [27] and Op-
timal String Parenthesization by Dynamic Programming (DP) [26] is
N2/2+Θ(N) where N is the problem size. For square Matrix Multipli-
cation (MM) the minimal number of PEs is N 2. None of these arrays is
space optimal with respect to the earliest or the latest optimal timing
functions. The potential parallelism of CF and MM are, respectively,
N2/8 + Θ(N) [8] and 3N 2/4 + Θ(N) [6] for any optimal timing func-
tion. The potential parallelism of the TMI and DP are, respectively,
N2/4 + Θ(N) [37, 17] and N 2/6 + Θ(N) [26] for the latest optimal
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timing functions and, N 2/6+Θ(N) [27] and N 2/14+Θ(N) [26] for the
earliest optimal timing functions.

2. Grouping (or clustering) method [5, 7, 9]. This approach seeks to re-
duce the number of PEs of an initial array obtained by projection
stemming from the analysis of PEs’ activity. It consists in grouping
|λtξ| neighboring PEs with distinct working dates. Typically, the PEs
that are clustered are along a direction specified by a vector, γ. This
approach permits to reduce the number of PEs by a factor of |λtξ|. In
addition, the resulting solution is a locally connected array that has a
100% pipelining rate. In The grouping method cannot guarantee that
the design is space-optimal, because a 100% pipelining rate in the array
does not necessarily imply space-optimality. Another drawback of the
grouping method is that it applies only if |λtξ| ≥ 2.

For the CF, TMI and DP the grouping method reduces the number of
PEs by a factor of 2, i.e., from N 2/2+Θ(N) to N 2/4+Θ(N). For TMI
this is optimal according to the latest optimal timing function [37, 17].
For MM it is easy to prove that the grouping method cannot do better
than N2 PEs.

3. Instruction shift method [8]. As in the grouping method, the starting
point is an array obtained from the projection method. Then, the ini-
tial array is partitioned into a number of PEs segments parallel to a
direction called partition direction. The tasks of each segment are re-
allocated so as to minimize the number of PEs on each segment. This
amounts to minimizing the number of PEs on all intersection of the
dependence graph with a plane generated by both the projection di-
rection and the partition direction. This approach does not guarantee
space-optimality. For the CF this technique reduces the number of PEs
from N2/2+Θ(N) to N 2/6+Θ(N) [8]. Although this represents a sig-
nificant improvement, this design is not space optimal as the potential
parallelism of the CF is N 2/8 + Θ(N) [8].

4. Piling method [2, 7]. First, from a given dependence graph and affine
schedule, a set M of tasks is found such that all tasks in the set are
scheduled to be executed at the same time and the set size |M | is
maximal. Second, an allocation method is applied to assign the tasks
of the dependence graph to PEs. Any PE that has not been assigned
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to execute a task of M is piled to a PE that executes a task of M
and has disjoint working intervals. However, piling PEs results in long
communications such as spiral links, and increases irregularity for the
resulting arrays. In this paper, we seek to avoid this. Another drawback
of this method is that it is too general: as stated it can be applied to
any task graph; exploiting it for systolic array synthesis requires human
insight.

5. Partition method [37, 42]. The starting point is to partition the depen-
dence graph G into a number of sub-graphs of lower dimension. Then,
the tasks of each sub-graph are allocated to PEs, in an ad hoc manner,
so as to minimize the number of PEs on each sub-graph. When the sub-
graphs are of dimension two, this corresponds to the instruction shift
method. Thus, the partition method can be seen as a generalization of
the instruction shift method.

In most of the cases where it has been applied in the literature [3,
4, 10, 16, 18, 11, 13, 26, 27, 37, 42] the sub-graphs correspond to two-
dimensional domains that are obtained by considering the intersections
of the dependence graph with a set of parallel planes. This allocation
heuristic leads to an array of N 2/8 + θ(N) PEs for the DP [26]. In [18]
the number of PEs is reduced to N 2/10+θ(N) by merging nodes of the
dependence graph associated with the DP before applying the partition
method. All these solutions are not space-optimal as they are based
on the earliest optimal timing function whose potential parallelism is
N2/14 + Θ(N) [26]. The partition method is also used in [16] to de-
rive a space-optimal array for the Algebraic Path Problem (APP) and
in [3, 4] by Bermond et al. to derive various arrays for the Gaussian
Elimination (GE). However these GE arrays are not space-optimal. A
Space-time optimal array for the GE is proposed in [2]. For CF the par-
tition method leads to an array of N 2/6+Θ(N) PEs [11]. For TMI, the
partition method leads to space-time optimal arrays for both the earli-
est and latest optimal timing functions [37, 27]. The partition method
also provides space-optimal arrays for MM. The main drawback of the
partition method comes from the fact that the tasks of each sub-graph
are not allocated in a systematic manner. Because of this the partition
method is not suitable for tools that automatically generate application
specific VLSI PEs.
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We see that only the projection method, the grouping method and the
instruction shift method are suitable for tools that (semi) automatically
generate application specific VLSI PEs. Moreover, the allocation methods
presented above do not guarantee space-optimality. The weakest allocation
method, in terms of reducing the number of PEs, seems to be the projec-
tion method, while the most promising ones are the grouping method, the
instruction shift method and the partition method. The partition method is
a generalization of the instruction shift method. According to results related
to CF, TMI, DP, GE and MM the most powerful method seems to be the
partition method. However, this has not yet been confirmed by a systematic
comparison. In others words, we are not aware of any procedure based on
the partition method that systematically leads to results that are better than
(or as good as) the best result that the grouping method (respectively, the
projection method) can give.

This brief survey of previous allocation methods shows that the problem
of minimizing the number of PEs occurring in regular arrays remains open
despite considerable research.

3.2 Notation related to the new allocation method

The allocation strategy introduced in section 4 is based on reindexing
transformations. We now show how these transformations act on a uniform
dependence graph associated with an SURE. Let S be an SURE defined
over a domain D ⊂ Zn and associated with a dependence graph G = (D, U).
Assume that S admits a valid affine timing function t = [λ, α].

Definition 6 A function g : D → g(D) is a valid reindexing transformation
for S iff it is a bijection.

The reindexing function g transforms system S into a new one S ′ that is
is obtained by replacing in system S each index point z with its image by g,
i.e., g(z). The dependence graph G becomes G′ = (D′, U ′) where D′ = g(D)
and U ′ = {[g(z1) → g(z2)] | [z1 → z2] ∈ U, with z1 ∈ D and z2 ∈ D}. The
equivalent timing function t′ corresponding to the reindexing g assigns to
z′ ∈ D′ the computation date of its pre-image by g, i.e., g−1(z′). This means
that t′ = t ◦ g−1.

Proposition 3 When the reindexing g corresponds to an unimodular trans-
formation, i.e., g(z) = Uz +z0 where U is a constant unimodular matrix and
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z0 is a constant, the schedule [λ, α]] is transformed to [U−tλ, α − λtU−1z0].
Furthermore, a reindexing maintains the potential parallelism under the new
schedule [12].

Definition 7 A segment seg(z1, z2), z1 6= z2, with extremities z1 and z2 is
the set {z ∈ Zn | z = α1z1 + α2z2, α1, α2 ≥ 0, α1 + α2 = 1}.

A domain D is said to be convex along an n-dimensional primitive vector
s if its intersection with any segment parallel to s is either empty or a single
segment. D is convex if it is convex along all directions.

If D is convex along s, the frontier F(D, s) of D along s, is the subset of
D defined by F(D, s) = {z ∈ D | z + s /∈ D}.

Definition 8 Given two linearly independent vectors v1 and v2, a 〈v1, v2〉-
slice of D is any intersection of D with a 2-hyperplane parallel to vectors v1

and v2, called supporting 2-hyperplane.

Assume that D is convex along s. For some z ∈ D, say that zs,D (the
“shadow” of z along s on the frontier of D) is the unique index point of
F(D, s) that belongs to the line defined by vector s and point z. Similarly,
let zs denote the projection of point z ∈ Zn along s on the (n−1)-hyperplane
orthogonal to s and containing point (0, 0, 0, . . . , 0)T ∈ Zn.

Consider the array obtained by projecting domain D along ξ. NPE(ξ, D)
denotes the number of PEs in this array. The number of PEs obtained by
applying the clustering method along γ is denoted by NPE(ξ, D, γ), and the
number of PEs obtained by applying the instruction shift method along γ is
denoted by NB(ξ, D, γ).

4 The new allocation method

We are now ready to present the new allocation method. As stated ear-
lier, it is based on a preprocessing by reindexing that transforms the original
domain into a new one that is more suitable for the application of the projec-
tion method. Given that the projection method assumes that points having
the same computation date belong to the same (n − 1)-hyperplane, we will
consider only reindexing functions that preserve this property. Throughout
this section, S denotes an SURE over a bounded domain D ⊆ Zn, with a
valid timing function t = [λ, α], where λ is normalized (otherwise, t would
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Figure 2: Illustration of the reindexing P1,D. The timing vector is e2

not be optimal). Let 〈e1, e2, e3, . . . , en〉 be the canonical basis of Zn. As in
all related work we assume that the timing surfaces are convex.

In order to simplify the presentation, we first develop the method on two-
dimensional iteration domains. Then, results obtained from this simple case
are generalized to n-dimensional domains.

4.1 Two-dimensional Domains

Here the timing surfaces are line segments. Depending on the direction
of the timing vector λ, we consider two cases.

Case 1: λ is collinear to a canonical basis vector el.
We present here the reindexing that enables the projection method to

provide an optimal allocation. Let eh be the other canonical basis and choose
s to be either eh or −eh. The key idea is to shift the timing segments along
s so as to move the points of F(D, s) to the el axis. To do so, we use the
reindexing function Ph,D defined as follows:

Ph,D(z) =

{

z ∈ F(D, s) : zs

z /∈ F(D, s) : zs + z − zs,D
(1)

= zs + et
h(z − zs,D)eh

It is easy to prove that Ph,D is a valid reindexing transformation. Clearly
Ph,D(z) = (et

1(z − zs,D), et
2z)t for h = 1 and Ph,D = (et

1z, e
t
2(z − zs,D))t for
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h = 2. The reindexing P1,D is illustrated in figure 2. In this figure, the
projection of domain D′ = P1,D(D) along e2 leads to an optimal allocation.
In this example, the reindexing P1,D improves the potential parallelism by
projection as the projection of the original domain along any direction does
not lead to an optimal allocation.

The following proposition shows that the whole domain D′ is located
either at the left or at the right hand side of the el axis.

Proposition 4 For all z ∈ D, either et
h(z − zs,D) ≥ 0 or et

h(z − zs,D) ≤ 0.

Proof. Assume that there exist two points z and z ′ of D such that
et

h(z − zs,D) > 0 and et
h(z

′ − z′s,D) < 0. This implies that z = zs,D + ceh and
z′ = z′s,D − c′eh where c and c′ are two strictly positive integers. Because
D is convex along eh, segments Seg(z, zs,D) and Seg(z′, z′s,D) are in D. This
implies that zs,D + eh and z′s,D − eh belong to D. This is in contradiction
either with the definition of zs,D or of z′s,D as s = eh or s = −eh. 2

Proposition 5 The projection of D′ along el leads to an optimal allocation.

Proof. By definition, a point z′ of D′ is allocated to PE [et
hz

′]. Let
m = max{et

hz
′ | z′ ∈ D′} − min{et

hz
′ | z′ ∈ D′} + 1. Clearly, the number

of PEs obtained by projecting D′ along el is no more than m. Since all
of D′ is to one side of the el axis (by proposition 4), we know that m =
max{|et

hz
′| | z′ ∈ D′} + 1. Let z be a point of D′ for which |et

hz | = m − 1.
Since z, zs ∈ D′, and D′ is convex along eh, Seg(zs, z) ⊂ D′. This segment
contains m integral points having the same computation date. Hence, the
allocation is optimal. 2

Note that projecting D′ along direction el amounts to allocating point
z ∈ D to the PE numbered |et

hz
′| = |et

h(z − zs,D)|, where z′ = Ph,D(z). In
the corresponding array, input and output operations are performed by a PE
located at an extremity of the array if all the input/output points belong to
F(D, s). This property is suitable for VLSI implementation [12, 14].

Case 2: No vector of the canonical basis is collinear to λ.
We reduce the problem to the previous case. To do so we apply to the

original domain D a reindexing function q that leads to a new timing vector

14



that is parallel to a vector el of the canonical basis. For this purpose, first
note that el = U−tλ for some unimodular matrix U of order 2 as the columns
of et

l and those of λt generate the same lattice [41]. Constructing matrix
U is easy: one only needs to compute the Hermite form [41] of λt. From
proposition 3 we can set q : z → Uz. The number of PEs is minimized
by applying to the new index domain D′ = q(D) the allocation strategy
described for case 1. This is illustrated in figure 1.

As stated earlier in case 1, this mapping strategy allocates point z ′ ∈ D′

to the PE numbered |et
h(z

′ − z′s,D′)| where s denotes either eh or −eh with
h 6= l. Proposition 6 shows that this amounts to allocate point z ∈ D to the
PE numbered |et

hU(z − zs′,D)| with s′ = U−1s.

Proposition 6 Given two points z, z′ ∈ D. If z′ = Uz then z′s,D′ = Uzs′,D

where s′ = U−1s.

Proof. First note that s is the direction of the timing segments of D′.
This implies that the timing segments of D are of direction s′ = U−1s. In
addition, the timing segments of D′ are segments because the image of a
segment by an unimodular transformation is also a segment. This means
that D′ is convex along direction s.

Now, assume that z′ = Uz. We have z′ = z′s,D′ + cs and z = zs′,D + c′s′,
where c′ and c are two negative integers. Because z ′ = Uz we get:

z′s,D′ = (c′ − c)s + Uzs′,D (2)

As zs′,D ∈ D and q(D) = D′ we have Uzs′,D ∈ D′. Thus, (2) implies that
(c − c′)s + z′s,D′ ∈ D′. Because z′s,D′ + s /∈ D′ we have (c − c′) ≤ 0 as D′

is convex along direction s. Similarly, as z′s,D′ ∈ D′ and D = q−1(D′), (2)
implies that U−1((c′−c)s+Uzs′,D) ∈ D. This means that (c′−c)s′+zs′,D ∈ D.
This implies that (c′ − c) ≤ 0 as D is convex along direction s′. Therefore
c = c′, and as a consequence z′s,D′ = Uzs′,D. 2

4.2 Generalizing to n-dimensional Domains

We now extend the method to higher dimensions. While the discussion
above gives an insight on the method, it does not present a constructive
approach, especially when we have more than two dimensions. This is done
using “slice-based partitions” as described next.
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e1

e3
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Figure 3: Illustration of the reindexing P1,D on a three-dimensional domain.
The timing vector is e3

4.2.1 Minimizing the number of PEs along one direction

Given two primitive and linearly independent vectors v1 = x1e1+. . .+xnen

and v2 = y1e1 + . . .+ ynen, we show how the tasks of the iteration domain D
can be allocated to PEs so as to minimize the number of PEs along direction
〈v1, v2〉, i.e., so as to minimize the number of PEs on all 〈v1, v2〉-slice of D.
Indeed, as in the partition method [37, 42], our starting point is to partition
D into 〈v1, v2〉-slices denoted D1, D2, . . . , Dr. However, we do not search
for an allocation function that minimizes the number of PEs on all Di “all
at once” but proceed dimension b y dimension. Instead of using ad hoc
approaches as in the partition method, we proceed in a systematic way. We
perform a preprocessing by reindexing that provides a projection direction
that separately allocates the tasks of each Di so as to minimize the number
of PEs on each Di.

Note that if v1 and v2 are parallel to the timing surfaces the minimal
number of PEs required by each 〈v1, v2〉-slice is equal to its cardinality. Be-
cause of this, we assume that the 〈v1, v2〉-slices are not parallel to the timing
surfaces, i.e., λtv1 6= 0 or λtv2 6= 0. In what follows, we assume that λtv2 6= 0
without loss of generality. Depending on the direction of the timing vector
λ we consider two main cases.
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Case 1: λ is collinear to some vector el of the canonical basis
Sub-Case 1.1. The 〈v1, v2〉-slices are parallel to some eh such that h 6= l.

Let s be either eh or −eh. We now generalize the reindexing defined by
equation (1). The main idea is again to shift the timing segments of all
Di along direction s so as to place the points of F(Di, s) on the (n − 1)-
hyperplane of Cartesian equation et

hz = 0. To this end, we set:

Ph,D(z) = Ph,D(zs,D) + (z − zs,D)
= zs + (et

h(z − zs,D))eh

= (et
1z, . . . , e

t
h−1z, et

h(z − zs,D), et
h+1z, . . . , e

t
nz)t

(3)

The reindexing Ph,D maintains all points of D on their timing surface and
on the supporting 2-hyperplane of its 〈v1, v2〉-slice. The points of

F(D, s) =
k=r
⋃

k=1

F(Di, s)

are mapped into points belonging to the (n − 1)-hyperplane of Cartesian
equation et

hz = 0. This is illustrated in figure 3. The projection of domain
D′ = P1,D(D) along direction e3 provides a space optimal array. In this
example, the reindexing P1,D improves the potential parallelism by projection
as the projection of the original domain along any direction does not provide
a space optimal array.

The reindexing Ph,D acts similarly on each 〈v1, v2〉-slice. It maps the
points of F(Di, s) into points belonging to the intersection of the supporting
2-hyperplane of Di and the (n−1)-hyperplane of Cartesian equation et

hz = 0.
This implies that Ph,D(F(Di, s)) is parallel to vector v2 − yheh. Hence, we
have the following:

Proposition 7 The projection of D′ = Ph,D(D) along direction v2 − yheh

separately allocates the points of all 〈v1, v2〉-slice=〈eh, v2 − yheh〉-slice so as
to minimize the number of PEs on all 〈eh, v2 − yheh〉-slice.

Proof. The proof is similar to that of proposition 5. 2

Proposition 7 shows that the projection of D′ = Ph,D(D) along direction
v2 − yheh leads to an array in which the number of PEs is minimized along
direction eh, i.e., for each line of PEs along direction eh there is an instant
for which all PEs are simultaneously active. As stated earlier in the case
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where D is of dimension 2, the resulting array is such that input/output
operations are performed by PEs located at the border of the array if all the
input/output points belong to F(D, s), a property that is suitable for VLSI
implementations.

Sub-Case 1.2. The 〈v1, v2〉-slices are not parallel to some eh with h 6= l.
Here we perform a reindex that reduces the problem to sub-case 1.1. The
idea behind this transformation is to locate all Di parallel to some eh with
h 6= l so as to leave unchanged the timing vector λ. To this end, we consider
a unimodular vector v0 that is collinear to vector xlv2−ylv1. As the columns
of vt

0 and those of et
h generate the same lattice we have eh = Unv0 for some

unimodular matrix Un of order n [41]. Because et
lv0 = 0 and et

leh = 0 we can
assume that the l−th column and the l−th line of Un are respectively el and
et

l . For instance, if l = n and h = 1 we have

Un =

(

Un−1 0n−1

0t
n−1 1

)

(4)

where Un−1 is an unimodular matrix of order n−1 and 0n−1 is the null vector
of Zn−1. Note that U t

nel = el. This implies that U−t
n el = el. Stemming from

proposition 3, this implies that the timing vector λ is left unchanged by
the reindexing q : z → Unz. Because the potential parallelism is invariant
under valid reindexing functions [12], the problem of minimizing the number
of PEs on each 〈v1, v2〉-slice of D can be translated into the the problem of
minimizing the number of PEs on each 〈q(v1), q(v2)〉-slice of D′ = q(D). This
last problem can be solved with the allocation strategy proposed for sub-case
1.1.

Case 2: No vector of the canonical basis is collinear to λ. We perform
a reindexing that reduces the problem to case 1. To do so we consider a
reindexing function q that leads to a new timing vector that is parallel to
some el. As el and λ are unimodular vectors we have el = U−t

n λ for some
unimodular matrix Un of order n. From proposition 3 we can set q : z → Unz.
Now, we use the allocation strategy of case 1 to minimize the number of PEs
on each 〈q(v1), q(v2)〉-slice of D′ = q(D).
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4.2.2 Space-optimality

The allocation technique presented in section 4.2.1 is based on reindex-
ing transformations that compress the initial iteration domain along a given
direction in order to construct a new DAG that leads to an array which is
such that the number of PEs is minimized along the given direction. This
technique can further be optimized stemming from propositions 8 and 9.
The idea behind these propositions is that any array with a 100% pipelining
rate whose number of PEs is minimized along any direction is space-optimal.
Indeed, this idea can be exploited by successively compressing the initial
iteration domain along a number of directions, using reindexing transfor-
mations introduced in section 4.2.1. As the new obtained iteration domain
is compressed along many directions, it enables the projection method to
provide an array whose number of PEs is minimized along many directions.
Note that the 100% pipelining rate criterion is easy to satisfy. It is easy to
see that if the iteration domain is convex along a projection vector ξ, that
satisfies |λtξ| = 1, then the pipelining rate of the resulting array is 100%.
Recall that the new allocation method applies the projection method with
ξ = λ ∈ {e1, e2, e3, . . . , en}. Therefore, propositions 8 and 9 guarantee the
space-optimality of the new allocation technique.

Proposition 8 Any array with a 100% pipelining rate that is such that the
intersection of working intervals of any pair of PEs is not empty is space-
optimal.

Proof. Denote np the number of PEs, pp the potential parallelism and t a
date at which the maximum number of PEs are working. Clearly np ≥ pp.
Assuming that np > pp, let’s denote C = {c1, c2, . . . , cpp} the set of cells
scheduled to work at date t, f(c) (resp. l(c)) the first working date (resp.
last working date) of cell c. There is then at least one PE p 6∈ C that is
not active at date t. Because the array has a 100% pipelining rate, each
PE works at all activation date between its first and last working dates.
This implies that either t < f(p) or l(p) < t. On the other hand we have
I(c) = [f(c), l(c)] ∩ [f(p), l(p)] 6= ∅ for all c ∈ C as the intersection of
the working intervals of any pair of PEs is not empty. This implies that
f(p) ∈ I(c) for all c if t < f(p) and l(p) ∈ I(c) for all c if t < l(p). It follows
that the PEs of C are simultaneously working at date f(p) or at date l(p).
Therefore pp + 1 PEs are working at the same date. Hence a contradiction.
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2

The proof of the following proposition is simple.

Proposition 9 In any array in which the number of PEs is minimal along
all direction, the intersection of activation intervals of every pair of PEs is
not empty.

5 Examples

Here we illustrate the method on Matrix Multiplication (MM) and the
Cholesky Factorization (CF). We derive asymptotically space-time optimal
arrays for MM and CF.

Matrix multiplication [13, 19, 15]
The computation of the product C = AB of two square matrices A and

B of order N can be defined by the following SURE:

Initialization:
For 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1, 0 ≤ k ≤ N − 1
A(i,−1, k) = Ai,k

B(−1, j, k) = Bk,j

C(i, j,−1) = 0

Computation:
For 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1, 0 ≤ k ≤ N − 1
A(i, j, k) = A(i, j − 1, k)
B(i, j, k) = B(i− 1, j, k)
C(i, j, k) = C(i, j, k − 1) + A(i, j − 1, k)B(i− 1, j, k)

Output:
For 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1
Ci,j = C(i, j, N − 1)

The iteration space is D(0) = {(i, j, k) ∈ Z3 | 0 ≤ i ≤ N − 1, 0 ≤ j ≤
N − 1, 0 ≤ k ≤ N − 1}. The dependence vectors are the vectors of the
canonical basis of Z3: e1, e2 and e3. A corresponding optimal timing function

20



(0)D D(1)

D(2)

e

e1

3

1,DP

q

e2

D(3)

P (2) (1)2,D

Figure 4: Reindexing process for matrix multiplication
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is t(i, j, k) = i + j + k. The projection of D(0) along vector e3 leads to an
N×N array of N 2 PEs. To reduce the number of PEs we proceed as follows.
First, the timing vector e1 + e2 + e3 is mapped into e3 with the reindexing q:

q(i, j, k) = (i, j, t(i, j, k) = (i, j, i + j + k) (5)

This leads to a new iteration domain D(1) = q(D(0)) = {(i, j, k) ∈ Z3 | 0 ≤
i ≤ N − 1, 0 ≤ j ≤ N − 1, 0 ≤ −i − j + k ≤ N − 1} [13, 19, 15]. This
is illustrated in figure 4. Second, D(1) is compressed along direction e1 with
the reindexing P1,D(1) to obtain D(2) = P1,D(1)(D(1)) ⊆ {(i, j, k) ∈ Z3 | 0 ≤
i ≤ N − 1, 0 ≤ j ≤ N − 1, i + j − k ≤ 0, i− j + k ≤ 2(N − 1)} [13, 19, 15].
Similarly, D(2) is compressed along direction e2 with the reindexing P2,D(2)

to obtain D(3) = P2,D(1)(D(2)) ⊆ {(i, j, k) ∈ Z3 | 0 ≤ i ≤ N − 1, 0 ≤ j ≤
N − 1, 2i + j ≤ 2(N − 1) [13, 19, 15]. Stemming from the results of section
7 we have:

P1,D(1)(i, j, k) =

{

(i, j, k) if − j + k − (N − 1) ≤ 0
((N − 1) + i + j − k, j, k) if − j + k − (N − 1) > 0

(6)

P2,D(2)(i, j, k) =

{

(i, j, k) if i + k − 2(N − 1) ≤ 0
(i,−i + j − k + 2(N − 1), k) if i + k − 2(N − 1) > 0

(7)
Third, D(3) is projected along direction e3 to obtain an asymptotically space-
time optimal array of 3

4
N2 + Θ(N) [19, 13] PEs.

Cholesky factorization [8, 11, 13]
The CF is defined as follows: Given a N ×N symmetric positive definite

matrix A, the CF calculates a lower triangular matrix L such that A = LLt.
It is defined by the following well known affine recurrence equations:

For (i, j, k) ∈ D(0) = {1 ≤ j ≤ i ≤ N ∧ 0 ≤ k ≤ j}

L(i, j, k) =







































Aj,i if 1 ≤ j ≤ i ≤ N ∧ k = 0

L(i,j,k−1)
L(j,j,j−1)

if 1 ≤ i ≤ N ∧ 1 ≤ j ≤ i− 1 ∧ k = j

L(i, j, k − 1)1/2 if 1 ≤ i ≤ N ∧ j = i ∧ k = i
L(i, j, k − 1)− if 1 ≤ j ≤ i ≤ N ∧ 1 ≤ k ≤ j − 1
L(i, k, k)L(j, k, k)

(8)
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Regarding the dependencies of (8) a uniform version can be obtained with
e1, e2 and e3 as the dependence vectors [33], and this without changing the
domain D(0) of equations (8). An optimal timing function corresponding to
such a uniformization is t(i, j, k) = i + j + k. By projecting the domain
D(0) along vector e1 + e2, we obtain a triangular orthogonally connected
array of N(N + 1)/2 PEs. The number of PEs can be reduced as follows.
First, the timing vector e1 + e2 + e3 is mapped into e1 with the reindexing
q(i, j, k) = (i + j + k, j, k). Second, D(1) = q(D(0)) ⊆ {(i, j, k) ∈ Z3 | −
i + 2j + k ≤ 0, i − j − k − N ≤ 0, − k ≤ 0, − j + k ≤ 0} is mapped
into D(2) = P3,D(1)(D(1)) ⊆ {(i, j, k) ∈ Z3 | j + k − N ≤ 0, − k ≤ 0, i −

2j + k − N ≤ 0, − i + 2j + k ≤ 0, − j + k ≤ 0 } and D(2) is in turn
mapped into D(3) = P2,D(2)(D(2)) [11, 13]. Third, a asymptotically space-

time optimal array of N2

8
+ Θ(N) [11, 13] PEs is obtained by projecting D(3)

along vector e1. This improves the results obtained from the instruction
shift method [8] and the partition method [11, 13]. They lead to arrays of
N2

6
+Θ(N) PEs. Note that the projection of D(2) along vector e1 leads to an

array of N2

4
+ Θ(N) [11, 13] PEs. Therefore the numbers of PEs is reduced

by a factor of two at each of the last two steps of the reindexing process.
Stemming from the results of section 7 we have:

P3,D(1)(i, j, k) =

{

(i, j,−i + j + k + N) if (i, j, k) ∈ D
(1)
1

(i, j, k) if (i, j, k) ∈ D
(1)
2

where
D

(1)
1 = {(i, j, k) ∈ D(1) | − i + j + N < 0}

D
(1)
2 = {(i, j, k) ∈ D(1) | − i + j + N ≥ 0}

P2,D(2) =















(i,−1
2
i + j − 1

2
k + N

2
, k) if (i, j, k) ∈ D

(2)
1,0

(i,−1
2
i + j − 1

2
k + N+1

2
, k) if (i, j, k) ∈ D

(2)
1,1

(i, j − k, k) if (i, j, k) ∈ D
(2)
2

where

D
(2)
1,0 = {(i, j, k) ∈ D(2) | − i + j + N < 0 ∧ (i + k −N)(mod 2) = 0}

D
(2)
1,1 = {(i, j, k) ∈ D(2) | − i + j + N < 0 ∧ (i + k −N)(mod 2) = 1}

D
(2)
2 = {(i, j, k) ∈ D(2) | − i + j + N ≥ 0}
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6 Comparison with other methods

In this section, we compare our allocation method with the projection
method, the grouping (or clustering) method, the instruction shift method
and the partition method. Our method is sustained by a space-optimality
result (section 4.2.2) while the methods mentioned above do not guarantee
space-optimality. The space-optimality is achieved by compressing the initial
iteration domain along all directions with reindexing transformations intro-
duced in section 4.2.1. In what follows, we establish that the lowest space
complexity that both the projection method and the grouping method can
give for the initial iteration domain is an upper bound on the space complex-
ity of our method, i.e., our method can do no worse.

6.1 Preliminary result

Let λ be a timing vector and let v1 = x1e1 + . . . + xnen and v2 =
y1e1 + . . . + ynen,v1 be two unimodular linearly independent vectors such
that 〈v1, v2〉-slices are not parallel to timing surfaces.

We have the following result.

Proposition 10 If λ is collinear to some el and 〈v1, v2〉-slices are parallel
to some eh with l 6= h then NPE(v2 − yheh, Ph,D(D)) ≤ NPE(v2, D, eh) ≤
NPE(v2, D).

Proof. Because the 〈v1, v2〉-slices are not parallel to timing surfaces, i.e.,
λtv1 6= 0 or λtv2 6= 0, we can assume without loss of generality that λtv2 6= 0.

It is easy to see that NPE(v2, D, eh) ≤ NPE(v2, D). NPE(v2, D) =
∑i=r

i=1 NPE(v2, Di) as points allocated to a same PE belong to a same line
of direction v2, and obviously to a same 〈v1, v2〉-slice. Denote ξ0 = v2 − yheh

and D′
i = Ph,D(Di)). We have NPE(v2, D, eh) =

∑i=r
i=1 NPE(v2, Di, eh) and

NPE(ξ0, D
′) =

∑i=r
i=1 NPE(ξ0, D

′). On the other hand, the reindexing Ph,D

retains the potential parallelism on each 〈v1, v2〉-slice [12], i.e., the potential
parallelism of D′

i is equal to that of Di. In addition, according to proposition
7, the potential parallelism of D′

i is equal to NPE(ξ0, D
′
i). This implies

that NPE(ξ0, D
′
i) ≤ NPE(v2, Di) and NPE(ξ0, D

′
i) ≤ NPE(v2, Di, eh).

Therefore NPE(ξ0, D
′) ≤ NPE(v2, D, eh) ≤ NPE(v2, D). 2
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6.2 Two strong comparison results

Here, we establish two strong comparison results. We first establish a
strong comparison result between our allocation method and the projection
method. Then, we establish another strong comparison result between our
allocation method and the clustering method.

To simplify the presentation, we assume without loss of generality that
the timing vector λ = en. Thus t = [en, α].

Denote D(0) = D, D(h) = Ph,D(h−1)(D(h−1)) with h ∈ {1, 2, . . . , n−1} and

assume that D(h−1) is convex along direction eh. Consider an unimodular
vector ξ = ξ1e1 + ξ2e2 + . . . + ξnen that corresponds to a valid projection
vector. As λ = en, we get ξn 6= 0. Denote ξ(h), h ∈ {0, 1, 2, . . . , n− 1}, an
unimodular vector that is collinear to vector ξh+1eh+1+ξh+2eh+2+ . . .+ ξnen.

Corollary 1 We have NPE(D(n−1), λ) ≤ NPE(D(0), ξ) for all vector ξ such
that λtξ 6= 0.

Proof. From proposition 10 we get

NPE(ξ(h), D(h)) ≤ NPE(ξ(h−1), D(h−1)), h ∈ {1, 2, 3, . . . , n− 1}

This implies that NPE(en, D(n−1)) ≤ NPE(ξ, D(0)). 2

As stated earlier, Wong and Delosme [47], Shang and Fortes [40], Ganapa-
thy and Wah [21], have developed an approach based on integer programming
to get the best projection direction possible. But for large problem instances
the time spent to solve such programs cannot be neglected [9]. Here we pro-
pose another approach based on reindexing transformations that permits to
do better. A straightforward consequence of corollary 1 is that it provides a
procedure based on a preprocessing by reindexing that systematically leads
to arrays whose number of PEs is bounded from above by the number of PEs
obtained from the best projection direction. We also have the following.

Theorem 1 We have NPE(D(n−1), λ) ≤ 1
|λtξ|

NPE(D(0), ξ)+
∑h=n−2

h=0 Θ(nlh)

for all vector ξ such that λtξ 6= 0 where nlh denotes the number of distinct
〈eh+1, ξ

(h)〉-slices of D(h).

Proof. From the definition of ξ(h), h ∈ {0, 1, 2, . . . , n − 2}, there
exists an integer number lh such that et

nξ(h) = et
nξ(h+1)lh. Denote Ah the
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array obtained by projecting domain D(h) along direction ξ(h). In this array,
all PE works only once over |λtξ(h)| = |et

nξ(h)| successive activation dates.
Now, let’s examine the working dates of PEs belonging to a same line of
direction eh+1 denoted Lh. All the tasks allocated to Lh belong to a same
〈ξ(h), eh+1〉-slice=〈eh+1, ξ

(h+1)〉-slice of D(h). The computation dates d1 and
d2 of two arbitrary tasks belonging to a same 〈eh+1, ξ

(h+1)〉-slice are such that
(d1− d2) mod |et

nξ
(h+1)| = 0. This implies that there are |lh| activation dates

of Lh over |et
nξ(h)| successive activation dates of Ah as et

nξ(h) = et
nξ(h+1)lh. It

follows that all PE of Lh works only once over |lh| successive activation dates
of Lh. Thus by applying the clustering technique to any line of PEs parallel
to vector eh+1, the space complexity of array Ah is reduced by a factor of
|lh|, i.e.,

NPE(ξ(h), D(h), eh+1) =
1

|lh|
NPE(ξ(h), D(h)) + Θ(nlh)

On the other hand from proposition 10 we get

NPE(ξ(h+1), D(h+1)) ≤ NPE(ξ(h), D(h), eh+1)

for all h ∈ {0, 2, 3, . . . , n− 2}. This implies that

NPE(ξ(h+1), D(h+1)) ≤
1

|lh|
NPE(ξ(h), D(h)) + Θ(nlh)

for all h ∈ {0, 1, 3, . . . , n− 2}. It follows that

NPE(ξ(h+1), D(h+1)) ≤
1

|l0l1l2 . . . lh|
NPE(ξ(0), D(0)) +

i=h
∑

i=0

Θ(nli)

for all h ∈ {0, 1, 3, . . . , n− 2}. Moreover for h = n− 2 we have |l0l1l2 . . . lh| =
|λtξ|. Hence the result. 2

A straightforward consequence of theorem 1 is that the new allocation
method can be applied so as to systematically derive arrays whose space
complexities are bounded from above by the lowest space complexities that
the grouping method can give. Compared to other allocation methods, we
are not aware of any similar strong comparison result between the instruction
shift method and the grouping method, nor between the partition method
and the grouping method. No similar strong comparison result exists even
between the instruction shift method and the projection method, nor between
partition method and the projection method.
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7 Closed form of the allocation function

We now investigate the implementation of the new allocation method in
tools for (semi) automatic derivation of VLSI arrays. In particular, we con-
sider the MMAlpha [22] system based on the functional language Alpha [28].
Alpha programs are almost identical to the systems of equations that we have
used in this paper. Each equation is defined over a possibly parameterized
index domain that is a finite union of polyhedra [32]. Such domains con-
stitute an abstract data type with closure under certain operations, notably
intersection, union, and image by bijective affine index transformations. Such
an index transformation is valid if every point of the index domain to which
it is applied has a unique integral image. In particular, any unimodular
transformation is always a valid index transformation.

In order to implement our method in MMAlpha, we only need to show
how to implement allocation function (3) since it is the only function that
may not correspond to an obvious unimodular transformation. The function,
repeated below for convenience, is a piecewise affine function, but specified
implicitly.

Ph,D(z) = (et
1z, . . . , e

t
h−1z, et

h(z − zs,D), et
h+1z, . . . , e

t
nz)t

Let s denote either eh or −eh, where eh is the h−th vector of the canonical
basis. To simplify the presentation, we assume that D = Zn⋂P where P
is a single convex1 polytope, Qn defined by an irredundant set of integral
inequalities {z ∈ Qn | Az ≤ b}. Therefore, any row Ai of matrix A defines
a facet Fi = {z ∈ P | Aiz − bi = 0} [41] of D. Among the Fi’s, we choose
those that satisfy Ais > 0. We assume without loss of generality that these
facets are F1, F2, F3, . . . , Fr for some integer r. Proposition 11 shows that
such facets exist.

Proposition 11 There exists an integer i such that Ais > 0.

Proof. Suppose that Ais ≤ 0 for all i. This implies that Ai(z +αs) ≤ bi

for any positive rational number α and for any z belonging to P . This implies
that z + αs ∈ P , which in turn implies that s is a ray of P . This contradicts
the fact that P is bounded. 2

1In the general case, we would require a preprocessing step to first decompose the

domain into a number of sub-domains.
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Step 1: We first partition D into dense sub-domains [32]. Let σi(z) denote
the projection of point z on the supporting hyperplane of facet Fi along
direction s. Let Pi = {z ∈ P | σi(z) ∈ Fi} and Di = Zn ⋂Pi for i =
1, 2, . . . , r. The following proposition provides us a constructive method to
determine the dense sub-domains.

Proposition 12 We have

P =
k=r
⋃

k=1

Pk

and each Pk is a convex polytope. As a result, D =
k=r
⋃

k=1

Dk.

Proof. Let z ∈ P . Denote αz = min{ bk−Akz
Aks

| k = 1, 2, . . . , r}, i.e.,

αz = bi−Aiz
Ais

for some i. We have A(z + αzs) ≤ b and Ai(z + αzs) − bi = 0.
This implies that σi(z) = z + αzs ∈ Fi, which in turn implies that z ∈ Pi.

Now consider two points z1 and z2 of a given Pi. Let z3 ∈ Seg(z1, z2).
Because P is convex we have z3 ∈ P . In addition, a simple linear alge-
braic argument shows that σi(z3) ∈ Seg(σi(z1), σi(z2)), and this implies that
σi(z3) ∈ Fi because Fi is convex. Thus z3 ∈ Pi, and Seg(z1, z2) ⊆ Pi. There-
fore Pi is convex. 2

Step 2: Next, we partition the Di’s into sparse periodic domains.

Proposition 13 Let z be a point of Pi and let α be a positive rational num-
ber. We have:

z + αs ∈ Pi iff Ai(z + αs) ≤ bi (9)

Proof. Let us assume that Ai(z + αs) ≤ bi. From the definition of σi

we get σi(z) = z +
(

bi−Ais
Ais

)

s. This implies that z + αs ∈ Seg(z, σi(z)) as

0 ≤ α ≤ bi−Aiz
Ais

. We have Seg(z, σi(z)) ⊆ P as domain P is convex along
direction s. Thus z + αs ∈ P . In addition, σi(z + αs) = σi(z). Therefore
z + αs ∈ Pi. The necessary condition is easy to check. 2

Let z ∈ Di. Clearly, zs,D = z + αs for some integer number α. We
have Ai(z + αs) ≤ bi. From proposition 13, we get Ai(z + (α + 1)s) > bi as
zs,D + s /∈ Pi. Thus
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bi − Aiz

Ais
− 1 < α ≤

bi − Aiz

Ais
.

This implies that

α =

⌊

bi − Aiz

Ais

⌋

,

which means that

α =
bi − Aiz − j

Ais
(10)

where (bi − Aiz) mod Ais = j.
Stemming from (10), we consider a partition Di,j = {z ∈ Di | (bi −

Aiz) mod Ais = j}, j = 0, 1, 2, . . . , Ais− 1 of Di. Di,j is a sparse domain
if j 6= 1.

Step 3: Analytic expression of the re-indexing function Ph,D

Assuming that z ∈ Di,j, we have from (3)

Ph,D(z) =

(

et
1z, . . . , et

h−1z,
et

hs

Ais
(−bi + Aiz + j), et

h+1z, . . . , et
nz

)t

(11)

For h = 1 this is equivalent to

Ph,D(z) =

(

1 Bi

0n−1 In−1

)

z +

(

(j−bi)(et

1s)

Ais

0n−1

)

where 0n−1 is the null vector of Zn−1, In−1 the identity matrix of order n− 1
and

et
1s

Ais
Ai =

(

1 Bi

)

.

This shows that the restriction of Ph,D to each Di,j corresponds to an affine
transformation. If Ais = 1 we have Di = Di,0 and the restriction of Ph,D to
Di corresponds to an unimodular transformation. If Ais > 1 then the Di,j’s
are sparse periodic domains [32] and the reindexing Ph,D corresponds to a
piecewise affine transformation. In this particular case, the resulting array
may correspond to a piecewise regular array [43].
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8 Conclusion

In this paper, we have formally introduced a new allocation method that
is based on a preprocessing by reindexing that leads to a new index domain
that permits to systematically derive arrays in which the number of PEs
is minimized along a number of directions. In addition, the preprocessing
permits to improve the potential parallelism by projection of the initial do-
main. It also permits to allocate input/output nodes to PEs located at the
border of the array. This can permit to eliminate eventual additional steps
for data loading and result unloading that may force a slowdown of the algo-
rithm [16, 11, 12, 13, 14]. This new allocation approach is simple, suitable for
software tools and could be included in a language manipulating recurrence
equations like the ALPHA language.
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regular arrays, Thèse de Doctorat, Department of Computer Science, Uni-
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