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4J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech
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Abstract

Having in mind their potential quantum physical applications, we classify all geometric
hyperplanes of the near hexagon that is a direct product of a line of size three and the
generalized quadrangle of order two. There are eight different kinds of them, totalling to
1023 = 210 − 1 = |PG(9, 2)|, and they form two distinct families intricately related with
the points and lines of the Veldkamp space of the quadrangle in question.
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1 Introduction

There are quite a few finite geometries/point-line incidence structures that have recently
been recognized to play an important role in physics. Amongst them, the one that ac-
quired a particular footing is GQ(2, 2) — the unique generalized quadrangle of order two.
On its own, the GQ(2, 2) is the underlying framework for fully expressing the commutation
relations between the elements of a two-qubit generalized Pauli group in geometrical terms
[1, 2]. As a subgeometry/subconfiguration, the GQ(2, 2) underpins a particular kind of
truncation of the E6(6)-symmetric black hole/black string entropy formula in five dimen-
sions [3]. In both the cases, remarkably, it is also the geometric hyperplanes of the GQ(2, 2)
that enter the game in an essential way.

In view of these developments, it is likely that there are other physically relevant finite
geometries incorporating GQ(2, 2)s. In this paper we shall have a look at the most promis-
ing candidate of them: the slim dense near hexagon that originates as a direct product of
a projective line over the field of two elements and a GQ(2, 2), together with the totality
of its geometric hyperplanes.

1



2 Generalized Quadrangles, Near Polygons, Geometric

Hyperplanes and Veldkamp Spaces

We start with a brief overview of the essential theory and nomenclature; for more details,
the interested reader is referred to [4]–[6].

A finite generalized quadrangle of order (s, t), usually denoted GQ(s, t), is an incidence
structure S = (P, B, I), where P and B are disjoint (non-empty) sets of objects, called
respectively points and lines, and where I is a symmetric point-line incidence relation
satisfying the following axioms [4]: (i) each point is incident with 1 + t lines (t ≥ 1) and
two distinct points are incident with at most one line; (ii) each line is incident with 1 + s

points (s ≥ 1) and two distinct lines are incident with at most one point; and (iii) if x is a
point and L is a line not incident with x, then there exists a unique pair (y, M) ∈ P × B

for which xIM IyIL; from these axioms it readily follows that |P | = (s + 1)(st + 1) and
|B| = (t + 1)(st + 1). It is obvious that there exists a point-line duality with respect to
which each of the axioms is self-dual. If s = t, S is said to have order s. The generalized
quadrangle of order (s, 1) is called a grid and that of order (1, t) a dual grid. A generalized
quadrangle with both s > 1 and t > 1 is called thick. Given two points x and y of S

one writes x ∼ y and says that x and y are collinear if there exists a line L of S incident
with both. For any x ∈ P denote x⊥ = {y ∈ P |y ∼ x} and note that x ∈ x⊥; obviously,
x⊥ = 1 + s + st. A triple of pairwise non-collinear points of S is called a triad; given
any triad T , a point of T⊥ is called its center and we say that T is acentric, centric or
unicentric according as |T⊥| is, respectively, zero, non-zero or one. An ovoid of a generalized
quadrangle S is a set of points of S such that each line of S is incident with exactly one
point of the set; hence, each ovoid contains st + 1 points.

A near polygon (see, e. g., [5] and references therein) is a connected partial linear space
S = (P, B, I), I ⊂ P ×L, with the property that given a point x and a line L, there always
exists a unique point on L nearest to x. (Here distances are measured in the point graph,
or collinearity graph of the geometry.) If the maximal distance between two points of S is
equal to d, then the near polygon is called a near 2d-gon. A near 0-gon is a point and a
near 2-gon is a line; the class of near quadrangles coincides with the class of generalized
quadrangles. A nonempty set X of points in a near polygon S = (P, B, I) is called a
subspace if every line meeting X in at least two points is completely contained in X . A
subspace X is called geodetically closed if every point on a shortest path between two
points of X is contained in X . Given a subspace X , one can define a sub-geometry SX

of S by considering only those points and lines of S which are completely contained in X .
If X is geodetically closed, then SX clearly is a sub-near-polygon of S. If a geodetically
closed sub-near-polygon SX is a non-degenerate generalized quadrangle, then X (and often
also SX) is called a quad.

A near polygon is said to have order (s, t) if every line is incident with precisely s + 1
points and if every point is on precisely t + 1 lines. If s = t, then the near polygon is said
to have order s. A near polygon is called dense if every line is incident with at least three
points and if every two points at distance two have at least two common neighbours. A near
polygon is called slim if every line is incident with precisely three points. It is well known
(see, e. g., [4]) that there are, up to isomorphism, three slim non-degenerate generalized
quadrangles. The (3 × 3)-grid is the unique generalized quadrangle GQ(2, 1). The unique
generalized quadrangle GQ(2, 2), often dubbed the doily, is the generalized quadrangle of
the points and those lines of PG(3, 2) which are totally isotropic with respect to a given
symplectic polarity. The points and lines lying on a given nonsingular elliptic quadric of
PG(5, 2) define the unique generalized quadrangle GQ(2, 4). Any slim dense near polygon
contains quads, which are necessarily isomorphic to either GQ(2, 1), GQ(2, 2) or GQ(2, 4).

The incidence structure S is called the direct product of S1 and S2, and denoted by
S1 × S2(≃ S2 × S1), if: i) P := P1 × P2; ii) B := (P1 × B2) ∪ (B1 × P2); and iii) the point
(x, y) of S is incident with the line (z, L) ∈ P1 ×B2 if and only if x = z and yI2L and with
the line (M, w) ∈ B1 × P2 if and only if xI1M and y = w.
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Next, a geometric hyperplane of a partial linear space is a proper subspace meeting
each line (necessarily in a unique point or the whole line). For S = GQ(s, t), it is well
known that H is one of the following three kinds: (i) the perp-set of a point x, x⊥; (ii) a
(full) subquadrangle of order (s, t′), t′ < t; and (iii) an ovoid. The set of points at non-
maximal distance from a given point x of a dense near polygon S is a hyperplane of S,
usually called the singular hyperplane with deepest point x. Given a hyperplane H of S,
one defines the order of any of its points as the number of lines through the point which
are fully contained in H ; a point of a hyperplane/sub-configuration is called deep if all the
lines passing through it are fully contained in the hyperplane/sub-configuration. If H is a
hyperplane of a dense near polygon S and if Q is a quad of S, then precisely one of the
following possibilities occurs: (1) Q ⊆ H ; (2) Q ∩ H = x⊥ ∩ Q for some point x of Q; (3)
Q∩H is a sub-quadrangle of Q; and (4) Q∩H is an ovoid of Q. If case (1), case (2), case
(3), or case (4) occurs, then Q is called, respectively, deep, singular, sub-quadrangular, or
ovoidal with respect to H .

Finally, we shall introduce the notion of the Veldkamp space of a point-line incidence
geometry S(P, B, I), V(S) [6], which is the space in which (i) a point is a geometric hyper-
plane of S and (ii) a line is the collection H ′H ′′ of all geometric hyperplanes H of S such
that H ′ ∩ H ′′ = H ′ ∩ H = H ′′ ∩ H or H = H ′, H ′′, where H ′ and H ′′ are distinct points
of V(S).

3 L3 ×GQ(2, 2) and its Geometric Hyperplanes

3.1 L3 ×GQ(2, 2)

The unique point-line incidence geometry L3 ×GQ(2, 2) is obtained by taking three isomor-
phic copies of the generalized quadrangle GQ(2, 2) and joining the corresponding points
to form lines of size 3. It is a slim dense near hexagon having 45 points and 60 lines,
with four lines through a point. The number of common neighbours of two points x, y at
distance two, that is |x⊥ ∩ y⊥|, is either two or three. L3 ×GQ(2, 2) contains 15 GQ(2, 1)-
quads (henceforth simply grid-quads) and three GQ(2, 2)-quads (doily-quads). The lines of
L3 ×GQ(2, 2) are of two distinct types according as they lie in three grid-quads (type one)
or a grid-quad and a doily-quad (type two); there are 15 lines of type one and 45 of type
two, with each point being on one line of type one and three lines of type two. Also, each
grid-quad features both kinds of lines in equal proportion, whereas a doily-quad consists
solely of type-two lines. This near hexagon can be universally embedded in PG(9, 2) and its
full group of automorphisms is isomorphic to S6×S3 [7, 8]. The structure of L3 ×GQ(2, 2)
is fully encoded in the properties of its geometric hyperplanes, which we will now focus on.

3.2 The Veldkamp Space of GQ(2, 2)

To this end, we shall first recall basic properties of the Veldkamp space of the doily,
V(GQ(2, 2)) ≃ PG(4, 2), whose in-depth description can be found in [9]. The 31 points
of V(GQ(2, 2)), that is the 31 distinct copies of geometric hyperplanes of GQ(2, 2), are of
three distinct types: 15 perp-sets, 10 grids and five ovoids — as illustrated in Figure 1.
The 155 lines of V(GQ(2, 2)), each being of the form {H ′, H ′′, H ′∆H ′′} where H ′ and H ′′

are two distinct geometric hyperplanes and H ′∆H ′′ is the complement of their symmetric
difference, split into five distinct types as summarized in Table 1 and depicted in Figure 2.

3.3 Geometric Hyperplanes of L3 ×GQ(2, 2)

Employing a “cubic pentagon” pictorial representation of L3 ×GQ(2, 2) as shown in Figure
3, it was quite a straightforward task to find out all the types of geometric hyperplanes
of this geometry and to ascertain their basic characteristics, as summarized in Table 2.
There are eight different kinds of them and they form two distinct families according as
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Figure 1: The three kinds of geometric hyperplanes of GQ(2, 2). The points of the quad-
rangle are represented by small circles and its lines are illustrated by the straight segments
as well as by the segments of circles; note that not every intersection of two segments
counts for a point of the quadrangle. The upper panel shows perp-sets (yellow bullets), the
middle panel grids (red bullets) and the bottom panel ovoids (blue bullets). Each picture
— except that in the bottom right-hand corner — stands for five different hyperplanes,
the four other being obtained from it by its successive rotations through 72 degrees around
the center of the pentagon.

Table 1: A succinct summary of the properties of the five different types of the lines of
V(GQ(2, 2)) in terms of the core (i. e., the set of points common to all the three hyperplanes
forming a line) and the types of geometric hyperplanes featured by a generic line of a given
type. The last column gives the total number of lines per each type.

Type Core Perps Ovoids Grids #
I Pentad 1 0 2 45
II Collinear Triple 3 0 0 15
III Tricentric Triad 3 0 0 20
IV Unicentric Triad 1 1 1 60
V Single Point 1 2 0 15

they contain a deep doily-quad (H1 to H3) or not (H4 to H8). The fine structure of the
hyperplanes of the first family is given in Figure 4, that of the second family in Figure
5. Comparing Figure 4 with Figure 1 and Figure 5 with Figure 2 one readily recognizes
that this two-family split has a natural explanation in terms of the points and lines of
V(GQ(2, 2)).

A hyperplane of the first family is always of such form that the two doily-quads which
are not deep must not only contain the hyperplanes of the same type, but these must be
joined by the same type-one lines. Since each of the three doily-quads can be deep, this

4



Figure 2: The five different kinds of the lines of V(GQ(2, 2)), each being uniquely deter-
mined by the properties of its core (black bullets).

Figure 3: A pictorial representation of L3 ×GQ(2, 2). In this representation the three
doily-quads lie in three parallel planes and the 15 lines of type one, “tying” them together
and lying fully in grid-quads, “penetrate” these planes perpendicularly.
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Table 2: An overview of the types of geometric hyperplanes of the near hexagon
L3 ×GQ(2, 2). For each type (Tp) of a hyperplane we give the number of points (Pt)
and lines (Ln), followed by the cardinalities of the points of a given order, cardinalities of
deep (dp), singular (sg), ovoidal (ov) and subquadrangular (sq) quads of both kinds, and,
finally, the total number of its copies (Cd).

# of Points of Order # of Grid-Quads # of Doily-Quads
Tp Pt Ln 0 1 2 3 4 dp sg ov sq dp sg ov sq Cd

H1 33 36 0 0 0 24 9 6 9 0 – 1 0 0 2 30
H2 29 28 0 0 12 8 9 3 12 0 – 1 2 0 0 45
H3 25 20 0 10 0 10 5 0 15 0 – 1 0 2 0 18
H4 25 20 0 2 12 10 1 2 9 4 – 0 1 0 2 270
H5 21 12 0 12 6 0 3 1 6 8 – 0 3 0 0 90
H6 21 12 0 9 9 3 0 0 9 6 – 0 3 0 0 120
H7 21 12 2 6 9 4 0 0 9 6 – 0 1 1 1 360
H8 17 4 8 8 0 0 1 0 3 12 – 0 1 2 0 90

implies |H1| = 3 × (the number of grids in GQ(2, 2)) = 30, |H2| = 3 × (the number of perp-
sets in GQ(2, 2)) = 45 and |H3| = 3 × (the number of ovoids in GQ(2, 2)) = 18; altogether,
|H1| + |H2| + |H3| = 3 × (the number of Veldkamp points in the V(GQ(2, 2))) = 93. On
the other hand, there is an obvious one-to-one correspondence between the five types of
hyperplanes of the second family and the five types of Veldkamp lines of V(GQ(2, 2)).

In the following, let H be a hyperplane that contains no deep doily-quad. If the inter-
section of H with two of the three doilies is given, the intersection of H with the third is
immediate. We use this to construct the remaining five types of geometric hyperplanes of
L3× GQ(2, 2). It is straightforward to check supposing the contrary, that every hyperplane
has a singular doily. So, let one doily be singular with deep point P . If a second doily is
singular, too, with deep point Q, there arise two different kinds of hyperplanes according
to whether the distance of P and Q is 2 or 3. If it is 2, the third doily is singular, too,
with deep point the third point of the unique triad in the grid-quad through P and Q;
this is type H5. The number of type H5 hyperplanes is 15 × 6 = 90. If it is 3 and P ′ and
Q′ are the points of the third doily collinear with P , respectively Q, then no grid-quad is
deep, the third doily is singular with deep point the third point of the triad through P ′

and Q′; this is type H6 and it holds |H6| = 15 × 8 = 120. Now suppose a second doily is
subquadrangular. If the point P ′ of the subquadrangular doily collinear with P belongs to
the subquadrangle, the third doily is subquadrangular, too; this is type H4 which consists
of 3 × 15 × 3 × 2 = 270 hyperplanes where 3 possibilities for the singular quad with 15
different deep points exist, where three choices of subquadrangles through P ′ exist and
where two choices remain for subquadrangles in the third doily. If P ′ does not belong to
the subquadrangle, the third doily is ovoidal; this is type H7 with 3 × 10 × 2 × 6 = 360
members where there are 3 choices for the subquadrangular doily with 10 possibilities for
the choice of the grid, then 2 choices for the singular doily with 6 choices for the deep
point of its singular hyperplane. If a second doily is ovoidal, we are back in type H7 if the
deep point of the singular quad is not collinear with any point of the ovoid of the ovoidal
doily. If it is collinear with a point of the ovoid, then the third doily is ovoidal, too; this
is type H8 with 3 choices for the two ovoidal doilies, 6 choices for the ovoid in one of the
two ovoidal doilies and 5 possibilities for the deep point of the singular doily, altogether
3 × 6 × 5 = 90. All in all, |H4| + |H5| + . . . + |H8| = 6 × (the number of Veldkamp lines

in the V(GQ(2, 2))) = 930.
The cardinalities of hyperplanes thus sum up to 93+930 = 1023 = 210−1 = |PG(9, 2)|.

This also proves that we have enumerated all hyperplanes since any slim dense near hexagon
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Figure 4: A diagrammatic illustration of the composition of the three kinds of geometric
hyperplanes of the first family (see Table 2). In each row, the first picture of the four shows
a compact, cubic pentagonal view of the hyperplane; to avoid its too crowded appearance,
only those type-one lines are drawn that belong to the hyperplane in question. In an
alternative view furnished by the remaining three pictures, instead of being stacked on top
of each other, the doily-quads are put side by side to make finer traits of the structure more
discernible. The points and lines of a hyperplane are boldfaced. If the point is encircled,
then the type-one line passing through it is fully contained in the hyperplane; the doubled
(type-two) lines are those which belong to a deep grid-quad. Note that singular hyperplanes
are those of type H2.
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Figure 5: A diagrammatic illustration of the structure of the five kinds of geometric hy-
perplanes of the second family with the same symbols/notation as in the preceding figure.
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is universally embeddable into a projective space over GF(2) and the geometric hyperplanes
are precisely those arising from its universal embedding [8], and that in our particular case
— as already mentioned in Section 3.1 — the universal embedding is indeed into PG(9, 2)
[7].

Table 2 reveals a number of interesting facts. First, one readily observes that |Hi| =
1 (mod 4) for any i as per their point cardinality.1 Next, there is no hyperplane featuring
points of every order. Similarly, there is no hyperplane endowed with all the four kinds
of doily-quads. On the other hand, there are two distinct types of hyperplane (H4 and
H5) containing all the three kinds of grid-quads and every single hyperplane contains a
singular grid-quad. Interestingly, there are a couple of types of hyperplane devoid of deep
points (H6 and H7) and the same number of those having isolated points (that is, points
of order zero — H7 and H8). Furthermore, there are as many as three distinct line types
having identical point/line cardinality (H5 to H7). It is also worth mentioning that the
complement of an H1 is a pair of dual grids, GQ(1, 2)s — a distant relative of Schläfli’s
double-six.

We conclude this section with the following observation. Picking up a grid in one of the
three doilies, there is a unique associated slim dense near hexagon of type L3 ×GQ(2, 1)
≃ L×3

3 sitting inside L3 ×GQ(2, 2). This (smallest slim dense) near hexagon features five
distinct kinds of geometric hyperplanes [11] and viewing it as embedded in L3 ×GQ(2, 2),
it can easily be demonstrated that each of them arises from a hyperplane of L3 ×GQ(2, 2);
in fact, one can prove a stricter condition, namely that every hyperplane of L3 ×GQ(2, 1)
originates from one of the hyperplanes of type H2, H5 or H6, because the totality of these
span a subspace of PG(9, 2) isomorphic to PG(7, 2), and so to V(L×3

3 ) as well (see [11]). We
also note in passing that since two distinct copies of a grid in a doily always meet in a pair
of concurrent lines (see Figure 2, top row), two different L3 ×GQ(2, 1)’s of L3 ×GQ(2, 2)
share a pair of concurrent grid-quads.

4 Conclusion

We have given a detailed description of all different types of geometric hyperplanes of
the point-line incidence geometry L3 ×GQ(2, 2), which is the smallest slim dense near
hexagon featuring two distinct kinds of quads — namely grid-quads and doily-quads. The
hyperplanes, whose total number amounts to 1023 = 210 − 1 = |PG(9, 2)|, are of eight
types and they form two distinct families according as they contain a deep doily-quad or
not. This two-family split was demonstrated to have a natural explanation in terms of the
points and lines of the Veldkamp space of the generalized quadrangle of order two. Each
hyperplane’s type is uniquely characterized by the following string of parameters (Table
2): the number of points and lines of a representative, followed by the cardinalities of
the points of a given order, cardinalities of deep, singular, ovoidal and subquadrangular
quads of both kinds, and, finally, by the total number of its copies. Several interesting
combinatorial properties were also explicitly mentioned.

We believe that L3 ×GQ(2, 2), like GQ(2, 2) itself, will play a prominent role in the
context of both quantum information theory and entropy formulas of some yet unknown
stringy black hole/ring solutions. It is especially the former domain when we surmise that
the combinatorics and geometry of L3 ×GQ(2, 2) could mimic a whole class of three two-

qubit systems entangled in a particular way and lead to the notion of a “twisted” Mermin
square. In this respect, a particularly attractive task to address is as follows. It is a well
established fact [1, 2] that the structure of GQ(2, 2) underlies the commutation relations
between the 15 operators of two-qubit Pauli group, and that grids sitting in it generate
Mermin magic squares. Now, suppose that we label all the three doilies of L3 ×GQ(2, 2) by
two-qubit Pauli matrices. We start from the configuration in which the labels on each line

1In this respect our near hexagon resembles the dual of the split Cayley hexagon of order two, where
|Hi| = 3 (mod 4), any i [10].
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of type one are the same. Then we keep labels of one of the doilies fixed and let the group
S6 act on the labels/points of the other two. An interesting question emerges: how many
Mermin squares can we get among grid-quads and how are they coupled to each other? (In
our starting position there are none.) L3 ×GQ(2, 2) may even turn out to be of relevance
for three-qubits as its automorphism group, S6 ×S3, is isomorphic to a maximal subgroup
of W ′(E7) that can be given an “entangled” three-qubit representation [12]. Explorations
along these lines are already well under way and will be dealt with in a separate paper.

From a mathematical point of view, as the very next step it is desirable to find the
stabilizer group for a representative of each hyperplane’s type and the corresponding
point orbit sizes. Then, we shall embark on examining all the types of Veldkamp lines
of V(L3 ×GQ(2, 2)); since, obviously, V(L3 ×GQ(2, 2)) ≃ PG(9, 2), this will be a much
more demanding task because PG(9, 2) is endowed with as many as 174 251 lines.
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