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Finite-time blowup and existence of global positive solutions of a semi-linear SPDE

Introduction

Let D ⊂ IR d be a bounded domain with smooth boundary ∂D. We consider a semilinear equation of the form du(t, x) = (∆u(t, x) + G(u(t, x))) dt + κu(t, x) dW t , t > 0, u(0, x) = f (x) ≧ 0, x ∈ D,

(1) u(t, x) = 0, t ≧ 0, x ∈ ∂D, where G : IR → IR + is locally Lipschitz and satisfies

G(z) ≥ Cz 1+β for all z > 0, (2) 
C, β and κ are given positive numbers, {W t , t ≥ 0} is a standard one-dimensional Brownian motion on a stochastic basis (Ω, F , (F t , t ≧ 0), P ), and f : D → IR + is of class C 2 and not identically zero. We assume [START_REF] Bergé | On the behaviour of solutions to certain parabolic SPDE's driven by Wiener processes[END_REF] in sections 1 to 3 only; it is replaced by [START_REF] Krylov | An analytic approach to SPDEs[END_REF] in section 4. Since we do not assume G to be Lipschitz, blowup of the solution (1) in finite time can not be excluded, and our aim is to give estimates of the probability of blowup and conditions for the existence of a global solution of (1). A (random) time T is called blowup time of u if 

In the classical (deterministic) case where G(z) = z 1+β and κ = 0, it is well-known that for a nonnegative f ∈ L 2 (D), the condition

D f (x)ψ(x) dx > λ 1/β 1 (3) 
already implies finite time blowup of [START_REF] Bandle | Blow up behaviour of a stochastic partial differential equation of reaction-diffusion type[END_REF]. Here λ 1 > 0 is the first eigenvalue of the Laplacian on D, and ψ the corresponding eigenfunction normalized so that ψ L 1 = 1.

The existence, uniqueness and trajectorial regularity of global solutions of parabolic equations perturbed by a time-homogenous white noise have been investigated by different methods (see e.g. Chueshov and Vuillermot [START_REF] Chueshov | Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case[END_REF], Denis et al. [START_REF] Denis | L p estimates for the uniform norm of solutions of quasilinear SPDE's[END_REF], Gyöngy and Rovira [START_REF] Gyöngy | On L p -solutions of semilinear stochastic partial differential equations[END_REF], Krylov [START_REF] Krylov | An analytic approach to SPDEs[END_REF], Lototski and Rozovskii [START_REF] Lototsky | Stochastic differential equations: a Wiener chaos approach[END_REF], Mikulevicius and Pragarauskas [START_REF] Mikulevicius | On Cauchy-Dirichlet problem for parabolic quasilinear SPDEs[END_REF]). Several types of solutions have been proposed (see especially the last cited reference for strong solutions), and the regularity results show that the solution is much smoother in the space variable than for equations perturbed by space-dependent white noise.

Let us recall the notions of weak and mild solutions of (1) we are going to use here. Let τ ≤ +∞ be a stopping time. A continous F t -adapted random field u = {u(t, x), t ≥ 0, x ∈ D} is a weak solution of (1) on the interval ]0, τ [ provided that, for every ϕ ∈ C 2 (D) vanishing on ∂D, there holds 

D u(t, x)ϕ(x) dx = D f (x)ϕ(x) dx + t 0 D [u(s, x)∆ϕ(x) + G(u(s, x))ϕ(x)] dx
u(t, x) = S t f (x)+ t 0 [S t-r (G(u(r, •))(x) dr + κS t-r (u(r, •))(x)
dW r ] P -a.s. and x-a.e. in D for all t ∈]0, τ [ (see e.g. [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], Chapter IV). We refer to [START_REF] Gyöngy | On L p -solutions of semilinear stochastic partial differential equations[END_REF] for background on existence of weak and mild solutions, and for their equivalence under local Lipschitz conditions on G.

Let us note that the results in [START_REF] Gyöngy | On L p -solutions of semilinear stochastic partial differential equations[END_REF] hold for a more general class of second order differential operators which includes the Laplacian as a special case. The positivity of the solution of (1) follows from comparison theorems (see e.g. Bergé et al. [START_REF] Bergé | On the behaviour of solutions to certain parabolic SPDE's driven by Wiener processes[END_REF] or Manthey and Zausinger [START_REF] Manthey | Stochastic evolution equations in L 2ν ρ[END_REF]).

Our aim in this communication is to study the blowup behaviour of u by means of a related random partial differential equation (see (4) below). In section 3 we describe the blowup behaviour of the solution v of this random partial differential equation in terms of the first eigenvalue and the first eigenfunction of the Laplace operator on D. This is done by solving explicitly a stochastic equation in the time variable which is obtained from the weak form of (4). The solution of this differential equation can be written in terms of integrals of exponential Brownian motion with drift. The results of Dufresne [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] and Yor [START_REF] Yor | Exponential functionals of Brownian motion and related processes[END_REF] on the law of these integrals easily imply estimates for the probability of existence of a global solution, or of blowup in finite time of u and v. In section 4 sufficient conditions for v to be a global solution are given in terms of the semigroup of the Laplace operator using recent sharp results on its transition density. These conditions show in particular that the initial condition f has to be small enough in order to avoid for a given G the blowup of v, and that the presence of noise may help to prevent blowup. The results of section 4 can be used to investigate the blowup behavior of u by means of conditions ( 2) and [START_REF] Krylov | An analytic approach to SPDEs[END_REF].

A related random partial differential equation

In this section we investigate the random partial differential equation

∂v ∂t (t, x) = ∆v(t, x) - κ 2 2 v(t, x) + e -κWt G(e κWt v(t, x)), t > 0, x ∈ D, v(0, x) = f (x), x ∈ D, (4) v(t, x) = 0, x ∈ ∂D.
This equation is understood trajectorywise and classical results for partial differential equations of parabolic type apply to show existence, uniqueness and positivity of a solution up to eventual blowup (see e.g. Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] Chapter 7, Theorem 9).

Proposition 1 Let u be a weak solution of (1). Then the function v defined by v(t, x) = e -κWt u(t, x), t ≥ 0, x ∈ D.

solves (4).

Remark Proposition 1 implies in particular that (1) possesses a strong local solution.

Proof. Recall that Itô's formula states that {e -κWt , t ≥ 0} is the semimartingale given by

e -κWt = 1 -κ t 0 e -κWs dW s + κ 2 2 t 0 e -κWs ds.
Let us write u(t, ϕ) ≡ D u(t, x)ϕ(x) dx. Then a weak solution of (1) can be written as

u(t, ϕ) = u(0, ϕ) + t 0 u(s, ∆ϕ) ds + t 0 G(u)(s, ϕ) ds + κ t 0 u(s, ϕ) dW s .
Therefore, for ϕ fixed, {u(t, ϕ)1 [0,τ [ (t), t ≥ 0} is again a semimartingale. By applying the integration by parts formula (see e.g. Klebaner [START_REF] Klebaner | Introduction to stochastic calculus with applications[END_REF], Ch. 8) we get

v(t, ϕ) := D v(t, x)ϕ(x) dx = v(0, ϕ) + t 0 e -κWs du(s, ϕ) + t 0 u(s, ϕ) -κe -κWs dW s + κ 2 2 e -κWs ds + e -κW• , u(•, ϕ) (t),
where the quadratic variation is given by

e -κW• , u(•, ϕ) (t) = - t 0 κ 2 e -κWs u(s, ϕ) ds, t ≥ 0. Therefore, v(t, ϕ) = v(0, ϕ) + t 0 e -κWs (u(s, ∆ϕ) + G(u)(s, ϕ)) ds + κ t 0 e -κWs u(s, ϕ) dW s -κ t 0 e -κWs u(s, ϕ) dW s + κ 2 2 t 0 e -κWs u(s, ϕ) ds -κ 2 t 0 e -κWs u(s, ϕ) ds = v(0, ϕ) + t 0 v(s, ∆ϕ) + e -κWs G(e κW• v)(s, ϕ) - κ 2 2 v(s, ϕ) ds.
Moreover, by self-adjointness of the Laplacian, and the fact that

ϕ(x) = 0 for x ∈ ∂D, v(s, ∆ϕ) = D v(s, x)∆ϕ(x), dx = D ∆v(s, x)ϕ(x) dx = ∆v(s, ϕ).
3 An estimate of the probability of blowup Moreover,

v(s, ∆ψ) = -λ 1 v(s, ψ), (5) 
and, due to [START_REF] Bergé | On the behaviour of solutions to certain parabolic SPDE's driven by Wiener processes[END_REF],

D e -κWs G(e κWs v(s, x))ψ(x) dx ≥ e κβWs D v(s, x) 1+β ψ(x) dx. (6) 
By Jensen's inequality

D v(s, x) 1+β ψ(x) dx ≥ D v(s, x)ψ(x) dx 1+β = v(s, ψ) 1+β , (7) 
and therefore

d dt v(t, ψ) ≥ -λ 1 + κ 2 2 v(t, ψ) + e κβWt v(t, ψ) 1+β .
Hence v(t, ψ) ≥ I(t) for all t ≥ 0, where I(•) solves

d dt I(t) = -λ 1 + κ 2 2 I(t) + e κβWs I(t) 1+β , I(0) = v(0, ψ),
and is given by

I(t) = e -(λ 1 +κ 2 /2)t v(0, ψ) -β -β t 0 e -(λ 1 +κ 2 /2)βs+κβWs ds -1 β , 0 ≤ t < τ , with τ := inf t ≥ 0 t 0 e -(λ 1 +κ 2 /2)βs+κβWs ds ≥ 1 β v(0, ψ) -β . (8) 
It follows that I exhibits finite time blowup on the event [τ < ∞]. Since I ≦ v(•, ψ), τ is an upper bound for the blow-up time of v(•, ψ), and therefore for the blowup times of v and u.

Remark 2

The same formula for the blow-up time of a stochastic differential equation, containing a stochastic integral with respect to W , has been obtained in Bandle et al [START_REF] Bandle | Blow up behaviour of a stochastic partial differential equation of reaction-diffusion type[END_REF].

The argument based on the first eigenvalue (and the corresponding eigenfunction) of the Laplace operator on D is applied there directly to u, and leads to a stochastic differential inequality for u(t, ψ). The associated stochastic differential equation can again be solved explicitly by means of the Itô calculus, and the same formula as above is obtained for the blowup time of the solution of this equation. Both approaches are therefore equivalent, but the approach in [START_REF] Bandle | Blow up behaviour of a stochastic partial differential equation of reaction-diffusion type[END_REF] requires a more complicated comparison theorem for stochastic differential inequalities.

Let us now give an estimate for the probability of blowup in finite time of v. From (8),

P [τ = +∞] = P t 0 exp(-(λ 1 + κ 2 /2)βs + κβW s ) ds < 1 β v(0, ψ) -β for all t > 0 = P ∞ 0 exp(-(λ 1 + κ 2 /2)βs + κβW s ) ds ≦ 1 β v(0, ψ) -β (9) = P ∞ 0 exp(2 βW (µ) s ) ds ≦ 1 β v(0, ψ) -β ,
where W (µ) s := µs + W s , µ := -(λ 1 + κ 2 /2)/κ, and β := κβ/2. Setting µ = µ/ β we get

P [τ = +∞] = P 4 κ 2 β 2 ∞ 0 exp(2W (b µ) s ) ds ≦ 1 β v(0, ψ) -β . ( 10 
)
It follows from [START_REF] Yor | Exponential functionals of Brownian motion and related processes[END_REF] (Chapter 6, Corollary 1.2) that

∞ 0 exp(2W (b µ) s ) ds = 1 2Z -b µ
in distribution, where Z -b µ is a random variable with law Γ(µ), i.e. P (Z -b µ ∈ dy) = 1 Γ(-b µ) e -y y -b µ-1 dy. We get therefore (see also formula 1.10.4(1) in [START_REF] Borodin | Paavo Handbook of Brownian motion-facts and formulae[END_REF])

P [τ = +∞] = 1 β v(0,ψ) -β 0 h(y)dy, where h(y) = (κ 2 β 2 y/2) (2λ 1 +κ 2 )/κ 2 β yΓ((2λ 1 + κ 2 )/(κ 2 β)) exp - 2 κ 2 β 2 y .
In this way we have proved the following Proposition 3 The probability that the solution of (1) blows up in finite time is lower bounded by

+∞ 1 β v(0,ψ) -β h(y) dy.
Remark 4.1 Notice that formula 1.10.4(1) in [START_REF] Borodin | Paavo Handbook of Brownian motion-facts and formulae[END_REF] expresses the probability density function of t 0 exp(-(λ 1 + κ 2 /2)βs + κβW s ) ds in terms of the Kummer functions for µ < 2.

Remark 4.2 By putting κ = 0 we get v = u and, moreover, in ( 9) we obtain that

P [τ = +∞] = 0 or 1 according to D f (x)ψ(x) dx > λ 1/β 1 or D f (x)ψ(x) dx ≤ λ 1/β 1 , which is a probabilistic counterpart to (3).

Non explosion of v

We consider again equation ( 4), but we assume now that κ = 0 and that G : IR + → IR + satisfies G(0) = 0, G(z)/z is increasing and G(z) ≤ Λz 1+β for all z > 0, [START_REF] Krylov | An analytic approach to SPDEs[END_REF] where Λ and β are certain positive numbers. Let {S t , t ≥ 0} again denote the semigroup of d-dimensional Brownian motion killed at the boundary of D. Recall that Equation ( 4) can be re-written as

v(t, x) = e -κ 2 t/2 S t f (x) + t 0 e -κ 2 (t-r)/2 S t-r e -κWr G e κWr v(r, •) (x) dr. (12) 
We give now a sufficient condition for the existence of a global solution of (4).

Theorem 5 Assume that f satisfies

Λβ ∞ 0 e κβWr e -κ 2 r/2 S r f β ∞ dr < 1. ( 13 
)
Then Equation ( 4) admits a global solution v(t, x) that satisfies

0 ≤ v(t, x) ≤ e -κ 2 t/2 S t f (x) 1 -Λβ t 0 e κβWr e -κ 2 r/2 S r f β ∞ dr 1 β , t ≥ 0. (14) 
Proof. Defining

B(t) = 1 -Λβ t 0 e κβWr e -κ 2 r/2 S r f β ∞ dr -1 β , t ≥ 0, we get B(0) = 1 and dB dt (t) = Λe κβWt e -κ 2 t/2 S t f β ∞ B 1+β (t),
which implies

B(t) = 1 + Λ t 0 e κβWr e -κ 2 r/2 S r f β ∞ B 1+β (r) dr. Suppose now that (t, x) → V t (x) is a nonnegative continuous function such that V t (•) ∈ C 0 (D), t ≥ 0, and 
e -κ 2 t/2 S t f (x) ≤ V t (x) ≤ B(t)e -κ 2 t/2 S t f (x), t ≥ 0, x ∈ D. (15) 
Let

R(V )(t, x) := e -κ 2 t/2 S t f (x) + t 0 e -κWr e -κ 2 (t-r)/2 S t-r G(e κWr V r (•)) (x) dr.
Then,

R(V )(t, x) = e -κ 2 t/2 S t f (x) + t 0 e -κWr e -κ 2 (t-r)/2 S t-r G(e κWr V r (•)) V r (•) V r (•) (x) dr ≤ e -κ 2 t/2 S t f (x) + t 0 e -κWr e -κ 2 (t-r)/2 S t-r G(e κWr B(r) e -κ 2 r/2 S r f ∞ ) B(r) e -κ 2 r/2 S r f ∞ V (r) (x) dr ≤ e -κ 2 t/2 S t f (x) + Λ t 0 e κβWr B 1+β (r) e -κ 2 r/2 S r f β ∞ e -κ 2 (t-r)/2 S t-r (e -κ 2 r/2 S r f )(x) dr = e -κ 2 t/2 S t f (x) 1 + Λ t 0 e κβWr B 1+β (r) e -κ 2 r/2 S r f β ∞ dr = e -κ 2 t/2 S t f (x)B(t), (16) 
where to obtain the first inequality we used the rightmost inequality in [START_REF] Ouhabaz | Sharp estimates for intrinsic ultracontractivity on C 1,α -domains[END_REF] and the fact that G(z)/z is increasing, and to obtain the second inequality we used [START_REF] Krylov | An analytic approach to SPDEs[END_REF]. Consequently,

e -κ 2 t/2 S t f (x) ≤ R(V )(t, x) ≤ B(t)e -κ 2 t/2 S t f (x), t ≥ 0, x ∈ D. Let v 0 t (x) := e -κ 2 t/2 S t f (x) and v n+1 t (x) = R(v n )(t, x), n = 0, 1, 2, . . . .
Letting n → ∞ yields, for t ≥ 0 and x ∈ D,

0 ≤ v(t, x) = lim n→∞ v n t (x) ≤ B(t)e -κ 2 t/2 S t f (x) ≤ e -κ 2 t/2 S t f (x) 1 -Λβ t 0 e κβWr e -κ 2 r/2 S r f β ∞ dr 1/β .
Hence, v(t, x) is a global solution of ( 12) due to the monotone convergence theorem.

Remark. If we modify ( 4) and ( 12) by replacing G(e κWr v(t, x)) by G(v(t, x)), then a global positive solution still exists for all f small enough, even if the inequality in [START_REF] Krylov | An analytic approach to SPDEs[END_REF] holds only for z ∈ (0, C * ), where C * is some positive constant. In fact, if f satisfies

f ∞ ≤ C * 1 -Λβ ∞ 0 e -κWr e -κ 2 r/2 S r f β ∞ dr 1 β , (17) 
then Theorem 5 still holds if we replace the factor e κβWr in ( 13) and ( 14) by the factor e -κWr . We only have to verify that assuming z ∈ (0, C * ) in [START_REF] Krylov | An analytic approach to SPDEs[END_REF] already implies the second inequality in ( 16):

e -κ 2 t/2 S t f ∞ ≤ f ∞ ≤ C * 1 -Λβ t 0 e -κWr e -κ 2 r/2 S r f β ∞ dr 1 β = C * B * (t) for all t ≧ 0,
where

B * (t) = 1 -Λβ t 0 e -κWr e -κ 2 r/2 S r f β ∞ dr -1 β . This yields B * (t) e -κ 2 t/2 S t f ∞ ∈ (0, C * ) (18) 
for all t ≥ 0, since f ≡ 0.

Let us now proceed to derive a sufficient condition for [START_REF] Manthey | Stochastic evolution equations in L 2ν ρ[END_REF] in terms of the transition kernels {p t (x, y), t > 0} of {S t , t ≥ 0} and the first eigenvalue λ 1 and corresponding eigenfunction ψ. We recall the following sharp bounds for {p t (x, y), t > 0}, which we borrowed from Ouhabaz and Wang [START_REF] Ouhabaz | Sharp estimates for intrinsic ultracontractivity on C 1,α -domains[END_REF]. Theorem 6 Let ψ > 0 be the first Dirichlet eigenfunction on a connected bounded C 1,αdomain in IR d , where α > 0 and d ≥ 1, and let p t (x, y) be the corresponding Dirichlet heat kernel. There exists a constant c > 0 such that, for any t > 0, max 1,

1 c t -(d+2)/2 ≤ e λ 1 t sup x,y p t (x, y) ψ(x)ψ(y) ≤ 1 + c(1 ∧ t) -(d+2)/2 e -(λ 2 -λ 1 )t ,
where λ 2 > λ 1 are the first two Dirichlet eigenvalues. This estimate is sharp for both short and long times.

The above theorem is useful in verifying condition [START_REF] Manthey | Stochastic evolution equations in L 2ν ρ[END_REF]. Indeed, let the initial value f ≥ 0 be chosen so that f (y) ≤ KS η ψ(y), y ∈ D,

where η ≥ 1 is fixed and K > 0 is a sufficiently small constant to be specified later on. Therefore S t f ≤ KS t+η ψ, and for any t > 0,

S t f (x) ≤ K D p t+η (x, y)ψ(y) dy = K D e λ 1 (t+η) p t+η (x, y) ψ(x)ψ(y) e -λ 1 (t+η) ψ(x)ψ 2 (y) dy ≤ K sup x∈D ψ(x) 2 D
e λ 1 (t+η) sup

x,y∈D p t+η (x, y) ψ(x)ψ(y) e -λ 1 (t+η) ψ(y) dy 

≤ K sup x∈D ψ(x) 2 D 1 + c(1 ∧ (t + η)) -(d+2)/2 e -(λ 2 -λ 1 )(t+η) e -λ 1
Notice that condition [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF] is satisfied if K in (19) is sufficiently small.

We have proved the following Theorem 7 Let G satisfy [START_REF] Krylov | An analytic approach to SPDEs[END_REF], and let D be a connected, bounded C 1,α -domain in R d , where α > 0. If ( 19) and (20) hold for some η > 0 and K > 0, then the solution of Equation ( 12) is global.

Remarks. 1) The integral on the left of (20) coincides with the corresponding integral in sections 2 and 3. The same type of bounds as in Section 3 can therefore be applied to estimate the probability of existence of a global positive solution. By means of the law of the iterated logarithm for W we see from (20) that the presence of a noise may help to prevent blowup in finite time.

2) If G(z) = Λz 1+β , the results of this section can be applied to the solution u of equation (1) since v(t, x) = e -κWt u(t, x), t ≥ 0, x ∈ D.

  tրT sup x∈D |u(t, x)| = +∞ Pa.s. on {T < +∞}.

e

  Without loss of generality, let us assume that C = 1 in (2). Let ψ be the eigenfunction corresponding to the first eigenvalue λ 1 of the Laplacian on D, normalized by D ψ(x) dx = 1. It is well-known that ψ is strictly positive on D. Due to Proposition 1 we have that v(t, ψ) = v(0, ψ) + -κWs G(e κW. v)(s, ψ) ds.

2 e 2 e

 22 -λ 1 (t+η) + ce -λ 2 (t+η) D ψ(y) dy ≤ K(1 + c)e -λ 1 η sup x∈D ψ(x) -λ 1 t D ψ(y) dy, which is independent of x. Since the function (t, x) → S t f (x) is uniformly bounded in x, condition (13) is satisfied provided that Λβ K(1 + c)e -λ 1 η sup x∈D
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