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ON THE DISTORTION OF TWIN BUILDING LATTICESPIERRE-EMMANUEL CAPRACE* AND BERTRAND RÉMY**Abstrat. We show that twin building latties are undistorted in their ambient group;equivalently, the orbit map of the lattie to the produt of the assoiated twin buildings isa quasi-isometri embedding. As a onsequene, we provide an estimate of the quasi-�atrank of these latties, whih implies that there are in�nitely many quasi-isometry lasses of�nitely presented simple groups. In an appendix, we desribe how non-distortion of lattiesis related to the integrability of the strutural oyle.1. Introdution1.1. Distortion. Let G be a loally ompat group and Γ < G be a �nitely generated lattie.Then G is ompatly generated [CM08, Lemma 2.12℄ and therefore both G and Γ admit wordmetris, whih are well de�ned up to quasi-isometry. It is a natural question to understandthe relation between the word metri of Γ and the restrition to Γ of the word metri on G.In order to address this issue, let us �x some ompat generating set Σ̂ in G and denote by
‖g‖bΣ the word length of an element g ∈ G with respet to Σ̂; we denote by dbΣ the assoiatedword metri. Similarly, we �x a �nite generating set Σ for Γ and denote by |γ|Σ the wordlength of an element γ ∈ Γ with respet to Σ, and by dΣ the assoiated word metri. Thelattie Γ is alled undistorted in G if dΣ is quasi-isometri to the restrition of dΣ to Γ. Theondition amounts to saying that the inlusion of Γ in G de�nes a quasi-isometri embeddingfrom the metri spae (Γ, dΣ) to the metri spae (G, dbΣ).As is well-known, any oompat lattie is undistorted: this follows from the �var�MilnorLemma [BH99, Proposition I.8.19℄. The question of distortion thus entres around non-uniformlatties. The main result of [LMR01℄ is that if G is a produt of higher-rank semi-simple alge-brai groups over loal �elds (Arhimedean or not), then any lattie of G is undistorted. Thisrelies on the deep arithmetiity theorems due to Margulis in harateristi 0 and Venkatara-mana in positive harateristi, and on a detailed analysis of the distortion of unipotentsubgroups.Besides the higher-rank latties in semi-simple groups, a lass of non-uniform latties thathas attrated some attention in reent years are the so-alled Ka�Moody latties (see [Rém99℄or [CG99℄). A more general lass of latties is that of twin building latties [CR09℄: a twinbuilding lattie is an irreduible lattie Γ < G = G+ × G− in a produt of two groups G+and G− ating strongly transitively on (loally �nite) buildings X+ and X− respetively, andsuh that Γ preserves a twinning between X+ and X−. Reall that Γ is then �nitely generatedand that, in this general ontext, irreduible means that eah of the projetions of Γ to G±is dense.Date: July 20, 2009.Key words and phrases. Lattie, loally ompat group, Ka�Moody group, building, distortion.*Supported by the Fund for Sienti� Researh�F.N.R.S., Belgium.**Supported in part by ANR projet GGPG: Géométrie et Probabilités dans les Groupes.1



2 PIERRE-EMMANUEL CAPRACE AND BERTRAND RÉMYTheorem 1.1. Any twin building lattie Γ < G+ × G− is undistorted.It should be noted that eah individual group G+ or G− also possesses non-uniform latties,obtained for instane by interseting Γ with a ompat open subgroup (e.g., a faet stabilizer)of G− or G+, respetively. Other non-uniform latties have been onstruted by R. Gramlihand B. Mühlherr [GM℄. We emphasize that, beyond the a�ne ase (i.e. when G+ is a semi-simple group over a loal funtion �eld), a non-uni�orm lattie in a single irreduible fator
G+ (or G−) should be expeted to be automatially distorted (see Setion 3.3 below).1.2. Quasi-isometry lasses. Non-distortion of a lattie Γ in G relates the intrinsi geometryof Γ to the geometry of G. In the ase of twin building latties, the latter geometry is (quasi-isometrially) equivalent to the geometry of the produt building X+ × X− on whih G atsoompatly. Non-distortion is espeially relevant when studying quasi-isometri rigidity of Γ(whih is still an open problem). As a onsequene of Theorem 1.1, we an estimate a quasi-isometri invariant of a twin building lattie Γ for X+ × X−, namely the maximal dimensionof quasi-isometrially embedded �at subspaes into (Γ, dΣ). This rank is bounded from belowby the maximal dimension of an isometrially embedded �at in X± and from above by twiethe same quantity (3.4); furthermore, thanks to D. Krammer's thesis [Kra09℄, this metri rankof X± an be omputed onretely by means of the Coxeter diagram of the Weyl group of
X±. This enables us to draw the following group-theoreti onsequene.Corollary 1.2. There exist in�nitely many pairwise non-quasi-isometri �nitely presentedsimple groups.This orollary may also be dedued from the work of J. Dymara and Th. Shik [DS07℄,whih gives an estimate of another quasi-isometry invariant for twin building latties, namelythe asymptoti dimension.Any �nite simple group is of ourse quasi-isometri to the trivial group. Moreover any�nitely presented simple group onstruted by M. Burger and Sh. Mozes [BM01℄ is quasi-isometri to the produt of free groups F2 ×F2; this is due to [Pap95℄ and to the fat that thelatter groups are onstruted as suitable (torsion-free) uniform latties in produts of trees.Furthermore, onerning the �nitely presented simple groups onstruted by G. Higman andR. Thompson [Hig74℄, as well as their avatars in [Röv99℄, [Bri04℄, [Bro92℄ and [So92℄, we arenot aware of a lassi�ation up to quasi-isometry as of today. However some results seem toindiate that many of them might be quasi-isometri to one another, ompare e.g. [BCS01℄.1.3. Integrability of the strutural oyle. Non-distortion of latties is also relevant,in a more subtle way, to the theory of unitary representations and its appliations. Morepreisely, given a lattie Γ < G and a unitary Γ-representation π, one onsiders the indued
G-representation IndG

Γ π. For rigidity questions (at least) and also beause the struture of Gis riher than that of Γ, it is desirable that the oyles of Γ with oe�ients in π extend toontinuous oyles of G with oe�ients in IndG
Γ π. As explained in [Sha00, Proposition 1.11℄,a su�ient ondition for this to hold is that Γ be square-integrable. By de�nition, for any

p ∈ [1;∞) it is said that Γ (or more preisely the inlusion Γ < G) is p-integrable if there isa Borel fundamental domain Ω ⊂ G for G/Γ suh that, for eah g ∈ G, we have:
∫

Ω

(
|α(g, h)|Σ

)p
dh < ∞,



ON THE DISTORTION OF TWIN BUILDING LATTICES 3where α : G × Ω → Γ is the indution oyle de�ned by α(g, h) = γ ⇔ ghγ ∈ Ω. Mimik-ing Y. Shalom's arguments in [Sha00, �2℄, the following statement will be established in anappendix (with the above notation for generating sets).Theorem 1.3. Let G be a totally disonneted loally ompat group and let Γ < G be a�nitely generated lattie. Assume there is a Borel fundamental domain Ω ⊂ G for G/Γ suhthat for some p ∈ [1;∞) we have:
∫

Ω

(
‖h‖bΣ

)p
dh < ∞.Then, if Γ is non-distorted, it is p-integrableFor S-arithmeti groups, the existene of fundamental domains satisfying the ondition ofTheorem 1.3 is established in [Mar91, Proposition VIII.1.2℄ by means of Siegel domains. Aswe shall see, in the ase of twin building latties the ondition is straightforward to hekone a fundamental domain provided by the spei� ombinatorial properties of these lattiesis used. In partiular, ombining Theorem 1.1 with Theorem 1.3, we reover the main resultof [Rém05℄. We �nish by mentioning that square-integrability of latties is also relevant forlifting Γ-ations to G-ations in geometri situations whih are muh more general than unitaryations on Hilbert spaes, see [Mon06℄ and [GKM08℄.In order to always start from the same situation, in the above introdution we statedresults exlusively dealing with group inlusions. The proof of the non-distortion statementis of geometri nature: we prove that a twin building lattie is non-distorted in the produtof the two buildings with whih it is assoiated.This artile is written as follows. Setion 2 onsists of preliminaries. Setion 3 provides theaforementioned geometri proof of non-distortion and deals with the various metri notions ofranks that an be better understood thanks to non-distortion; we apply this to quasi-isometrylasses of �nitely generated simple groups. Appendix A is independent of the previous settingof twin building latties and establishes a relationship between non-distortion and square-integrability of latties in general totally disonneted loally ompat groups.2. Lifting galleries from the buildings to the lattieWe refer to [AB08℄ for basi de�nitions and fats on buildings and twinnings, and to [CR09℄for twin building latties. In this preliminary setion, we merely �x the notation and reallone basi fat on twin buildings whih plays a key role at di�erent plaes in this paper.Let X = (X+,X−) be a twin building with Weyl group W assoiated to a group Γ admittinga root group datum. In partiular Γ ats strongly transitively on X. We let dX+

(resp. dX−
)denote the ombinatorial distane on the set of hambers of X+ (resp. X−). We further denoteby S the anonial generating set of W and by Opp(X) the set of pairs of opposite hambers of

X. Throughout the paper, we �x a base pair (c+, c−) ∈ Opp(X) and all it the fundamentalopposite pair of hambers. Two opposite pairs (x+, x−) and (y+, y−) ∈ Opp(X) are alledadjaent if there is some s ∈ S suh that x+ is s-adjaent to y+ and x− is s-adjaent to y−.Reall that an opposite pair x ∈ Opp(X) is ontained in unique twin apartment, whih weshall denote by A(x) = A(x+, x−). The positive (resp. negative) half of A(x) is denoted by
A(x)+ (resp. A(x)−).The following key property is well known to the experts, and appear impliitly in the proofof Proposition 5 in [Tit89℄.



4 PIERRE-EMMANUEL CAPRACE AND BERTRAND RÉMYLemma 2.1. Let ε ∈ {+,−}. Given any gallery (x0, x1, . . . , xn) in Xε and any hamber
y0 ∈ X−ε opposite x0, there exists a gallery (y0, y1, . . . , yn) in X−ε suh that the following holdfor all i = 1, . . . , n:(i) (xi, yi) ∈ Opp(X);(ii) (xi, yi) is adjaent to (xi−1, yi−1);(iii) yi belongs to the twin apartment A(x0, y0).Proof. The desired gallery is onstruted indutively as follows. Let i > 0. If yi−1 is opposite
xi, then set yi = yi−1. Otherwise the odistane δ∗(xi, yi−1) is an element s ∈ S and there isa unique hamber in the twin apartment A(x0, y0) whih is s-adjaent to yi−1. De�ne yi tobe that hamber. It follows from the axioms of a twinning that yi is opposite xi. The gallery
(y0, y1, . . . , yn) onstruted in this way satis�es all the desired properties. �3. Non-distortion of twin building lattiesIn this setion, we show that a twin building lattie is non-distorted for its natural diag-onal ation on its two twinned building. The arguments are elementary and use the basiombinatorial geometry of buildings.3.1. An adapted generating system. Let Σ denote the subset of Γ onsisting of thoseelements γ suh that (γ.c+, γ.c−) is adjaent to (c+, c−), where (c+, c−) ∈ Opp(X) denotesthe fundamental opposite pair. Notie that

max{dX+
(c+, γ.c+); dX−

(c−, γ.c−)} 6 1for all γ ∈ S.The graph struture on Opp(X) indued by the aforementioned adjaeny relation is iso-morphi to the Cayley graph assoiated to the pair (Γ,Σ). Lemma 2.1 readily implies thatthis graph is onneted. Thus Σ is a generating set for Γ.Lemma 3.1. Let z = (z+, z−) be a pair of opposite hambers suh that
max{dX+

(c+, z+); dX−
(c−, z−)} 6 1.Then there exists σ ∈ Σ suh that σ.z = c.Proof. It is enough to deal with the ase when max{dX+

(c+, z+); dX−
(c−, z−)} = 1.If both z− and z+ belong to the twin apartment A = A− ⊔ A+, we an write z+ = w+.c+and z− = w−.c− for w± ∈ W uniquely de�ned by z±. Sine z− and z+ are assumedto be opposite, the odistane δ∗(z−, z+) is by de�nition equal to 1W . Sine the diago-nal Γ-ation on X− × X+ preserves odistanes, we dedue that w+ = w−. At last sine

max{dX+
(c+, z+); dX−

(c−, z−)} = 1, we dedue that there exists a anonial re�etion s ∈ Ssuh that w± = s and this re�etion is represented by an element ns ∈ StabΓ(A); we learlyhave ns ∈ Σ.We heneforth deal with the ase when at least one of the elements z± does not lie in A.Up to swithing signs, we may � and shall � assume that z− 6∈ A−. Let s be the anonialre�etion suh that z− is s-adjaent to c−. By the Moufang property, the group U−αs
atssimply transitively on the hambers 6= c− whih are s-adjaent to c−. By onjugating by anelement ns as above and sine z− 6= s.c− (beause z− 6∈ A−), we onlude that there exists

u+ ∈ Uαs
\ {1} suh that u+.z− = c−. Moreover u+ stabilizes c+ so the hamber u+.z+ isadjaent to c+.



ON THE DISTORTION OF TWIN BUILDING LATTICES 5If u+.z+ ∈ A+, then sine the Γ-ation preserves the odistane, the hamber u+.z+ ∈ A+is the unique hamber in A whih is opposite c− = u+.z−, namely c+; we are thus done inthis ase beause we learly have u+ ∈ Σ.We �nish by onsidering the ase when u+.z+ 6∈ A+. Then there exists some anonialre�etion t ∈ S suh that u+.z+ is t-adjaent to c+ and we an �nd similarly an element
u− ∈ U−αt

\ {1} suh that u−.(u+.z+) = c+. Setting σ = u−u+, we obtain an element of Γsending z± to c±. Sine the Γ-ation preserves eah adjaeny relation, hene the ombinatorialdistanes, we have σ ∈ Σ beause dX−
(c−, σ.c−) = dX−

(u−1
− .c−, u+.c−) = dX−

(c−, u+.c−) = 1and dX+
(c+, σ.c+) = dX+

(c+, u−.c+) = 1. �3.2. Proof of non-distortion. We de�ne the ombinatorial distane dX of the hamber setof X by
dX

(
(x+, x−), (y+, y−)

)
= dX+

(x+, y+) + dX−
(x−, y−).Sine the G-ation on X is oompat, it follows from the �var�Milnor lemma [BH99,Proposition I.8.19℄ that G is quasi-isometri to X. Hene Theorem 1.1 is an immediateonsequene of the following.Proposition 3.2. Let Γ < G = G+ × G− be a twin building lattie assoiated with the twinbuilding X = X+ × X− and let c = (c+, c−) ∈ X be a pair of opposite hambers. Then foreah γ ∈ Γ, we have:

1

2
dX(c, γ.c) 6 |γ|Σ 6 2dX(c, γ.c).Proof of Proposition 3.2. Writing γ ∈ Γ as a produt of |γ|Σ elements of the generating set Σand using triangle inequalities, we obtain

dX(c, γ.c) 6 2|γ|Σby the de�nition of dX and of Σ.It remains to prove the other inequality, whih says that Γ-orbits spread enough in X.We set x = (x+, x−) = γ−1.c. Let us pik a minimal gallery in X−, from x− to c−. Usingauxiliary positive hambers, one opposite for eah hamber of the latter gallery, a repeateduse of Lemma 3.1 shows that there exists γ− ∈ Γ suh that γ−.x− = c− and
(∗) |γ−|Σ 6 dX−

(c−, x−).Moreover as in the �rst paragraph, we have:
(∗∗) dX+

(c+, γ−.c+) 6 |γ−|Σ,by the de�nition of Σ. We dedue:
dX+

(c+, γ−.x+) 6 dX+
(c+, γ−.c+) + dX+

(γ−.c+, γ−.x+)
6 |γ−|Σ + dX+

(c+, x+)
6 dX−

(c−, x−) + dX+
(c+, x+),suessively by the triangle inequality, by (∗∗) and the fat the Γ-ation is isometri for theombinatorial distanes on hambers, and by (∗). Therefore, by de�nition of dX , we alreadyhave:

(∗ ∗ ∗) dX+
(c+, γ−.x+) 6 dX(c, x).We now onstrut a suitable element γ+ ∈ Γ suh that γ+.x+ = c+ and γ+.c− = c−. Let

γ−.x+ = z0, z1, . . . , zk = c+ be a minimal gallery in X+ from γ−.x+ to c+. Let A = A+ ⊔ A−



6 PIERRE-EMMANUEL CAPRACE AND BERTRAND RÉMYbe the twin apartment de�ned by the opposite pair c = (c+, c−). Let c0 = c−, c1, . . . , ck bethe gallery ontained in A+ and assoiated to z0, z1, . . . , zk = c+ as in Lemma 2.1. Notiethat, sine ck is opposite zk = c+ and sine c− is the unique hamber of A− opposite c+, wehave ck = c−.By Lemma 3.1, there exists σ1 ∈ Σ suh that σ1.zk−1 = zk and σ1.ck−1 = ck. Moreovera straightforward indutive argument yields for eah i ∈ {1, . . . , k} an element σi ∈ Σ suhthat σiσi−1 . . . σ1.zk−i = zk and σiσi−1 . . . σ1.ck−i = ck. Let now γ+ = σk . . . σ1, so that
|γ+|Σ 6 k = dX+

(c+, γ−.x+). By onstrution, we have γ+.(γ−.x+) = c+ and γ+.c− = c−,that is (γ+γ−).x = c. Therefore (γ+γ−γ−1).c = c and hene there is σ ∈ Σ suh that
γ = σγ+γ−. In fat, sine σ �xes c, it follows that σσ′ ∈ Σ for eah σ′ ∈ Σ. Upon replaing
σk by σσk, we may � and shall � assume that γ = γ+γ−. Therefore we have:

|γ|Σ 6 |γ+|Σ + |γ−|Σ
6 dX+

(c+, γ−.x+) + dX−
(c−, x−),the last inequality oming from |γ+|Σ 6 k = dX+

(c+, γ−.x+) and (∗) above. By (∗ ∗ ∗) andthe de�nition of dX , this �nally provides |γ|Σ 6 2 · dX(c, γ.c), whih �nishes the proof. �3.3. A remark on distortion of latties in rank one groups. Let G = G+ × G− beprodut of two totally disonneted loally ompat groups, let π± : G → G± denote theanonial projetions and let Γ < G be a �nitely generated lattie. Assume that π−(Γ) isoompat in G− (this is automati for example if Γ is irreduible). Let also U− < G− be aompat open subgroup and set Γ− = Γ ∩ (G+ × U−). Then the projetion of Γ− to G+ is alattie, and it is straightforward to verify that, if Γ− is �nitely generated and undistorted in
G−, then Γ is undistorted in G.We emphasize however that, in the ase of twin building latties, the lattie Γ− should not beexpeted to be undistorted in G− beyond the a�ne ase (whih orresponds to the lassial aseof arithmeti latties in semi-simple groups over loal funtion �elds). Indeed, a typial non-a�ne ase is when G+ and G− are Gromov hyperboli (equivalently, the Weyl group is Gromovhyperboli or, still equivalently, eah of the buildings X+ and X− are Gromov hyperboli).Then a non-uniform lattie in G+ is always distorted, as follows from the following.Lemma 3.3. Let G be a ompatly generated Gromov hyperboli totally disonneted loallyompat group and Γ < G be a �nitely generated lattie. Then the following assertions areequivalent.(i) Γ is a uniform lattie.(ii) Γ is undistorted in G.(iii) Γ is a Gromov hyperboli group.Proof. (i) ⇒ (ii) Follows from the �var�Milnor Lemma.(ii) ⇒ (iii) Follows from the well-known fat that a quasi-isometrially embedded subgroup ofa Gromov hyperboli group is quasi-onvex.(iii) ⇒ (i) By Serre's ovolume formula (see [Ser71℄) a non-uniform lattie in a totally dis-onneted loally ompat group possesses �nite subgroups of arbitrary large order, and antherefore not be Gromov hyperboli. �



ON THE DISTORTION OF TWIN BUILDING LATTICES 73.4. Various notions of rank. As a onsequene of Theorem 1.1, we obtain the followingestimate for one of the most basi quasi-isometri invariants attahed to a �nitely generatedgroup.Corollary 3.4. Let Γ < G = G+ × G− be a twin building lattie with �nite symmetrigenerating subset Σ. Let r denote the quasi-�at rank of (Γ, dΣ) and let R denote the �at rankof the building X±. Then we have: R 6 r 6 2R.Reall that by de�nition, the �at rank (resp. quasi-�at rank) of a metri spae isthe maximal rank of a �at (resp. quasi-�at), i.e. an isometrially embedded (resp. quasi-isometrially embedded) opy of R
n. By [CH09℄ the �at rank of a building oinides withthe maximal rank of a free Abelian subgroup of its Weyl group W , and this quantity may beomputed expliitly in terms of the Coxeter diagram of W , see [Kra09, Theorem 6.8.3℄.Proof of Corollary 3.4. Let us �rst prove r 6 2R. Let ϕ : (Rr, deucl) → (Γ, dΣ) denote aquasi-isometri embedding of a Eulidean spae in the Cayley graph of Γ. With the notationof Proposition 3.2, we know that the orbit map ωc : Γ → X+ × X− de�ned by γ 7→ γ.c isa quasi-isometri embedding. Therefore the omposed map ωc ◦ ϕ : (Rr, deucl) → X+ × X−is a quasi-isometri embedding. By [Kle99, Theorem C℄, this implies the existene of �ats ofdimension r in the produt of two spaes of �at rank R; hene r 6 2R.We now turn to the inequality R 6 r. As mentioned above, it is shown in [CH09℄ the �atrank of a building oinides with the �at rank of any of its apartment. Sine the standardtwin apartment is ontained in the image of Γ under the orbit map Γ → X+×X−, the desiredinequality follows diretly from the non-distortion of Γ established in Proposition 3.2. �Note that another notion of rank, relevant to G. Willis' general theory of totally dison-neted loally ompat groups, is disussed for the full automorphism groups G± = Aut(X±)in [BRW07℄, and turns out to oinide with the above notions of rank.Proof of Corollary 1.2. Sine there exist twin buildings of arbitrary �at rank (hoose for in-stane Dynkin diagrams suh that the assoiated Coxeter diagram ontains more and moreommuting Ã2-diagrams), we dedue that twin building latties fall into in�nitely many quasi-isometry lasses. This observation may be ombined with the simpliity theorem from [CR09℄to yield the desired result. �Appendix A. Integrability of undistorted lattiesIn this setion, we give up the spei� setting of twin building latties and provide a simpleondition ensuring that non-distorted �nitely generated latties in totally disonneted groupsare square-integrable.A.1. Shreier graphs and lattie ations. Let us a onsider a totally disonneted, loallyompat group G. As before we assume that G ontains a �nitely generated lattie, say

Γ, whih implies that G is ompatly generated [CM08, Lemma 2.12℄. By [Bou07, III.4.6,Corollaire 1℄, we know that G ontains a ompat open subgroup, say U . Let C be a ompatgenerating subset of G whih, upon replaing C by C ∪C−1, we may � and shall � assume tobe symmetri: C = C−1. We set Σ̂ = UCU , whih is still a symmetri generating set for G.We now introdue the Shreier graph g
U,bΣ, or simply g, assoiated to the above hoies.It is the graph whose set of verties is the disrete set G/U , whih is ountable whenever Gis σ-ompat. Two distint verties gU and hU are onneted by an edge if, and only if, we



8 PIERRE-EMMANUEL CAPRACE AND BERTRAND RÉMYhave g−1h ∈ Σ̂ [Mon01, �11.3℄. The natural G-ation on g by left translation is proper, andit is isometri whenever we endow g with the metri dg for whih all edges have length 1. Weview the identity lass 1GU as a base vertex of the graph g, whih we denote by v0.Denoting by ‖ · ‖bΣ the word metri on G attahed to Σ̂, we have: ‖g‖bΣ = dbΣ(1G, g) for any
g ∈ G. Notie that the generating set Σ̂ of G onsists by de�nition of those elements g ∈ Gsuh that dg(v0, g.v0) 6 1. In partiular, for all g, h ∈ G, we have:

dg(g.v0, h.v0) 6 dbΣ
(g, h) 6 dg(g.v0, h.v0) + 1.Moreover dg(g.v0, h.v0) = dbΣ(g, h) whenever g.v0 6= h.v0.In the present setting, using again [Bou07, III.4.6, Corollaire 1℄ and the disreteness of the

Γ-ation, we may � and shall � work with a Shreier graph g de�ned by a ompat opensubgroup U small enough to satisfy Γ ∩ U = {1G}. Thus we have:
StabΓ(v0) = Γ ∩ U = {1G}.Let V = {v0, v1, . . . } be a set of representatives for the Γ-orbits of verties. The element v0is the previous one, and for eah i > 0, we hoose vi in suh a way that dg(vi, v0) 6 dg(vi, γ.v0)for all γ ∈ Γ; this is possible beause the distane dg takes integral values. We set g0 = 1; foreah i > 0, sine the G-ation on the verties of g is transitive, there exists gi ∈ G suh that

gi.vi = v0. Thus for any g ∈ G there exists j > 0 suh that g.v0 ∈ Γ.vi, whih provides thepartition:
G =

⊔

j>0

Γg−1
j U.Furthermore, for eah i > 0, we hoose a Borel subset Vi ⊂ U whih is a setion of theright U -orbit map U → Γ \ (Γg−1

i U) de�ned by u 7→ Γg−1
i u. Setting Fi = g−1

i Vigi, we obtaina subset Fi of StabG(vi) suh that
F =

⊔

i>0

Fvi
g−1
iis a Borel fundamental domain for Γ in G. We normalize the Haar measure on G so that Fhas volume 1.A.2. Non-distortion implies square-integrability. We an now turn to the proof of thelatter impliation, more preisely Theorem 1.3.Proof of Theorem 1.3. Let g ∈ G and h ∈ F .On the one hand, by de�nition of the indution oyle α : G × F → Γ, the element

α(g, h) = γ ∈ Γ is de�ned by γhg ∈ F . Therefore, by onstrution of the fundamentaldomain F , there exist i > 0 and u ∈ Fi suh that γhg = ug−1
i . Let us apply the latterelement to the origin v0 of g. We obtain γhg.v0 = ug−1

i v0 = u.vi, and sine u ∈ Fi and
Fi ⊂ StabG(vi), this �nally provides γhg.v0 = vi. By this and the hoie of vi in its Γ-orbit,we have:

(⋆) dg(v0, vi) 6 dg(v0, γ
−1.vi) = dg(v0, hg.v0).On the other hand, let Σ be a �nite symmetri generating set for Γ and let dΣ be theassoiated word metri; we set |γ|Σ = dΣ(1G, γ) for γ ∈ Γ. Sine the metri spaes (G, dbΣ

)and (g, dg) are quasi-isometri (A.1), the assumption that Γ is undistorted is equivalent to the



ON THE DISTORTION OF TWIN BUILDING LATTICES 9fat that the Γ-orbit map Γ → g of v0 de�ned by γ 7→ γ.v0 is a quasi-isometri embedding. Inpartiular, there exist onstants L > 1 and M > 0 suh that
|γ|Σ 6 L · dg(v0, γ.v0) + Cfor all γ ∈ Γ. Moreover dg takes integer values and StabΓ(v0) = {1G}, so for all non-trivial

γ ∈ Γ we have: L.dg(v0, γ.v0) + C 6 (L + C).dg(v0, γ.v0). Therefore, upon replaing L by alarger onstant we may � and shall � assume that C = 0.Our aim is to evaluate |γ|Σ = |α(g, h)|Σ in terms of ‖g‖bΣ
and ‖h‖bΣ

. Note that |γ|Σ = |γ−1|Σsine Σ is symmetri.First, we dedue suessively from non-distortion, from the triangle inequality inserting
γ−1.vi, and from the fat that the Γ-ation on g is isometri, that:

|γ−1|Σ 6 L · dg(v0, γ
−1.v0)

6 L ·
(
dg(v0, γ

−1.vj) + dg(γ
−1.v0, γ

−1.vj)
)

6 L ·
(
dg(v0, γ

−1.vj) + dg(v0, vj)
)
.Then, we dedue suessively from (⋆), from the triangle inequality inserting h.v0, and fromthe fat that the G-ation on g is isometri, that:

|γ−1|Σ 6 2L · dg(v0, hg.v0)
6 2L ·

(
dg(v0, h.v0) + dg(h.v0, hg.v0)

)

6 2L ·
(
dg(v0, h.v0) + dg(v0, g.v0)

)
.Finally, by de�nition of the Shreier graph we dedue that |γ−1|Σ 6 2L ·

(
‖g‖bΣ + ‖h‖bΣ

).Reall that we want to prove that the funtion h 7→ |α(g, h)|Σ belongs to Lp(F ,dh). Sine
Vol(F ,dh) = 1, so does the onstant funtion h 7→ ‖g‖bΣ, therefore it remains to prove thelemma below. �Lemma A.1. The funtion h 7→ ‖h‖bΣ

belongs to Lp(F ,dh).Proof. Let h ∈ F . By onstrution of the fundamental domain F , there exist i > 0 and ui in
Fi, hene in StabG(vi), suh that h = uig

−1
i . This implies h.v0 = ui.(g

−1
i .v0) = ui.vi = vi, andalso (γh).v0 = γ.vi for eah γ ∈ Γ. Now the expliit form of the quasi-isometry equivalene(A.1) between (g, dg) and (G, dbΣ) implies:

dg(v0, h.v0) 6 ‖h‖bΣ 6 dg(v0, h.v0) + 1,and
dg(v0, (γh).v0) 6 ‖γh‖bΣ

6 dg(v0, (γh).v0) + 1.Moreover by the hoie of vi in its Γ-orbit, we have dg(v0, h.v0) 6 dg(v0, (γh).v0) for any
γ ∈ Γ. This allows us to put together the above two double inequalities, and to obtain (afterforgetting the extreme upper and lower bounds):

(†) ‖h‖bΣ 6 ‖γh‖bΣ + 1.for any h ∈ F and γ ∈ Γ.Reall that p ∈ [1;+∞) is an integer suh that we have a Borel fundamental domain Ω forwhih ∫

Ω

(
‖h‖bΣ

)p
dh < ∞. Sine G =

⊔
γ∈Γ γ−1Ω we an write:

∫

F

(
‖h‖bΣ

)p
dh =

∑

γ∈Γ

∫

F∩γ−1Ω

(
‖h‖bΣ

)p
dh.



10 PIERRE-EMMANUEL CAPRACE AND BERTRAND RÉMYBut in view of (†) and of the unimodularity of G (whih ontains a lattie), we have:
∫

F∩γ−1Ω

(
‖h‖bΣ

)p
dh 6

∫

F∩γ−1Ω

(
‖γh‖bΣ + 1

)p
dh =

∫

γF∩Ω

(
‖h‖bΣ + 1

)p
dh,whih �nally provides

∫

F

(
‖h‖bΣ

)p
dh 6

∑

γ∈Γ

∫

γF∩Ω

(
‖h‖bΣ

+ 1
)p

dh =

∫

Ω

(
‖h‖bΣ

+ 1
)p

dh.The onlusion follows beause F has Haar volume equal to 1 and beause by assumption
h 7→ ‖h‖bΣ belongs to Lp(Ω,dh). �A.3. p-integrability of twin building latties. Let us �nish by mentioning the followingfat whih, using Theorem 1.3, allows us to prove the main result of [Rém05℄ in a moreoneptual way.Lemma A.2. Let Γ be a twin building lattie and let G be the produt of the automorphismgroups of the assoiated buildings X±. Let W be the Weyl group and ∑

n>0 cntn be the growthseries of W with respet to its anonial set of generators S, i.e., cn = #{w ∈ W : ℓS(w) = n}.Let qmin denote the minimal order of root groups and assume that ∑
n>0 cnq−n

min < ∞. Then
Γ admits a fundamental domain F in G, with assoiated indution oyle αF , suh that
h 7→ αF (g, h) belongs to Lp(F ,dh) for any g ∈ G and any p ∈ [1;+∞).Proof. We freely use the notation of 3.1 and [Rém05℄. We denote by B± the stabilizer ofthe standard hamber c± in the losure Γ

Aut(X±). By [lo. it.℄ there is a fundamentaldomain F = D =
⊔

w∈W Dw suh that Vol(Dw,dh) 6 q
−ℓS(w)
min . If we hoose the ompatgenerating set Σ̂ =

⊔
(s−,s+)∈S×S B−s−B− × B+s+B+, we see that by de�nition of Dw,whih his ontained in B− × B+w, we have ‖h‖bΣ

6 ℓS(w) for any w ∈ W \ {1} and any
h ∈ Dw. Therefore for any p ∈ [1;+∞) we have: ∫

F

(
‖h‖bΣ

)p
dh 6

∑

n>0

npcnq−n
min, from whihthe onlusion follows. �
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