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Abstract. We define a Bowen-Series like map for every geometric presentation of a co-
compact surface group and we prove that the volume entropy of the presentation is the
topological entropy of this particular (circle) map. Finally we find the minimal volume en-
tropy among geometric presentations.
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1 Introduction

One proof of the Mostow rigidity theorem for hyperbolic manifolds [Mo] is based on the
following variational principle: the manifold admits a unique metric minimising the volume
entropy and the optimum is realized by the hyperbolic metric. This approach is due to
Besson-Courtois-Gallot (see [BCG] ) and gives some hope for other related area. One such
hope would be to obtain an ”optimal” metric or an ”optimal” presentation in geometric
group theory via a similar variational principle. The question of comparing volume entropy
in group theory makes sense for Gromov hyperbolic groups (see [Gr1] or [Sho] for definitions),
since it is well defined and depends on the presentation. The question would be to find a
group presentation minimising the volume entropy. An answer to that question is only known
for free groups where it is essentially trivial (see for instance [dlH]).

Recall that a finitely generated group Γ with a finite generating set X, or a finite presentation
P =< X; R >, defines a metric space (Γ, dX) with the word metric and |B(n)|X denotes the
cardinality of the ball of radius n centered at the identity in (Γ, dX).
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The growth properties of the function n 7→ |B(n)|X has been of crucial importance in
geometric group theory over the last decades. For instance it is fair to say that a new period
started after the fundamental work of M.Gromov classifying groups with polynomial growth
functions [Gro2]. Another important step was the discovery by R.Grigorchuck [Gri] of a
whole class of groups with growth function between polynomial and exponential.

The nature of the growth function (i.e. being polynomial, exponential or intermediate) is
a group or geometric property meaning that it does not depends upon the particular pre-
sentation (as a quasi-isometric invariant), but the numerical function depends in a highly
non trivial way on the group presentation. For instance, among the exponentially growing
groups the following numerical function :

hvol(Γ; P ) := limn→∞
1
n
. ln |B(n)|X ,

is called the volume entropy of the presentation P and the way this number varies with P is
absolutely not understood.

For hyperbolic groups, the question of finding and characterising minimum volume entropy
makes sense, but no general method is available to compute or evaluate the volume entropy
from the presentation, except for the obvious free group case.

In this paper we develop a method for computing explicitly the volume entropy among
the simplest presentations of the simplest (non free) hyperbolic groups, namely among the
geometric presentations of co-compact surface groups.

The restriction to geometric presentations is build in our approach. For these special pre-
sentations, for which the surface structure is obvious, we re-open a tool box that has been
created about 30 years ago by R.Bowen and C.Series [BS]. Their idea was to associate a
dynamical system, i.e. a N-action on S1 = ∂Γ, with all the nicest possible dynamical prop-
erties, to a very special group presentation and then to extract some informations about the
group from the dynamics.

Bowen and Series defined a Markov map on the circle for one specific presentation of Fuschian
groups, using a special geometric condition on the fundamental domain for the group action
in H

2. The first new contribution of this paper is to suppress all these geometric conditions
but keeping the restriction to geometric presentations. We call a presentation of a surface
group geometric if the two dimensional Cayley complex is planar. Generalisation of our
construction to arbitrary presentations is conceivable but in a highly non trivial way. The
first result, combining several parts of the paper, can be stated as:

Theorem 1.1 Let Γ be a co-compact hyperbolic surface group with a geometric presentation
P then there exists a Markov map ΦP : ∂Γ = S1 −→ ∂Γ that is orbit equivalent to the group
action. In addition this particular map satisfies :

Volume Entropy (Γ, P ) = Topological Entropy ΦP .

2



The definition of the map follows the general idea of Bowen an Series but the construction
is quite different, combinatorial here rather than geometric. The resulting combinatorial
dynamical properties of these maps enable to compare the symbolic description of the orbits
of the maps with the symbolic descriptions of the geodesics for the given presentation. This
comparison is the key step in proving the second part of the Theorem.
The Markov map being defined for any geometric presentation, it becomes possible to com-
pare the entropy between different geometric presentations. Furthermore the map is explicit
which implies that the computations of the entropy is possible, an exemple is presented in
section 5 for the genus two surface. The previous Theorem is the main step in proving the
following :

Theorem 1.2 The minimal volume entropy, among all geometric presentations of a co-
compact surface group is realised by the geometric presentations with the minimum number
of generators.

This result confirms the intuition that presentations with the minimum number of generators
are natural candidates to be the absolute minimum for surface groups. The conjecture is
still out of reach with the tools developed in this paper. Surprisingly, Bowen-Series like maps
have been defined in very few cases, Marc Bourdon in his thesis [Bou] and Andre Rocha,
also in his thesis [Ro] constructed such maps for some Kleinian groups using a condition for
the action of the group on H

3 that is the exact analogue of the condition used by Bowen and
Series for Fuschian group actions on H

2.

It is a great pleasure to thank Marc Bourdon and Peter Haissinsky for discussions and com-
ments on this work.

2 Some properties of geometric presentations.

In this section we gather some geometric and combinatorial properties of geometric pre-
sentations of surface groups that will be used throughout the paper. Recall that a group
presentation : P = 〈x1, ..., xn|R1, ..., Rk〉 is given by a set of generators and relations. The
relations are words Ri in the alphabet X = {x±1

1 , ..., x±1
n } that are cyclically reduced and are

defined modulo cyclic permutations and possibly inversions. The Cayley 2-complex Cay2(P )
is the two complex whose 1-skeleton is the Cayley graph Cay1(P ) and whose 2-cells are glued
to each closed path in the Cayley graph representing a relation. A presentation of a surface
group is called geometric if Cay2(P ) is planar. Equivalent definitions that are valid in higher
dimension are easy to state (see for instance [FP]).
In order to simplify the formulation we assume that the group Γ is not a triangular group
and has no elements of order two. In this section most of the statements are easy and are
given for completeness.
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Lemma 2.1 Let Γ be a hyperbolic co-compact surface group and P = 〈x1, ..., xn|R1, ..., Rk〉
a geometric presentation of Γ. Then :
1. The set of generators {x±1

1 , ..., x±1
n } admits a cyclic ordering that is compatible with the

group action.
2. There exists a planar fundamental domain △P , where each side Si of △P is dual to a
generator x±1

i .
3. Each generator xi appears exactly twice (with + or - exponent) on the set of relations
{R1, ..., Rk}.
4. Each pair of adjacent generators, according to the cyclic ordering (1.), belongs to exactly
one relation and defines one relation.

These results are classical and can be found, for instance in [FP].�

Let us focus on the boundary of the group. It is classical that a co-compact surface group,
for surfaces of genus larger than 2, is Gromov hyperbolic (see [Gr1] ) and the boundary ∂Γ
is homeomorphic to the circle S1. With a presentation P , the points ξ ∈ ∂Γ are described as
infinite geodesic rays starting at the identity, modulo the equivalence relation, among rays,
to be at uniform bounded distance from each other.

These rays are expressed as infinite word representatives, in the alphabet X = {x±1
1 , ..., x±1

n },
considered as infinite paths in the Cayley graph Cay1(P ). We denote {ξ} an infinite word
representative of a geodesic ray converging to ξ ∈ ∂Γ. These descriptions are non unique
and ξ ∈ ∂Γ have generally more than one geodesic writing. Symbolic description of geodesic
rays for surface groups goes back to at least Hedlung in the thirties [He34].

We discuss some properties that are particular to geometric presentations of surface groups.
The non uniqueness of the geodesic writing is reflected by the possible existence of bigons,
i.e. a pair of distinct geodesics {γ1, γ2} in Cay1(P ) with the same initial point and the same
terminal point. We will often use some classical abuse of notations in identifying the vertices
of the complexes Cay1(P ) and Cay2(P ) with the group elements and with some particular
writing as geodesic segments ending at those vertices.

Figure 1: A bigon in B(xi, xj) .
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Using the group action on the Cayley graph we consider bigons starting at the identity. We
denote B(xi, xj) the set of bigons that start at the identity by the generators xi and xj , for
instance γ1 = xi.w1 and γ2 = xj .w2, with xi 6= xj (see figure 1).

A bigon might be infinite, if the two geodesics {γ1, γ2} are geodesic rays, otherwise the
length of a bigon is the common length of the two geodesics {γ1, γ2}. We denote β(xi, xj)
a bigon in B(xi, xj) of minimal length. If necessary we will denote Bg(xi, xj) and βg(xi, xj)
the bigons based at the vertex g ∈ Cay1(P ). Observe that the length of a non trivial bigon
in a presentation is at least half the minimal length of a relation.

Lemma 2.2 Let P be a geometric presentation of a co-compact surface group Γ, then :
1. B(xi, xj) 6= ∅ only if xi and xj are two adjacent generators, with respect to the cyclic
ordering of Lemma 2.1.
2. For each adjacent generators (xi, xj) there exists a unique finite length minimal bigon
β(xi, xj).

Proof. 1. The proof of the first statement is by contradiction. Assume that B(xi, xj) 6= ∅
and (xi, xj) are not adjacent. If there is a bigon of finite length in B(xi, xj), then we consider
a minimal bigon β(xi, xj). The planarity and the minimality assumption imply that β(xi, xj)
is realised by two geodesics whose union is a closed embedded curve in the one skeleton of
Cay(2)(P ) and therefore bounds a compact topological disc D in the plane. Since xi and
xj are not adjacent, according to the planar cyclic ordering of Lemma 2.1, there is at least
another generator, say x′ between xi and xj . In the Cayley graph, there is a copy of all the
generators starting at the vertex denoted x′ by an abuse of notation. This vertex and the
edges starting at x′ are contained in D. In particular there is another pair of generators xi

and xj stating at x′ and the geodesics that start by these two edges have to meet, either
in the interior of D, or along the boundary i.e. along the paths defining β(xi, xj). This
intersection defines a bigon in Bx′(xi, xj) that is shorter than β(xi, xj), a contradiction.
For infinite bigons the argument is similar. The two geodesics {γ1, γ2} defining the bigon
are infinite rays converging towards the same point ξ ∈ ∂Γ. These two rays are disjointly
embedded in the plane and bound a disc D. They are at distance bounded by some δ from
each other since the two rays converge to same the point on ∂Γ. The disc D we consider
is such that the restriction of the sphere of radius N with D is a set of diameter bounded
by δ. We assumed that (xi, xj) are not adjacent hence, there is a copy of the pair (xi, xj)
at each vertex, at distance one from the identity, beween xi and xj and thus a copy of the
disc D within D. One contradiction comes from the fact that the previous argument implies
inductively that the number of vertices on the sphere of radius N within D grow at least as
3N , a contradiction with the uniform distance between {γ1} and {γ2}.

2. For the second statement, a pair of adjacent generators (xi, xj) defines a unique relation
R by Lemma 2.1. This means there is one relation, defined as a cyclic word in the alphabet
X, that contains the subword x−1

j .xi or x−1
i .xj .

If the length of the relation R is even :
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Then it can be written, up to a cyclic permutation and inversion, as w1.x
−1
j .xi.w2 = id, where

the length of w1 and w2 are the same. The two paths written γ1 = xj .w
−1
1 and γ2 = xi.w2

connect the identity to the same vertex z in the Cayley graph, where z is the element written
as xj .w

−1
1 or xi.w2.

Claim. With the above notations, the two paths γ1 and γ2 are geodesic segments for the
geometric presentation P .

This claim is proved by a contradiction similar to the proof of the first statement. If γ1 and
γ2 are not geodesics then there is shorter path γ connecting the identity to z. The path γ
has to start with a generator that is different from xi and xj. The planarity assumption
implies that γ1 lies between γ2 and γ or γ2 lies between γ1 and γ. In both cases we obtain a
contradiction by producing a shorter relation defined by xi and xj , by the argument of part
1., a contradiction with Lemma 2.1.
The pair of geodesics γ1 and γ2 defines a bigon in B(xi, xj) and this bigon is minimal
since otherwise there would be another (shorter) relation, defined by the pair (xi, xj), a
contradiction with Lemma 2.1.

If the length of R is odd:

The relation can be written as y.w′
1.x

−1
j .xi.w

′
2 = id, where the length of w′

1 and w′
2 are the

same. The two paths γ′
1 = xj .w

′
1
−1 and γ′

2 = xi.w
′
2 start at the identity and end at two

different points g1 and g2 that differs by the generator y. The two paths γ′
1 and γ′

2 are
geodesics by the above argument and y is called ”opposite” to the pair (xi, xj).
By Lemma 2.1 (item 3.) the generator y appears exactly twice in the set of relations, one
of them is R = R(1), the other relation R(2) contains the letter y or y−1. If the length of
R(2) is odd, then it can be written (modulo cyclic permutation and possibly inversion) as
w′′

1 .y
−1.w′′

2 = id , where w′′
1 and w′′

2 have the same length. The two paths γ′′
1 = xj .w

′
1
−1.w′′

1
−1

and γ′′
2 = xi.w

′
2.w”2 are two geodesics from the identity to the same point in Cay1(P ) and

define a bigon in B(xi, xj) that is of minimal length by the above arguments.

If the length of R(2) is even, then it can be written, modulo cyclic permutation and inversion,
as w′′′

1 .y−1.w′′′
2 .y1 = id, where w′′′

1 and w′′′
2 have the same length. The argument we use for

the generator y above is duplicated here for y1. We start an induction on the number of even
relations that appear in the following sequence and is uniquely defined from the adjacent
pair (xi, xj):

R(1) defines−→ opposite : {y} defines−→ R(2)( even )
defines−→ opposite : {y1} defines−→ R(3)( even )....

If an odd relation appears in the sequence R(n) then the induction stops because the previous
argument defines a unique bigon in B(xi, xj) that is minimal for the same reasons.
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If no odd relation appear in the sequence then, in particular, R(1) does not appear again.
This implies, in particular, that the generator y does not appear again in the sequence {yn}.
By induction y1, ..., yk never appear again. This is impossible since the number of generators
is finite. Uniqueness of the minimal bigon is part of the proof. �

Figure 2: A sequence of relations defining a bigon.

A consequence of Lemma 2.2 is :

Corollary 2.3 The boundary ∂Γ = S1 is covered by the cylinders (of length one) Cxi
,

xi ∈ X, where :

Cxi
=

{

ξ ∈ ∂Γ | ∃{w} a geodesic ray, representing ξ starting with xi, i.e. {w} = {xi.w
′}

}

.

In addition Cxi

⋂

Cxj
6= ∅ if and only if xi and xj are adjacent generators according to the

cyclic ordering of Lemma 2.1.

Proof. The cylinders cover the boundary since the xi’s generate the group. A point in ∂Γ
belongs to at most two cylinders by Lemma 2.2 (item 1.) and in this case the two cylinders
Cxi

and Cxj
are defined by two adjacent generators. Conversely the cylinders of two adjacent

generators do intersect because of the existence of finite bigons.�

Another consequence of the planarity assumption is:

Lemma 2.4 (connectedness) For a geometric presentation P of a co-compact surface
group Γ, if ξ ∈ ∂Γ and η ∈ ∂Γ are two points in the cylinder Cxi

then one of the two
intervals ]ξ, η[⊂ ∂Γ bounded by ξ and η is contained in Cxi

.

Proof. Since ξ and η belong to Cxi
there exists geodesic rays {ξ} and {η} starting with xi.

The two rays {ξ} and {η} have a common beginning and, since ξ and η are different, there
is a maximal vertex v in Cay1(P ) such that the two infinite paths {ξ}v and {η}v starting at
v are disjoint. The union γ = {ξ}v

⋃{η}v is a bi-infinite embedded path in D
2 converging

towards ξ and η. The path γ bounds two discs in D
2, one of them contains all the vertices at

distance one from the origin, except possibly the vertex corresponding to xi. The other disc,
denoted D({ξ}, {η}), contains one of the two intervals bounded by ξ and η on the boundary
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∂Γ. We denote ]ξ, η[ this interval. Let ρ ∈]ξ, η[, any geodesic ray {ρ} representing ρ is
contained in D({ξ}, {η}) at large distance from the origin. If {ρ} has a common initial path
with {ξ} or {η} then ρ ∈ Cxi

. Otherwise, by planarity, {ρ} has to intersect either {ξ} or
{η} at a vertex w and therefore defines a bigon in some B(xi, xj). In this case xj is adjacent
to xi by Lemma 2.2 and ρ has another geodesic ray representative {ρ}′ starting with xi. �

3 Special rays and a partition of the boundary.

In this section we define some special rays in the planar 2-complex Cay(2)(P ) giving rise to a
finite collection of points on the boundary ∂Γ that are uniquely defined from the presentation
P . From the previous section, each intersection of two cylinders Cxi

⋂

Cxj
is non empty only

if the two generators (xi, xj) are adjacent in X. Let us call such a pair of adjacent generators
a corner of the presentation P . The number of corners is even and the cyclic ordering
of the generators induces a cyclic ordering of the corners. For notational convenience, the
cyclic ordering of the generators is given by the labelling of the generators, in other words
xi+1 is the generator next to xi for the cyclic ordering, say on the right. By convention it
is understood that the notation (xi, xi+1) means that in the 2-complex, the edges denoted
xi and xi+1 are adjacent and oriented from the vertex. The parity of the number of corners
imply that at each vertex, the corner (xi, xi+1) defines a unique opposite corner denoted :

(*) (xi, xi+1)
opp := (xi+n mod[2n], xi+n+1 mod[2n]),

where n is the number of generators (see figure 3).

We construct a unique infinite sequence of corners, bigons and vertices from any given corner
(xi, xi+1) by the following process:

(i) Each corner, say at the identity, defines a unique minimal bigon β(xi, xi+1) based at id,
by Lemma 2.2, for which (xi, xi+1) is an extreme corner called the bottom corner.

(ii) The bigon β(xi, xi+1) has another extreme corner, called a top corner defined by the end
of the two geodesics γ1 and γ2 of the definition of a bigon. This extreme corner is denoted:
(xβ(i), xβ(i+1)) and is based at the vertex g1(xi, xi+1). This top corner is uniquely defined by
(xi, xi+1).

(iii) The new corner defines an opposite corner (xβ(i), xβ(i+1))
opp at g1(xi, xi+1).

(iv) We consider next the unique minimal bigon:
β(1)(xi, xi+1) := βg1

[(xβ(i), xβ(i+1))
opp],

that gives a new bottom corner at g1(xi, xi+1) and a new top corner at the extreme vertex
g2(xi, xi+1).
This construction defines, by induction, a unique infinite sequence of corners, bigons and
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vertices (see figure 3):

β(xi, xi+1) −→ β(1)(xi, xi+1) := βg1
[(xβ(i), xβ(i+1))

opp] −→ β(2)(xi, xi+1) −→ · · ·

(xi, xi+1) −→ (xβ(i), xβ(i+1)) −→ (xβ(i), xβ(i+1))
opp = (xi, xi+1)

(1) −→ · · ·

Figure 3: Opposite corner and bigon rays.

The bigons that are defined by the previous infinite sequence : β(0) = β, β(1), ......, β(i)...., are
given by two geodesics {γ(i)

1 , γ
(i)
2 }, i = 0, 1, 2, ....

A finite concatenation of bigons : β(0).β(1).......β(k) is a finite length bigon defined by any
finite concatenation of the paths : γ

(0)
ǫ(0).γ

(1)
ǫ(1)......γ

(k)
ǫ(k), for ǫ(k) = 1 or 2.

Lemma 3.1 (bigon rays) Any of the paths : γ
(0)
ǫ(0).γ

(1)
ǫ(1)......γ

(k)
ǫ(k), for ǫ(k) = 1 or 2

is a geodesic segment in the Cayley graph.
In addition, any two such geodesic segments stay at a uniform distance from each other when
k → ∞. The infinite concatenation β(0).β(1)......β(i).... := β∞(xi, xi+1) is called a bigon ray
and defines a unique point (xi, xi+1)

∞ in ∂Γ.

The proof of the first statement is a direct consequence of :
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Lemma 3.2 Let P be a geometric presentation of a hyperbolic co-compact surface group. If
γ is a geodesic segment, starting at the identity and ending by a generator x = xj ∈ X, then
any continuation of γ as γ.xi is a geodesic segment except when : xi = x−1

j and possibly
when xi = xj±1 or xi = xj±2.

Proof : The case xi = x−1
j is always impossible for a geodesic continuation of the segment

γ. The case xi = xj±1 might not be a geodesic continuation, in particular at the end vertex
of a bigon. The case xi = xj±2 might not be a geodesic continuation in the case when the
set R of relations contains a relation of length 3. The proof that γ.xi is geodesic in all other
cases is obtained by contradiction as in the previous section. �

The first statement of Lemma 3.1 is obtained inductively using 3.2. Indeed each segment
in the sequence is a concatenation of geodesic segments at vertices where the condition of
Lemma 3.2 is satisfied by definition (*) of the opposite corner. Indeed a hyperbolic co-
compact surface group has more than 4 generators and, at each vertex of the Cayley graph,
more than 8 edges start so the difference of the index by ±2 between the last generator of
a segment γ

(k)
ǫ(k) and the first generator of next segment γ

(k+1)
ǫ(k+1) is always satisfied. For the

second statement of Lemma 3.1, each minimal bigon in the sequence {β(n)}n has finite length
by Lemma 2.2 and the number of different such bigons is finite, this completes the proof of
Lemma 3.1. �

A bigon ray, defined as the infinite concatenation : limk→∞ β(1).β(2)...β(k) is uniquely defined
by the corner (xi, xi+1) as well as the limit point on ∂Γ. This limit point is a particular point
in Cxi

⋂

Cxi+1
. Each generator xi belongs to a corner on it’s left (xi−1, xi) and a corner on

it’s right (xi, xi+1) and thus each generator xi defines two particular points (xi−1, xi)
(∞) and

(xi, xi+1)
(∞) in Cxi

⊂ ∂Γ. Lemma 2.4 implies :

Lemma 3.3 The interval Ixi
:= [(xi−1, xi)

(∞), (xi, xi+1)
(∞)[ ⊂ ∂Γ is contained in the cylin-

der Cxi
for each xi ∈ X. �

Definition 3.4 For a given geometric presentation P of a surface group Γ, the boundary
∂Γ = S1 admits a canonical partition by the intervals Ixi

; xi ∈ X. We define the map :

ΦP : ∂Γ −→ ∂Γ by ΦP (ξ) = x−1
i (ξ) when ξ ∈ Ixi

,

where the action x−1
i (....) is the group action by homeomorphisms on ∂Γ induced by the

element x−1
i ∈ Γ.
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Figure 4: Partition of the circle, definition of ΦP .

4 Subdivision rules and the Markov property.

The goal of this section is to raffine the partition of S1 by the intervals Ixi
, xi ∈ X, in order

to prove the first part of Theorem 1.1; the Markov property of the map ΦP . Recall that
a map F : S1 −→ S1 satisfies the Markov property if there is a partition (finite here) so
that the map is a homeomorphism on each interval and maps extreme points to extreme
points. This definition is special to one dimensional spaces (for a more general definition
see [Bo] for instance). From a dynamical system point of view this is just showing that the
extreme points of the partition have finite orbits. From a geometric group point of view it
is interesting to understand and describe the geometry of the particular geodesic rays that
are used to define the partition.

The intervals Ixi
are defined through the properties of minimal bigons. The simplest situation

is when the presentation has only relations of even length. The next simplest situation is
when all the relations are of odd length. In these simple cases the subdivision process is a
little bit easier to describe.

The interval Ixi
is given by the two corners : (xi−1, xi) and (xi, xi+1). We focus on the

left side of the interval Ixi
, i.e. on the corner (xi−1, xi), the analysis for the other (right)

side is exactly the same. The corner defines a unique relation RL, a unique minimal bigon
β(xi−1, xi), a unique bigon ray β(∞)(xi−1, xi) and a unique limit point (xi−1, xi)

∞.
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4.1 Simple cases subdivisions.

We start by assuming that all relations in P have the same parity. The even cases are
the simplest situations since all bigons are defined with only one relation (by the proof of
Lemma 2.2). In the odd cases all bigons are defined using two relations. All the ideas of the
subdivision construction can be seen for these simple cases.

(A) The length of the relation RL is even:

In what follows we use a writing that combines some initial path followed by an infinite
sequence of bigons : α = w.β∞

g (a, b), where w is a geodesic path starting at the identity and
ending at a vertex g and β∞

g (a, b) is an infinite sequence of bigons, defined exactly like a
bigon ray but starting at g as a geodesic continuation of w and defined by the corner (a, b)
at g. This writing describes an infinite collection of geodesic rays. By Lemma 3.1 all the
rays in that collection converge to the same point on the boundary.

In particular, among the infinite possible writing, as geodesic rays, of the bigon ray β(∞)(xi−1, xi),
the following sub-class makes the belonging of the limit point (xi−1, xi)

(∞) to the cylinder
Cxi

obvious (see figure 5) :
β(∞)(xi−1, xi) ⊃ {xi.wL.β(∞)[(xβ(i−1), xβ(i))

(opp)]}, where :

• The corner (xβ(i−1), xβ(i)) is the top corner of the bigon β(xi−1, xi).
• The path written xi.wL = xi.y

1
i .y

2
i .....y

k
i is the xi-side of the two paths that define the

minimal bigon β(xi−1, xi).

The path xi.wL crosses the following corners : {(x̄i, y
1
i ), (ȳ

1
i , y

2
i ), ..., (ȳ

k−1
i , yk

i )}, where z̄ is
the standard notation for the inverse orientation. Each of those corners (a, b) defines a

unique opposite corner (a, b)opp and thus a unique bigon ray : β
(∞)
g [(a, b)opp] based at the

corresponding vertex g (see figure 5). Starting from the identity we define the following
collection of rays, where the based vertex for the bigon rays β(∞) has been remove to simplify
the notations :

[Rays-Even] RL =
{

(xi = y0
i ).y

1
i .y

2
i .....y

j
i .β

(∞)[(ȳj
i , y

j+1
i )opp]; j = 0, ..., k − 1

}

.

Lemma 4.1 The collection RL defined above is a collection of geodesic rays called left sub-
division rays (with respect to the interval Ixi

). Each such ray converges toward a point in
the interior of Ixi

.

Proof. The first part is proved the same way than Lemma 3.1.

The collection of rays defining the bigons β(∞)(xi−1, xi) and β(∞)(xi, xi+1) contain two ex-
treme rays that are disjoint in D

2. The union of these extreme rays is a bi-infinite embedded

12



Figure 5: Subdivision rays, the even case.

geodesic, passing through the identity, and bounding a maximal domain Dxi
in D

2 with
Dxi

⋂

∂Γ = Ixi
.

Any ray that stay in the interior of Dxi
converges to a point in the interior of Ixi

.

By construction the rays in RL stay in the interior of Dxi
and thus converge to points in the

interior of the interval Ixi
, that we call (left) subdivision points

Lxi
= {L(1)

xi , ..., L
(k)
xi } ⊂ Ixi

. �

(B) The length of RL is odd:

In this case the definition of the subdivision rays is a little bit more difficult but the idea
is just the same. Recall that in this paragraph all relations are odd. The proof of Lemma
2.2 shows that the corner (xi−1, xi) in the relation RL defines an edge opposite to the corner
(denoted y in Figure 2 and y3

i in Figure 6) on which another relation is based to define the
bigon β(xi−1, xi).

This relation and the corresponding 2-cell in the Cayley complex, is called the bigon com-
pletion of the corner or of the corresponding edge. In the more general case where even and
odd relations exist, the single relation is replaced by a unique sequence of relations defining
the bigon, the bigon completion in this general case is this particular sequence.

The bigon completion is well defined from the corner or from the opposite edge. In the
simple case of this paragraph, the bigon completion consists of a single relation.

13



The bigon ray is described, from the xi side exactly like above (see Figure 6), as :

β(∞)(xi−1, xi) ⊃ {xi.wL.β(∞)[(xβ(i−1), xβ(i))
(opp)]}, where :

• The corner (xβ(i−1), xβ(i)) is the top corner of the bigon β(xi−1, xi). The top corner belongs
to the bigon completion.

• The xi-side of the bigon β(xi−1, xi) is written as xi.wL. This path is expressed as :
xi.wL = xi.y

1
i .y

2
i .....y

m
i .zm+1

i ....zm+r
i , where the first part : xi.y

1
i .y

2
i .....y

m
i is the xi side of

β(xi−1, xi) along the relation RL, and the second part : zm+1
i ....zm+r

i , is the part of the xi

side of the bigon β(xi−1, xi) that belongs to the bigon completion (see Figure 6).

The path xi.wL crosses the following corners along the relation RL :
{(x̄i, y

1
i ), (ȳ

1
i , y

2
i ), ..., (ȳ

m
i , ym+1

i )}. This last corner (ȳm
i , ym+1

i ) is the one that corresponds to
the last edge of the path xi.wL along the relation RL ( i.e. ym

i ) and the next one along RL

(i.e. ym+1
i ) is the edge opposite to the corner (xi−1, xi) for the relation RL (see Figure 6).

Each of those corners (a, b) defines a unique opposite corner (a, b)opp and thus a unique bigon
ray : β(∞)[(a, b)opp] based at the corresponding vertex (see Figure 6).

Figure 6: Subdivision Bigon rays, odd case.

The path xi.wL = xi.y
1
i .y

2
i .....y

m
i .zm+1

i ....zm+r
i also crosses the edges {y1

i , y
2
i , ..., y

m
i } of the

relation RL and are thus the opposite edge of some corner along RL. Based on each of these
edges yj

i there is a bigon completion of the corresponding opposite corner. We denote βC(yj
i )

the bigon completion based at the edge yj
i and wR[βC(yj

i )] the subpath on the right of the
bigon completion βC(yj

i ), up to the top corner of the bigon completion. We denote this

14



corner < βC(yj
i ) > (see Figure 6), it defines a unique bigon ray β(∞)(< βC(yj

i ) >opp) based
at the corresponding vertex.

Starting from the identity we define the following collection of rays :

[Rays-Odd] RL =
{

(xi = y0
i ).y

1
i .y

2
i .....y

j
i . β(∞)[(ȳj

i , y
j+1
i )opp]; j = 0, ..., m,

}

⋃

{

(xi = y0
i ).y

1
i .y

2
i .....y

j
i .wR[βC(yj+1

i )].β(∞)(< βC(yj+1
i ) >opp); j = 0, ..., m − 1

}

.

This notation is not easy to manipulate, we verify, for instance, that the bigon completion
βC(ym+1

i ) of the edge ym+1
i is the bigon completion of the original corner (xi−1, xi). Then

the writing :
xi.y

1
i .y

2
i .....y

m
i .wR[βC(ym+1

i )].β(∞)(< βC(ym+1
i ) >opp)

is simply the bigon ray : β(∞)(xi−1, xi). In particular the path wR[β(ym+1
i )] was written

above as : zm+1
i ....zm+r

i .

Just like Lemma 4.1, the collection RL is a collection of rays called ( left) subdivision rays
(with respect to the interval Ixi

). These subdivision rays stay in the domain Dxi
defined

above.
Therefore all the left subdivision rays converge towards points in the interior of the interval
Ixi

and are called (left) subdivision points

Lxi
= {L(1)

xi , ..., L
(2m+1)
xi } ⊂ Ixi

.

Observe that in both cases of even and odd relations the set of subdivision points depend
only on the combinatorial properties of the relation RL. The description for the right side
of Ixi

is the same than for the left side. The only change is to replace the subpath wR[...] on

the right by wL[...] on the left. We denote Rxi
= {R(1)

xi , ..., R
(k)
xi } the set of right subdivision

points of Ixi
.

Lemma 4.2 The set of subdivision points Rxi
and Lxi

of Ixi
are well defined and belong to

the interior of the interval Ixi
. They depend only on the pairs of right and left relations that

are uniquely defined by the two corners (xi−1, xi) and (xi, xi+1).

Proof. The proof is exactly the same than for Lemma 4.1.�

Let us now consider the set of all subdivision points : S =
⋃

xi∈X(Rxi

⋃

Lxi

⋃

∂Ixi
). In the

simple case of this paragraph, the main technical result is the following:

Proposition 4.3 If the geometric presentation P of the group Γ is such that all the relations
have the same parity then the partition points S are uniquely defined by the presentation P
and are invariant under the map ΦP .
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Proof. We start the proof of 4.3 in the simplest case where all the relations are even. Let
ζ ∈ S be a subdivision point. It is defined by a relation (say on the left ) RL. Such a point
is defined by a ray in some RL or is a boundary point in ∂Ixi

, in both cases and is written
as:

{ζ} = xi.y
1
i .y

2
i .....y

j
i .β

∞[(ȳj
i , y

j+1
i )opp] for some j ∈ {0, ..., k}.

Since ζ ∈ Ixi
then the image under ΦP is obtained by the action of x−1

i and is represented
as the limit point in ∂Γ of the rays whose writing are :

{ ΦP (ζ)} = y1
i .y

2
i .....y

j
i .β

∞[(ȳj
i , y

j+1
i )opp] if j 6= 0 and

{ΦP (ζ)} = β∞[((ȳ0
i = x−1

i ), y1
i )

opp] if j = 0.

The interpretation of this writing is simple. The action of the map, for this particular
writing, is a shift map. Recall that the path xi.y

1
i .y

2
i .....y

j
i ....y

k
i is the xi-side of the bigon

β(xi−1, xi) defined by the corner (xi−1, xi) in the relation RL.

If j 6= 0 then the path {ΦP (ζ)} starts by y1
i .y

2
i .....y

j
i that begins with y1

i at the corner (x−1
i , y1

i ).
The fundamental observation is that the corner (x−1

i , y1
i ) and the path y1

i .y
2
i .....y

j
i belong to

the same relation RL (see Figure 7). In other words the rays in y1
i .y

2
i .....y

j
i .β

∞[(ȳj
i , y

j+1
i )opp]

define one of the subdivision ray, for the interval Iy1
i
.

If j = 0 then {ΦP (ζ)} is represented by β∞[(x−1
i , y1

i )
opp], this is one of the bigon rays and

thus the point ΦP (ζ) is a partition point. This completes the proof in the cases of even
relations.

Figure 7: The action of the map ΦΓP
.
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In the case where all the relations are odd the above arguments are valid among the collection
[Rays-Odd] with one exception for the special ray written above as:
{ζ} = xi.wR[βC(y1

i )].β
∞[(βC(y1

i ))
opp] (see Figure 6). The image of that ray, under ΦP , starts

with the first letter w1
R of the word wR[βC(y1

i )] that is the right side of the bigon completion
of the edge y1

i .
This bigon completion and the path wR[βC(y1

i )] belong to another relation R̂ given by the
corner adjacent to (x−1

i , y1
i ). The relations R̂ has odd length and the ray :

wR[βC(y1
i )].β

∞(< β(y1
i ) >opp) = {ΦP (ζ)} is a subdivision ray defining a subdivision point in

the interval Iw1
R
. This completes the proof in the odd case. �

4.2 Subdivisions for general presentation.

In order to suppress the parity assumption of the previous paragraph, we need more subdi-
visions. The reason for this is observed in the last argument of the previous paragraph.

For a presentation with relations of mixed parity, the additional difficulty comes from the
minimal bigons with relations of mixed parity. In this case the bigon completion contains
some relations of even length and the last argument above produces a ray of the form :
wR[βC(y1

i )].β
∞(< βC(y1

i ) >opp), where wR[βC(y1
i )] is a path on one side (right here) of the

bigon completion. The path wR[βC(y1
i )] starts along an even relation and is followed by a

path along some other relations, by the proof of Lemma 2.2. This ray does not belong to
the collection of subdivision rays defined so far.

We need to add more subdivision rays that contain these additional rays. We consider all
the minimal bigons β(xi−1, xi) of the presentation, this is a well defined finite collection. The
subdivisions defined above at the corners of the odd relations are still given by the collection
[Rays-Odd]. We subdivide the same way the intervals with an even relations on one side
when it is necessary, i.e. at each edge on which a bigon completion is based. We define the
new subdivision rays exactly as in [Rays-Odd] in these cases. We denote again S the set of
subdivision points of S1 = ∂Γ and the same arguments proves the following:

Proposition 4.4 For any geometric presentation P of the group Γ, the partition points S
are uniquely defined by the presentation P and are invariant under the map ΦP . �

Corollary 4.5 The map ΦP satisfies the Markov property and the collection of subdivision
points S defines a Markov partition for ΦP .

The Markov property is clear; on each interval of S1 − S the map is the restriction of the
action of a group element and thus is a homeomorphism. Proposition 4.4 implies that any
boundary point of the partition is mapped to a boundary point of the partition. �
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4.3 Orbit equivalence.

The orbit equivalence is a relation between the group action on the boundary and the
dynamical properties of the map ΦP , more precisely :

Two points ζ and η in ∂Γ are in the same Γ-orbit if there exists γ ∈ Γ such that ζ = γ(η).
The two points are in the same ΦP -orbit if there exists n, m ∈ N so that Φn

P (ζ) = Φm
P (η) .

The two actions Γ and ΦP on ∂Γ are orbit equivalent if every points in the same Γ orbit are
in the same ΦP orbit and conversely.

Theorem 4.6 The two actions Γ and ΦP on ∂Γ are orbit equivalent.

One direction of this equivalence is obvious:
If Φn

P (ζ) = Φm
P (η) then the definition of ΦP by group elements implies the existence of γ ∈ Γ

so that ζ = γ(η).

The other direction requires some work. Assume that ζ = γ(η), since X = {x±1
1 , ..., x±1

n } is a
generating set we restrict to the case γ = s ∈ X. Let ζ, η ∈ ∂Γ be written as limit points of
geodesic rays starting at the identity. Since ζ = s(η) then either ζ admits a geodesic writing
as : {ζ} = {s.x′

i2
.x′

i3
...} or η admits a geodesic writing {η} = {s−1.x′

j2
.x′

j3
...}. In other words

either ζ belongs to the cylinder Cs or η belongs to the cylinder Cs−1. Let us assume for
instance that ζ ∈ Cs.

From the definition of ΦP then either ζ ∈ Is or ζ ∈ Cs − Is. In the first case ΦP (ζ) =
s−1(ζ) = η and the result is proved. In the last case, two situations are possible:
(1) ζ ∈ Ixi−1

, where xi−1 ∈ X is the generator adjacent to s = xi on the left,
(2) ζ ∈ Ixi+1

, where xi+1 ∈ X is the generator adjacent to s = xi on the right.
We consider only the first case since the two situations are symmetric. By assumption
ζ ∈ Cs=xi

⋂

Cxi−1
and thus ζ admits two geodesic writings :

(∗) {ζ} = xi.w1 = xi−1.w2.
In addition, ζ ∈ Ixi−1

⋂

Cxi
and the definition of the subdivision, in section 4.1-2, implies

that ζ belongs to the right most interval of the partition of Ixi−1
. This implies that the

geodesic writing (∗) is given more precisely as :

(∗∗) {ζ} = xi.w
′
1.w = xi−1.w

′
2.w, where:

w′
1 = xi1 ....xik and w′

2 = xj1 ....xjk
and {xi.w

′
1, xi−1.w

′
2} are the two geodesic paths defining the

minimal bigon β(xi−1, xi) and w is a geodesic continuation of {xi.w
′
1, xi−1.w

′
2} converging to

ζ . This property is a consequence of Lemma 2.2. Indeed, condition (∗) implies the existence
of a finite length bigon in B(xi−1, xi) that can be chosen to be the minimal bigon β(xi−1, xi).
By assumption ζ = s(η) = xi(η) and thus a geodesic writing of η is :

{η} = w′
1.w = xi1 ....xik .w.
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The other assumption ζ ∈ Ixi−1
implies that :

{ΦP (ζ)} = w′
2.w = xj1 ....xjk

.w.

We claim that η belongs to Ixi1
and ΦP (ζ) belongs to Ixj1

. Indeed the beginning xi1 ....xik

of {η} is a geodesic path starting with xi1 and is strictly contained in one side of a minimal
bigon whereas {ΦP (ζ)} starts with xj1 by a geodesic path xj1 ....xjk

that is strictly contained
in one side of another bigon. This implies that the two geodesic rays {η} and {ΦP (ζ)} belong
respectively to the domains Dxi1

and Dxj1
, as defined in the proof of Lemma 4.1.

Therefore the ΦP -image of these two points are :
{ΦP (η)} = xi2 ....xik .w and {Φ2

P (ζ)} = xj2....xjk
.w.

By the same argument : ΦP (η) ∈ Ixi2
and Φ2

P (ζ) ∈ Ixj2
. After k iterations we obtain:

{ Φk
P (η)} = w = {Φk+1

P (ζ)}. �

5 What ΦP is good for?

5.1 Some elementary properties.

We prove first some simple properties satisfied by ΦP with non trivial consequences for the
group presentation. Recall that the presentation P defines uniquely the partition

⋃

xi∈X Ixi

and the map ΦP is the piecewise homeomorphism :
ΦP (ζ) = x−1

i (ζ), ∀ζ ∈ Ixi
.

Lemma 5.1 If P is a geometric presentation of a co-compact surface group Γ with all rela-
tions of length greater than 3, let Ixi

be any interval of the partition S1 =
⋃

xi∈X Ixi
and Ix−1

i

be the corresponding interval for the inverse generator. If I(x−1

i )−1 and I(x−1

i )+1 are the two

adjacent intervals to Ix−1

i
, with I(x−1

i )−1 on the left (say) and I(x−1

i )+1 on the right. Then there

exists a subdivision point : Lj

(x−1

i )+1
∈ S on the left side of I(x−1

i )+1 and another subdivision

point: Rk

(x−1

i )−1
∈ S on the right side of I(x−1

i )−1 such that :

ΦP (Ixi
) = S1 − [Rk

(x−1

i )−1
,Lj

(x−1

i )+1
[.

Proof. Observe that ΦP is a homeomorphism on Ixi
and so it’s image is an interval. The

Lemma is proved by checking the ΦP -image of the two extreme points of the interval. The
computation is the same than for the proof of the Markov property (see Figure 7). In
particular, in the simple case where all the relations are even, the subdivision points Lj

(x−1

i )+1

and Rk

(x−1

i )−1
of the Lemma are the last point before the Ix−1

i
and the first point after Ix−1

i

according to the orientation of the circle. The Lemma is illustrated by Figure 8. Let us make
the explicit computation in this simple case and for one of the two points. The general case
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is proved exactly the same way. The left boundary point (xi−1, xi)
∞ of Ixi

is the limit point
of the bigon ray β∞(xi−1, xi). In the case where the relation defined by the corner (xi−1, xi)
is even, this point is written, as in [Rays-Even] :

(xi−1, xi)
∞ =

{

xi.y
1
i .y

2
i .....y

k
i .β

(∞)[(xβ(i−1), xβ(i))
opp]

}

,

where the path xi.y
1
i .y

2
i .....y

k
i is the right side of the bigon β(xi−1, xi). The definition of ΦP

on Ixi
implies that the image ΦP ((xi−1, xi)

∞) is written as the limit point of the ray :
{ΦP [(xi−1, xi)

∞]} = y1
i .y

2
i .....y

k
i .β

∞[(xβ(i−1), xβ(i))
opp].

This point is, by definition [Rays-Even], the left most subdivision point of Iy1
i

(see Figure 7)
and this partition interval is adjacent, on the right, to the partition interval Ix−1

i
. With the

notations of Lemma 5.1 we have just checked that:
ΦP [(xi−1, xi)

∞] is the last subdivision point, in S, on the left of the interval Ix−1

i +1. The proof

for the boundary point on the right is the same and we obtain that ΦP [(xi, xi+1)
∞] is the last

subdivision point on the right of the interval Ix−1

i
−1. The proof for a general presentations

is the same. �

Figure 8: The image of a partition interval under ΦP .

For presentations with some relations of length 3 the conclusion is a little bit different:

Lemma 5.2 If P is a geometric presentation of Γ with some relations of length 3, for
instance xyz = Id, where the 3 generators {x, y, z} are different then, for all generators xi

that do not belong to a relation of length 3, the conclusion of Lemma 5.1 holds. For the
other generators, for instance x above, then : ΦP (Ix) = S1 − [Lk

a, R
j
b[, where Lk

a is a left
subdivision point of the interval Ia that is adjacent on the right to Ix−1 and Rj

b is a right
subdivision point of the interval Ib that is adjacent to Iy on the left.

In other words the image of the intervals Ix±1 , Iy±1, Iz±1 miss two adjacent intervals ( Ix−1

and Iy in the above case) plus some partition sub-intervals before and after. The proof is
the same than for Lemma 5.1 (this particular case is given by Figure 9 ). �
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Figure 9: Image of a partition interval under ΦP with a relation of length 3.

There is a missing case when the presentation has a relation of length 3 with 2 identical
generators. These cases are particular and will be treated in the Appendix. It is interesting
to notice that this particular type of presentations exist as a geometric presentation of a
surface group but only for non orientable surfaces.

The two previous Lemmas have the following consequence :

Corollary 5.3 If P is a geometric presentation of Γ with n generators and no relations of
the form xxy = Id then the map ΦP is strictly expanding and, for all x ∈ S1, the number of
pre-images under ΦP satisfies :

2n − 3 6 |{Φ−1
P (x)}| 6 2n − 1.

Proof. The expansivity property is proved directly, each interval of the Markov partition is
mapped either on a single interval that is different from itself or is mapped to a union of
intervals. In any case the second iterate is mapped to a union of more than two intervals.
This argument also proves the transitivity of the map ΦP .
In the case where P has no relations of length 3 then each point in S1 belongs to one of the
intervals Ixi

and each such interval has a right and a left subinterval given by Lemma 5.1.
The points in either the right or the left subintervals have exactly 2n − 2 pre-images and
the points in the ”central” part have exactly 2n− 1 pre-images. In this case only the image
of the interval corresponding to the inverse generator is not a pre-image. If P has some
relations of length 3 with 3 different generators then Lemma 5.2 implies that some points
might have 2n − 3 preimages. �
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Observe that the cases of presentations with relations of length 2 has not been considered.
In this case there is a redundant generator that can be removed. This fact is obvious from a
combinatorial group theory point of view, it will be justified from a dynamical system point
of view in the appendix (Lemma 6.2).

5.2 Symbolic coding from Markov partition.

The map ΦP is Markov and strictly expanding then the standard methods in symbolic
dynamics apply (see for instance [Shu], [Bo]) and define a symbolic coding of the orbits :
{Φn

P (ζ) ; n ∈ N, ζ ∈ S1}. As usual in this context we don’t consider the finite collection of
orbits of the boundary of the partition S.

Definition 5.4 Each point ζ ∈ S1−S admits a symbolic coding on the alphabet I = {I(i,j)},
where each I(i,j) is an interval of the Markov partition of ΦP , with:

⋃

j=1,....,Ki
I(i,j) = Ixi

, xi ∈ X.

This coding C : S1 − S → I∗, where I∗ is the set of infinite words in the alphabet I, is
defined by :

C(ζ) = {I(i1,j1), I(i2,j2), ..., I(ik,jk), ....} ∈ I∗, where Φk
P (ζ) ∈ I(ik,jk), ∀k ∈ N.

Lemma 5.5 The coding C is called an I-coding, it is injective and defines a sub-shift of
finite type.

The sub-shift property is classical for expanding Markov maps (see for instance [Bo]) as well
as the injectivity. It is a consequence of the fact :

length [
⋂∞

k=1 Φ−k
P (I(i,j))] = 0, for all I(i,j). �

What is less standard is the fact that the map ΦP is defined via a group action. In addition,
the partition and the action, reflect the action of the generators of the group presentation.
The I-coding induces an X-coding by forgetting the second index of each letter I(i, j) in the
alphabet I, more precisely:

Definition 5.6 The X-coding χ of any ζ ∈ S1 − ⋃

xi∈X ∂Ixi
is defined by :

χ(ζ) = {xi1 , xi2, ...., xik , ...}, where Φk
P (ζ) ∈ Ixik

, ∀k ∈ N.

Lemma 5.7 The X-coding is injective and defines a sub-shift of finite type.

The X-coding is injective, again by expansivity of the map, and the fact that :
length [

⋂∞
k=1 Φ−k

P (Ixi
)] = 0, for all Ixi

. �
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For the two codings I and X, any initial word of length k is called a I-prefix (resp. X-prefix)
of length k.

5.3 Comparison of entropies.

The last statement of the first main result, Theorem.1.1, is a comparison between the asymp-
totic geometry of the presentation P and the asymptotic dynamics of the map ΦP .

Theorem 5.8 The volume entropy hvol(P ) of the presentation P is equal to the topological
entropy htop(ΦP ) of the Markov map ΦP .

The volume entropy is defined in the introduction and is now a classical invariant in geometric
group theory (see for instance [DlH]). The topological entropy of a map is an even more
classical topological invariant that was first defined in [AKM] and precised latter by Bowen
( see for instance in [Bo]). An important feature of Markov maps is the well known fact
that it’s topological entropy is computable as the largest eigenvalue of an integer matrix (see
bellow).

One way to relate the geometry of P with the dynamics of ΦP is to introduce a decomposition
of the complexes Cay(j)(P ), for j = 0, 1, 2 “ suited ” with the intervals Ixi

on the boundary.
This decomposition is a weak combinatorial version of the “ half spaces” in hyperbolic
geometry.

Recall that the partition interval Ixi
= [Li = (xi−1, xi)

∞, Ri = (xi, xi+1)
∞[ ∈ ∂Γ is defined by

two points that are limit of infinite geodesic rays, as in section 3. The bigon ray β∞(xi−1, xi)
whose limit point is Li is the concatenation: β1

i,L.β2
i,L.....βk

i,L..., where the bigon βk
i,L is de-

fined by two geodesic paths : {(γk
i,L)L, (γk

i,L)R}, where the indices L and R stands for left
and right. A similar writing defines the point Ri. We define now a particular representative
of the geodesic rays converging to Li and Ri as :

{Li}R := (γ1
i,L)R.(γ2

i,L)R.....(γk
i,L)R...

{Ri}L := (γ1
i,R)L.(γ2

i,R)L.....(γk
i,R)L... .

These two particular rays start at the identity by the same letter xi and are otherwise disjoint.
The compactification Cay2(P ) of the 2-complex Cay2(P ) is homeomorphic with the disc D

2

and the union of the two rays {Li}R
⋃{Ri}L is a bi-infinite geodesic connecting Li and Ri,

after removing the initial common segment given by the letter xi. This bi-infinite geodesic
is an embedded Jordan curve in D

2 and therefore it bounds a domain :
K2

i (P ) in Cay2(P ) so that K2
i (P )

⋂

∂Γ = Ixi
. This domain is contained in the domain Dxi

of section 4.1.

If we consider the ” adjacent” domains K2
i−1(P ) and K2

i+1(P ) for the adjacent generators
xi−1 and xi+1 we obtain the following property :
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Lemma 5.9 The domains K2
i (P ) defined above satisfy :

K2
i (P )

⋂

∂Γ = Ixi
and K2

i (P )
⋂

K2
i−1(P ) = Li

⋃ {g1
i ; g

2
i ; ....}, where

gk
i are the special vertices in Cay2(P ) where two minimal bigon paths meet along the bigon

ray β∞(xi−1, xi) . The domain K2
i (P ) is said to be suited with Ixi

.

Proof. The bigon ray β∞(xi−1, xi) is the union of the two special rays {Li}R and {Ri−1}L,

where {Li}R is the boundary (left) of K2
i (P ) and {Ri−1}L is the (right) boundary of K2

i−1(P ).
These two rays meet at the extreme vertices of the bigons βk

i,L, which are precisely the set
{g1

i ; g
2
i ; ....}.�

The set of domains K2
i (P ) for all xi ∈ X is not a partition of Cay2(P ) because infinitely

many 2-cells are missing, as well as possibly infinitely many 1-cells. For 0-cells, identified
with the group elements, the situation is simpler, as given by :

Lemma 5.10 For every m ∈ N
∗, each group element g ∈ Γ − Id of length m, with respect

to the presentation P , belongs to exactly one domain K2
i (P ), except at most 2n elements,

where n is the number of generators of P .

Proof. By planarity, each g ∈ Γ belongs to at most two K2
i (P ) that are adjacent. Lemma

5.9 implies that if a vertex belongs to more than one domain it has to be on the boundary of
the domain and there are at most two such points on the intersection of the sphere of radius
m with a domain. �

From the definition of the domains, each z ∈ K2
i (P ) admits a geodesic writing as z = xi.w,

where the path written w is contained in K2
i (P ) and is possibly infinite. If z = g is a group

element, i.e. of finite length, there is an open connected set Ωg ⊂ Ixi
such that any ζ ∈ Ωg

belongs to the ”shadow” of g in Ixi
, i.e. ζ has a geodesic ray writing as {ζ} = g.ρ and the

geodesic ray is contained in K2
i (P ). This property comes from the definition of the domains.

For every point ζ ∈ Ωg ⊂ Ixi
the map ΦP is well defined and ΦP (ζ) is given by a geodesic

ray as {ΦP (ζ)} = w.ρ ⊂ K2
i1
(P ). We iterate the argument and there exists a geodesic ray:

{ΦP (ζ)} = xi1 .w
′.ρ, where xi1 .w

′ ∈ K2
i1
(P ) and g admits a geodesic writing

{g} = xi.xi1 .w
′. After a finite iteration of ΦP on ζ we obtain a geodesic writing of g as

g = xi.xi1 ....xim and the word : xi.xi1 ....xim is a X-prefix of length m + 1. This proves the
following :

Lemma 5.11 Every g ∈ Γ admits a X-prefix as a geodesic writing in the presentation P .
�

The coding by X-prefix is not bijective for the group elements by Lemma 5.9, but Lemma
5.10 gives a uniform bound on the number of elements with more than one X-prefix.

24



We make now a counting argument, let us denote :
• σm the number of elements of Γ of length m with respect to P .
• Xm the number of X-prefix of length m.
• Im the number of I-prefix of length m.

Lemma 5.12 For m ∈ N large enough, one has σm ≈ Xm.

Proof. If the coding by X-prefix were bijective we would have σm = Xm for all m. This is
not the case but Lemma 5.10 implies that these two numbers are equivalent for large m. �

The last counting argument relates X-coding with I-coding :

Lemma 5.13 There is a constant K so that for all m ∈ N : Xm 6 Im 6 Xm+K.

Proof. Every I-coding defines an X-coding by the projection :
I- coding −→ X- coding, given by :

{I(i1,j1), ...., I(im,jm), ...} −→ {xi1 , ...., xim , ...}.
This map is surjective on prefixes by Lemma 5.11, which proves the first inequality. Let K be
the maximal number of subintervals of the Markov partition among the intervals Ixi

, xi ∈ X.
If two points ζ and ρ have the same I-prefix of length m then Φk

P (ζ) and Φk
P (ρ) belong to the

same I(i,j) for each k ∈ {0, 1, ..., m} and in particular they belong to the same Ixi
. The worst

case is when Φm
P (ζ) and Φm

P (ρ) belong to the same Ixi
but different I(i,j). By expansivity of

ΦP , after at most K iterations Φm+K
P (ζ) and Φm+K

P (ρ) belong to different Ixi
. So different

I-prefixes of length m implies different X-prefixes of length at most m + K. This implies
the second inequality. �

Proof of Theorem 5.8.
By definition of the volume entropy of P :
hvol(P ) = limm→∞

1
m

log(σm) and Lemma 5.12 implies : hvol(P ) = limm→∞
1
m

log(Xm).
Finally Lemma 5.13 implies : hvol(P ) = limm→∞

1
m

log(Im).

This last limit is classical (see [Shu] for instance) to compute via the ”Markov transition
matrix” M(ΦP ) defined as the integer matrix whose entries Ma,b = 1 if the interval Ib of
the Markov partition (denoted I(i,j) above) is contained in the image ΦP (Ia) and Ma,b = 0
otherwise. It is also classical that the norm ‖Mm‖ =

∑

a,b |Mm
a,b| is exactly the number Im

and :
limm→∞

1
m

log(Im) = limm→∞
1
m

log(‖Mm‖) = log(λ(M)),

where λ(M) is the largest eigenvalue of the matrix M . A last classical result (see [Shu] for
instance) is that : log(λ(M)) = htop(ΦP ). �

The usefulness of the map ΦP is now clear since, thanks to the Markov property, the topolog-
ical entropy is a computable invariant, as the spectral radius of the Markov transition matrix.
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In practice the size of the Markov matrix is big but for simple examples the computation is
possible.

One advantage of our construction is the fact that the Markov map is well defined for
any geometric presentation so it makes the comparison of the volume entropy for different
presentations possible.

It turns out that Corollary 5.3 has an immediate consequence:

Lemma 5.14 If P is a presentation with n generators (i.e. |X| = 2n ) and no relations of
the form xxy = Id, then the following inequalities are satisfied:

log(2n − 3) 6 htop(ΦP ) = hvol(P ) 6 log(2n − 1).

Proof. The second inequality is well known, it is just the obvious comparison between the
volume entropy of the group presentation with the one for the free group of the same rank.
The first inequality is the new result, it is a direct consequence of Corollary 5.3. �

The next result is about the special presentations with relations of the form xxy = Id, we
postpone it’s proof to the Appendix.

Lemma 5.15 If P is a geometric presentation of Γ with n generators and some relations
of the form (∗) xxy = Id, then there exists a presentation P ′ with n− 1 generators and
one relation of the form (*) less than in P so that hvol(P

′) 6 hvol(P ).

Finally we obtain :

Theorem 5.16 The minimal volume entropy of a co-compact hyperbolic surface group is
realized, among the geometric presentations, by the presentations with the minimal number
of generators.

Lemma 5.14 and 5.15 imply that all the geometric presentations with the minimal number
of generators have volume entropy less than the other geometric presentations of the same
group. This minimum is realized since the number of such presentations, called minimal, is
finite. It remains to prove the following result:

Lemma 5.17 All the minimal geometric presentations have the same volume entropy.

Proof. Observe that the minimal geometric presentations of co-compact surface groups are
very classical, for orientable surfaces of genus g for instance, they have 2g generators and one
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relation of length 4g. There are still several possibilities, for instance in genus 2 here are two
distinct presentations : <a, b, c, d/aba−1b−1cdc−1d−1 = id> and <a, b, c, d/aba−1cdc−1b−1d−1 =
id>.

From the Markov map point of view these two presentations give two different maps but
the difference is simply the ordering of the intervals Ixi

along the circle S1 = ∂Γ. All these
different maps are constructed with one relation with the same even length and thus all these
maps are combinatorially conjugated, in particular the Markov matrices are the same, up
to permutation of the indices, and therefore the topological entropies are the same. At the
Cayley graph level, the proof is also immediate.�

5.4 An example.

For an example, we compute the map ΦP for the classical presentation of an orientable surface
of genus 2. We give some (partial) explicit computations for the geometric presentation :
P =< a, b, c, d/a.b.a−1.b−1.c.d.c−1.d−1 >. A small part of the Cayley 2-complex is shown
in Figure 10, as well as the subdivision of the interval Ia of the partition. We show bellow
the computation for this particular interval and this is enough by the symmetry of the
presentation.

Corollary 5.18 The minimal volume entropy among geometric presentations of genus two

surfaces is : log(
3+

√
17+

√
22+6

√
17

2
).

The circle is oriented clockwise and the interval Ia is the concatenation of the 7 intervals
Ia,1......Ia,7. The subdivision points are denoted : {La, La,1, La,2, Ra,3, La,3, Ra,2, Ra,1, Ra}.
With the notations of section 4 these points are written as the limit of the following rays:

{La} = a.b.a−1.b−1.β∞[(b, c)opp], {Ra} = a.b−1.a−1.d.β∞[(c, d−1)opp],
{La,1} = a.b.a−1.β∞[(a, b−1)opp], {Ra,1} = a.b−1.a−1.β∞[(d, a)opp],
{La,2} = a.b.β∞[(b−1, a−1)opp], {Ra,2} = a.b−1.β∞[(a−1, b)opp],
{La,3} = a.β∞[(a−1, b)opp], {Ra,3} = a.β∞[(b−1, a−1)opp].

The computation of section 4 gives the following images of these points :

(1) ΦP (La) = Lb,1, (5) ΦP (Ra) = Rb−1,1,
(2) ΦP (La,1) = Lb,2, (6) ΦP (Ra,1) = Rb−1,2,
(3) ΦP (La,2) = Lb,3, (7) ΦP (Ra,2) = Rb−1,3,
(4) ΦP (La,3) = Ld, (8) ΦP (Ra,3) = Rd−1 .

The image of the extreme points of an interval gives the image of the interval so we obtain:
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Figure 10: The genus 2 case.

(1) − (2) gives : ΦP (Ia,1) = Ib,2,
(2) − (3) gives : ΦP (Ia,2) = Ib,3.Ib,4,
(3) − (8) gives : ΦP (Ia,3) = Ib,5......Id−1,7,
(8) − (4) gives : ΦP (Ia,4) = Ic−1,1......Ic−1,7,
(4) − (7) gives : ΦP (Ia,5) = Id,1......Ib−1,3,
(7) − (6) gives : ΦP (Ia,6) = Ib−1,4.Ib−1,5,
(6) − (5) gives : ΦP (Ia,7) = Ib−1,6.

The computation of the Markov matrix is now tedious and long, it gives a 56 by 56 integer
matrix with many repeating blocks. The computation of the largest eigenvalue has no interest
in itself and can be done with any computer. It is interesting to notice that for this classical
presentation, the map defined by Bowen and Series in [BS] is a little bit different and less
symmetric than the one presented here, but the number of subdivision intervals is the same
(56 in this case) and the computation of the entropy gives the same value. �

The characterisation of the minimal volume entropy of surface groups needs some more steps
and some new ideas. It is natural to conjecture that the geometric minimum obtained in
this paper is a candidate to be the absolute minimum.
Another class of questions would be to understand more properties of the special circle
maps that are defined here. Of course the real challenge would be to define similar maps for
arbitrary presentation of an arbitrary hyperbolic group and in particular when the boundary
is a higher dimensional sphere.
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6 Appendix: Presentations with a relation xxy = Id.

This Appendix is a proof of Lemma 5.15. It is treated separately since a new strategy is
necessary. The cases where the presentation P has a relation of the form xxy = Id is not
covered by Lemmas 5.1 and 5.2 and the conclusion of Corollary 5.3 and Lemma 5.14 are
wrong in this case. We assume that P has a relation of the form (∗) xxy = Id. The
construction of the map ΦP is the same than in section 4 and we consider the local structure
of the 2-complex Cay2(Γ, P ) in this particular case (see Figure 11).

Figure 11: The particular case xxy = Id.

We consider the partition intervals defining the map ΦP with special attention to the 4
intervals Ix±1 , Iy±1 . For the other intervals the conclusions of the Lemmas 5.1 and 5.2 are
valid. We observe in particular that ΦP (Ix) misses 3 intervals : Ix, Ix−1, Iy as well as a
sub-interval before and after (the same is true for ΦP (Ix−1) ). The conclusion of Lemma 5.2
does not apply for these two intervals but it does for Iy and Iy−1 .

The new step is to transform the presentation P by a specific Dehn twist that preserves the
geometric structure, i.e. by a surface Dehn twist (as opposed to a free group Dehn twist).
Algebraically this twist is given by τ : P −→ P ′ such that :

τ(y) = yx := z and τ(xi) = xi, ∀xi ∈ X − {y}.

For the new presentation, only two relations are transformed (according to the Figures 11
and 12):
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{xxy, a−1.y.b..., ∗, ∗, ∗...} −→ {xz, a−1.z.x−1.b..., ∗, ∗, ∗...} .

We check that P ′ is geometric since the Dehn twist τ is realized on the surface and we
compute the map ΦP ′ (see Figure 12).

Lemma 6.1 With the above notations the topological entropy satisfies : htop(ΦP ) > htop(ΦP ′).

Proof. The number of generators is the same for P and P ′ and the automorphism τ gives
an identification between the generators that induces an identification of the intervals Ixi

.
The partition for the two Markov maps are different, in particular because the relations
have different length, but each interval Ixi

has a rough partition obtained from the proof of
Lemma 5.1 (and 5.2). Indeed, each interval Ixi

has a left part IL
xi

, a central part IC
xi

and
a right part IR

xi
. These particular partition points are the image under ΦP of the extreme

points : ΦP (∂Ixi
), xi ∈ Ixi

.
The proof of Corollary 5.3 is based on the fact that, in the cases covered by Lemma 5.1, each
point in these sub-intervals have 2n− 1 pre-images for IC

xi
and 2n− 2 pre-images for IL

xi
and

IR
xi

. In these cases we say that the corresponding interval Ixi
is of type (2n−2, 2n−1, 2n−2).

For the cases covered by Lemma 5.2 all the intervals Ixi
such that xi does not belong to a

relation of length 3 are also of type (2n−2, 2n−1, 2n−2) and the generators xi that belong to
a relation of length 3 define intervals of type (2n−2, 2n−2, 2n−3) (or (2n−3, 2n−2, 2n−2)).

For the map ΦP , where P has a relation of the form (*) xxy = Id, we observe that the
intervals Ixi

, xi /∈ {x±1} are of type (2n − 2, 2n − 1, 2n − 2) or (2n − 2, 2n − 2, 2n − 3) and
the special intervals Ix±1 are of type (2n − 3, 2n − 3, 2n − 4). These values are obtained by
direct checking (see Figure 11).
For the map ΦP ′ the situation is quite different. We observe, with the above notations (see
Figure 12), that the image ΦP ′(Ix±1) covers n− 1 intervals Ixi

minus one sub-interval (IL or
IR) on one side and ΦP ′(Iz±1) also covers n − 1 intervals Ixi

minus one sub-interval (IL or
IR) on one side. Another particular property of this map is that ΦP ′(Rx) = ΦP ′(Lz−1) and
ΦP ′(Lz) = ΦP ′(Rx−1). These observations imply that each interval Ixi

, xi /∈ {x±1, z±1} that
was of type (a, b, c) for ΦP is now of type (a − 2, b − 2, c − 2) for ΦP ′. The last 4 intervals
Ix±1 and Iz±1 are of respective types (2n − 4, 2n − 3, 2n − 3) and (2n − 3, 2n − 3, 2n − 4).
This imply that the number of pre-images grow much slower, under iteration by ΦP ′ than
for ΦP . This completes the proof of Lemma 6.1.�

This example shows that an elementary transformations of the presentation, like a Dehn twist
here, may have a very strong impact on the entropy even when the number of generators is
fixed.

The next step is to remove the unnecessary generator (x or z).

Lemma 6.2 If P ′ is a presentation with n generators and a relation of length 2 :
(∗∗) xz = Id, then the new presentation P ′′ obtained from P ′ by removing the generator z
(for instance) and the relation (**) satisfies : htop(ΦP ′) = htop(ΦP ′′).
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Figure 12: New presentation with a length 2 relation.

Proof. The bigon β(x, z−1) given by the relation of length 2 defines a partition point (x, z−1)∞

that has two sides, one is called Rx and the other Lz−1 for the two adjacent intervals Ix and
Iz−1. The main observation is now that : ΦP ′(Rx) = ΦP ′(Lz−1) (Figure 12 shows an example
of this fact). The map ΦP ′ is thus continuous at (x, z−1)∞ and ΦP ′ is a homeomorphism on
the larger interval Ix

⋃

Iz−1. Therefore we can remove the partition point (x, z−1)∞ without
changing the dynamics. Removing the partition point corresponds, for the presentation, to
replace the 2-cell corresponding to the relation (**) by a single edge, for instance x. Since
the two dynamics before and after removing the partition point are the same the entropy
are the same. �

This completes the proof of Lemma 5.15.
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