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Abstract. We derive a posteriori error estimates for a class of second-order monotone quasi-linear
diffusion-type problems approximated by piecewise affine, continuous finite elements. Our estimates
yield a guaranteed and fully computable upper bound on the error measured by the dual norm of the

residual, as well as a global error lower bound, up to a generic constant independent of the nonlinear
operator. They are thus fully robust with respect to the nonlinearity, thanks to the choice of the error
measure. They are also locally efficient, albeit in a different norm, and hence suitable for adaptive mesh
refinement. Moreover, they allow to distinguish, estimate separately, and compare the discretization
and linearization errors. Hence, the iterative (Newton–Raphson, quasi-Newton) linearization can be
stopped whenever the linearization error drops to the level at which it does not affect significantly the
overall error. This can lead to important computational savings, as performing an excessive number of
unnecessary linearization iterations can be avoided. Numerical experiments for the p-Laplacian illustrate
the theoretical developments.

Key words: a posteriori error estimate, monotone nonlinear problem, linearization, balancing errors,
guaranteed upper bound, robustness

1. Introduction

Let Ω be an open polyhedron of R
d, d ≥ 2. We consider the nonlinear problem in conservative form

−∇·σ(∇u) = f in Ω,(1.1a)

u = 0 on ∂Ω.(1.1b)

The scalar-valued unknown function u is termed the potential, and the R
d-valued function −σ(∇u) is

termed the flux. We assume that the flux function σ : R
d → R

d takes the following quasi-linear form

(1.2) ∀ξ ∈ R
d, σ(ξ) = a(|ξ|)ξ,

where |·| denotes the Euclidean norm in R
d and where a : R+ → R is a given function. The function

a is assumed below to satisfy a growth condition of the form a(x) ∼ xp−2 as x → +∞ for some real
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number p ∈ (1, +∞), so that the natural energy space V for the above model problem is the Sobolev

space W 1,p
0 (Ω). The data f is taken in Lq(Ω) where q := p

p−1 so that 1
p + 1

q = 1. Hence, the model

problem in weak form amounts to finding u ∈ V such that

(1.3) (σ(∇u),∇v) = (f, v) ∀v ∈ V,

where (·, ·) denotes the integral over Ω of the (scalar) product of the two arguments. The function a satis-
fies monotonicity and continuity conditions stated in Section 2 below and ensuring that the problem (1.3)
is well-posed.

The prototypical example for the present model problem is the so-called p-Laplacian, for which a(x) =
xp−2. The a priori error analysis for approximating the p-Laplacian by piecewise affine, continuous finite
elements has been started by Glowinski and Marrocco [19, 20]; see also Ciarlet [13, p. 312]. One well-
known difficulty when working with the natural energy norm is that the derived error estimates are not
sharp. This drawback has been circumvented by Barrett and Liu [6] upon introducing a so-called quasi-
norm, thereby achieving optimal approximation results. The quasi-norm of the error between the exact
solution u and the approximation solution, say uh, is a weighted L2-norm of the gradient ∇(u − uh),
where the weight depends on ∇u and ∇uh.

The a posteriori error analysis of finite element approximations to a large class of nonlinear problems,
including the present model problems, has been started by Verfürth; see [29] and [30, p. 47]. The main
result is a two-sided bound of the energy error by the dual norm of the residual multiplied by suitable
norms of the linearized operator at the exact solution, under the assumption that this latter operator is
invertible and locally Lipschitz-continuous and that the approximate solution is sufficiently close to the
exact solution. This yields in particular residual-based estimators in the energy norm. These estimators
have been exploited, in particular, by Veeser [28] to prove the convergence of an adaptive finite element
method for the p-Laplacian. Alternatively, quasi-norm error estimates for the p-Laplacian have been
analyzed by Liu and Yan [24, 25, 26], leading to weighted residual-based estimators. Quasi-norm residual-
based estimators have been further explored by Carstensen and Klose [9] with a focus on evaluating the
constants in the estimates and under the assumption that the gradient norm of the approximate solution
is positive everywhere in the domain. Moreover, gradient recovery techniques have been analyzed by
Carstensen, Liu, and Yan [10] to estimate the quasi-norm of the error. Quite recently, Diening and
Kreuzer [16] have obtained two-sided bounds for an appropriate measure of the error and proven the
linear convergence of a suitable adaptive finite element method. The error measure is the L2-norm of
the difference F(∇u)−F(∇uh), where the auxiliary vector field F is such that F(ξ) = |σ(ξ)|1/2|ξ|−1/2ξ.
This error measure turns out to be equivalent to the quasi-norm of the error, with constants depending
on the nonlinearity (that is, the properties of the function a in (1.2)).

We observe that, whatever the error measure, the above bounds on the error involve constants de-
pending on the function a. In the case of the p-Laplacian, they depend on the Lebesgue exponent p.
Moreover, with a few exceptions, e.g., [9, 10], the error upper bounds involve generic constants, making
them unsuitable for actual error control. Therefore, the first objective of this work is to derive guaranteed
and robust bounds on the error, that is, error upper bounds without undetermined constants and two-
sided error bounds independent of the nonlinearity. To this purpose, we use as error measure a residual
flux-based dual norm, namely

(1.4) Ju(uh) := ‖∇·σ(∇u)−∇·σ(∇uh)‖V ′ = sup
v∈V \{0}

(σ(∇u)− σ(∇uh),∇v)

‖v‖V
.

Working with residual flux-based quantities to measure the error is somewhat natural since fluxes satisfy
basic conservation properties that are at the heart of the design of approximation methods, even using
continuous finite elements. Furthermore, the idea of using a dual norm is inspired by the work of
Verfürth where dual norms have been considered, e.g., in the context of parabolic [34] and convection-
dominated stationary convection–diffusion equations [36]. Dual residual norms have also been considered
for nonlinear problems in [29], and the present dual norm has been considered in [11, 12]. More recently,
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it has been observed in [40] that residual-flux based error measures are also natural in the context of
diffusion problems with heterogeneous coefficients. Furthermore, we remark that although our error upper
bounds are fully computable, the actual error measure is not, even if the exact solution is known; we
will discuss below how the error measure can be approximated in numerical experiments with synthetic
exact solutions so as to compute effectivity indices. Note, however, that in practical computations, the
exact solution is never known and hence the error is never computable. We also point out that achieving
robust error estimates does not mean necessarily that the error bounds can be extended to the limit cases
p = 1 or p = +∞, similarly to the vanishing-diffusion limit in convection–diffusion equations, since the
approximation method may fail to converge. Our a posteriori error estimates are formulated in terms of
a conforming flux reconstruction, say th, similarly to earlier work in the linear [1, 7, 14, 23, 27, 40] and
nonlinear [22] cases. The error upper bound hinges on a local conservation property of the reconstructed
flux th; see Assumption 3.4 below. The error lower bound hinges instead on an approximation property
of th; see Assumption 4.1 below. In the present work, we provide two examples for reconstructing the
flux th in the context of piecewise affine, continuous finite elements satisfying Assumptions 3.4 and 4.1.
Higher-order methods are not considered herein. This is motivated, in part, by the fact that in many
cases the exact solution u may not have much additional regularity beyond that of the natural energy
space V ; see [13, p. 324] for a similar remark concerning the p-Laplacian.

The discrete problem amounts to a system of nonlinear equations, and, in practice, is solved using
an iterative method involving some kind of linearization. Given an approximate solution, say uL,h, at a
given stage of the iterative process and on a given mesh, there are actually two sources of error, namely
linearization and discretization. Balancing these two sources of error can be of paramount importance in
practice, since it can avoid performing an excessive number of nonlinear solver iterations if the discretiza-
tion error dominates. Therefore, the second objective of this work is to design a posteriori error estimates
distinguishing linearization and discretization errors in the context of an adaptive procedure. This type
of analysis has been started by Chaillou and Suri [11, 12] for a certain class of nonlinear problems similar
to the present one and in the context of iterative solution of linear algebraic systems in [21]. Chaillou
and Suri only considered a fixed stage of the linearization process, while we take here the analysis one
step further in the context of an iterative loop. Furthermore, they only considered a specific form for
the linearization, namely of quasi-Newton type, while we allow for a wider choice, including Newton–
Raphson methods. We consider an adaptive loop in which at each step, a fixed mesh is considered and
the nonlinear solver is iterated until the linearization error estimate is brought below the discretization
error estimate; then, the mesh is adaptively refined and the loop is advanced. In this work, we will not
tackle the delicate issue of proving the convergence of the above adaptive algorithm. We will also assume
that at each iterate of the nonlinear solver, a well-posed problem is obtained. This property is by no
means granted in general; it amounts, for the p-Laplacian, to assume, as mentioned before in [9], that
the gradient norm of the approximate solution is positive everywhere in the domain. We mention that
in our numerical experiments, all the discrete problems were indeed found to be well-posed.

This paper is organized as follows. Section 2 describes the setting for the nonlinear problem together
with its discretization and linearization. Section 3 is devoted to the derivation of the guaranteed error
upper bounds, while Section 4 is concerned with the efficiency of the estimators. Section 5 presents two
possible approaches to reconstruct the flux th in the context of piecewise affine, continuous finite elements.
Section 6 contains the numerical results. Finally, Appendix A collects various auxiliary lemmas.

2. The setting

We describe here the considered nonlinear problem together with its discretization and linearization.

2.1. The continuous problem. Henceforth, for a real number r ∈ (1, +∞) and a subset ω ⊂ Ω, ‖·‖r,ω
denotes the canonical norm in Lr(ω) or [Lr(ω)]d with appropriate Lebesgue measure; the subscript ω
is omitted whenever ω = Ω while the subscript r is omitted whenever r = 2. Moreover, the space V is
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equipped with the norm ‖·‖V := ‖∇(·)‖p. It is convenient to introduce the operator A : V → V ′ such
that for all u, v ∈ V ,

(2.1) 〈Au, v〉V ′,V := (σ(∇u),∇v).

The function a in the definition (1.2) of the flux function σ is assumed to satisfy the following growth
condition: There are constants R1, c1, and c2 such that for all x ≥ R1,

(2.2) c1x
p−2 ≤ a(x) ≤ c2x

p−2.

Owing to the upper bound in (2.2) and using the Hölder inequality, it is readily seen that for all u ∈ V ,
σ(∇u) ∈ [Lq(Ω)]d so that Au is indeed in V ′. The lower bound in (2.2) is classically used to infer an a
priori estimate on the solution to (1.3).

Concerning the operator A, we make the following assumptions:

i) Monotonicity. For all v, w ∈ V , there holds

(2.3) 〈Av −Aw, v − w〉V ′,V ≥ 0.

Moreover, there exist a function γ : R+ → R
∗
+ (taking positive values) and a strictly increasing

function χ : R+ → R+ such that χ(0) = 0 and limt→+∞ χ(t) = +∞ such that for all R ≥ 0 and for
all v, w ∈ BV (0, R), the open ball in V centered at the origin and of radius R, there holds

(2.4) 〈Av −Aw, v − w〉V ′,V ≥ γ(R)χ(‖v − w‖V )‖v − w‖V .

ii) Hölder continuity. There exist a function Γ : R+ → R+ and a real number α ∈ (0, 1] such that for
all R ≥ 0 and for all v, w ∈ BV (0, R),

(2.5) ‖Av −Aw‖V ′ ≤ Γ(R)‖v − w‖αV .

Under these assumptions, the model problem (1.3) is well-posed; see, e.g., [13, p. 321].

Remark 2.1 (Link with a minimization problem). Introducing the energy density ϕ(x) :=
∫ x

0 ya(y) dy
for x ∈ R+ and the functional

(2.6) J : V ∋ v 7−→ J(v) := (ϕ(|∇v|), 1) − (f, v),

it is readily seen that J is differentiable in V with J ′(v) = Av − f so that J is convex owing to (2.3).
Hence, solving (1.3) amounts to seeking the unique minimizer of the functional J over V .

Example 2.2 (p-Laplacian). In the case of the p-Laplacian, for p ≥ 2, the operator A is strongly
monotone over the whole space V with χ(t) = tp−1 (the function γ in (2.4) is then taken to be constant),
while it is Lipschitz-continuous for bounded arguments, that is α = 1 in (2.5) with Γ(R) ∼ (2R)p−2. For
p ≤ 2, the operator A is strongly monotone for bounded arguments with χ(t) = t and γ(R) ∼ (2R)p−2,
while it is Hölder-continuous with parameter α = p−1 over the whole space V . Furthermore, we mention
that the setting for the p-Laplacian fits the more general framework of the so-called ϕ-Laplacian; see, e.g.,
[15].

2.2. Discretization. Let (Th)h be a shape-regular family of affine meshes of Ω consisting of simplices.
We assume that the meshes cover Ω exactly. We also suppose that each mesh Th is matching in the sense
that it contains no “hanging nodes”. Let Pk(Th), k ≥ 0, be spanned by piecewise polynomials of total
degree ≤ k on the mesh Th and let

(2.7) Vh := P1(Th) ∩ V,

be the usual first-order, continuous finite element space on the mesh Th. The discrete nonlinear problem
takes the following form

(2.8) uh ∈ Vh, (σ(∇uh),∇vh) = (f, vh) ∀vh ∈ Vh.
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Th

Dh

D

SD

Figure 1. Simplicial mesh Th and the associated vertex-centered dual mesh Dh (left)
and the fine simplicial mesh SD of D ∈ Dh (right)

The discrete nonlinear problem (2.8) is well-posed and its solution uh satisfies an a priori estimate similar
to that satisfied by the exact solution u. The properties of the operator A also imply that uh converges
to u in V .

In addition to the partition of Ω induced by the mesh Th, we will consider two other partitions. Firstly,
let Dh be the dual mesh formed around the vertices of Th using element and face barycenters; see the left
part of Figure 1 for an illustration in dimension d = 2. The set Dh is partitioned into Dh = Dint

h ∪ D
ext
h ,

where Dint
h collects the dual volumes associated with interior vertices and Dext

h those associated with
boundary vertices. For D ∈ Dh, hD denotes its diameter. Secondly, Sh is the simplicial mesh which is
simultaneously a submesh (refinement) of both Th and Dh; see the right part of Figure 1. The meshes
(Sh)h are assumed to be shape-regular with parameter denoted by κ. The mesh Dh will be used in the
error upper bound; the error estimators will also be localized on that mesh. The mesh Sh will be used in
the construction of the equilibrated flux th and in the error lower bound.

The faces of the mesh Sh are collected into the set Gh which is partitioned into Gh = Gint
h ∪ Gext

h ,
where Gint

h collects the faces inside Ω and Gext
h those located on the boundary ∂Ω. The set Gint

h is further
partitioned into Gint

h = GDh ∪ G
T
h ∪ G

DT
h , where

GDh = {F ∈ Gint
h , F ⊂ ∂D for some D ∈ Dh},(2.9)

GTh = {F ∈ Gint
h , F ⊂ ∂T for some T ∈ Th}.(2.10)

The set GDh collects the interior faces located on the boundary of the dual volumes (indicated by a dashed
line in the right part of Figure 1), GTh those located on the boundary of the original elements (indicated
by a solid line), and GDT

h the remaining ones (indicated by a dotted line).

2.3. Linearization. The continuous nonlinear problem (1.3) can be linearized at a given function u0 ∈ V .
To this purpose, a linear or affine flux function σL : R

d → R
d is introduced (the dependence of σL on u0

is left implicit to alleviate the notation), leading to the continuous linearized problem

(2.11) uL ∈ V, (σL(∇uL),∇v) = (f, v) ∀v ∈ V.

Similarly, for the discrete nonlinear problem (2.8), the discrete linearized problem is

(2.12) uL,h ∈ Vh, (σL(∇uL,h),∇vh) = (f, vh) ∀vh ∈ Vh.

An important property is that this yields the following commuting diagram

continuous nonlinear (1.3)
discretization

−→ discrete nonlinear (2.8)




y
linearization





y
linearization

continuous linearized (2.11)
discretization

−→ discrete linearized (2.12)

.
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It is convenient to introduce the linearized operator AL : V → V ′ such that for all u, v ∈ V ,

(2.13) 〈ALu, v〉V ′,V := (σL(∇u),∇v).

In practice, starting from an initial guess u0
L,h ∈ Vh, a sequence of discrete solutions {ui

L,h}i≥1 is generated
through the following iterative algorithm: For i ≥ 1,

(1) Linearize the flux function at ui−1
L,h ;

(2) Solve the discrete linearized problem (2.12) for ui
L,h;

(3) If desired precision is reached, then stop, else set i← (i + 1) and go to step (1).

One of the central points of the present paper is the choice of the stopping criterion. We propose it in
Section 3.3 below with the purpose to balance discretization and linearization errors.

There are two basic choices for linearizing the flux function σL at a given u0. The first one is,

(2.14) ∀ξ ∈ R
d, σL(ξ) := a(|∇u0|)ξ.

This choice has been considered by Chaillou and Suri [11, 12]. The second one, assuming that a is
differentiable on R+ and that xa′(x) is bounded by xp−2 for large x, is

(2.15) ∀ξ ∈ R
d, σL(ξ) := a(|∇u0|)ξ + a′(|∇u0|)

1

|∇u0|
(∇u0 ⊗∇u0)(ξ −∇u0).

In the context of the above iterative loop, the choice (2.14) corresponds to a quasi-Newton iteration
for solving the discrete nonlinear problem (2.8), while (2.15) corresponds to the full Newton–Raphson
iteration. In the case (2.15), we slightly abuse the terminology since the operator AL is actually affine.

Proving the well-posedness of the linearized problems (2.11) and (2.12) and the convergence of the
above iterative loop goes beyond the scope of the present paper. Henceforth, we make the assumption
that these properties indeed hold. Incidentally, we observe that if the iterative loop converges, then
necessarily ui

L,h → uh, the unique solution to (2.8), as i → +∞. We also remark that in the context of

the p-Laplacian, we need to assume that for all i ≥ 0, the gradient norm of ui
L,h is positive everywhere in

the domain. In our numerical experiments, all the discrete problems were indeed found to be well-posed,
and the iterative loop did converge. Actually, the choice (2.15) associated with the Newton–Raphson
iteration led to much faster convergence rates than the choice (2.14) associated with the quasi-Newton
iteration.

Remark 2.3 (Anisotropic diffusion for Newton–Raphson linearization). We observe that the choice (2.15)
for the linearized flux function amounts to adding anisotropic (rank-one) diffusion to the isotropic diffu-
sion a(|∇u0|) obtained using the linearization (2.14).

3. A posteriori error estimates

We state and prove here our a posteriori error estimates and give our stopping criterion for iterative
linearizations.

Recalling the definition of the error measure (1.4) and that of the energy norm, and using the defini-
tion (2.1) of the nonlinear operator A, the goal of this section is to derive guaranteed upper bounds for
the quantity

(3.1) Ju(uL,h) := ‖Au−AuL,h‖V ′ = sup
v∈V \{0}

(σ(∇u)− σ(∇uL,h),∇v)

‖∇v‖p
.

Although the error measure Ju(uL,h) is not equivalent to the energy error ‖u− uL,h‖V , we observe that
under the assumption that uL,h is uniformly bounded in V , the monotonicity and Hölder continuity
properties of the operator A readily imply that Ju(uL,h)→ 0 if and only if ‖u− uL,h‖V → 0.



GUARANTEED AND ROBUST A POSTERIORI ESTIMATES FOR A CLASS OF NONLINEAR PROBLEMS 7

3.1. Abstract a posteriori error estimate distinguishing the discretization and linearization

errors. Following [12], we now distinguish the discretization and linearization errors:

Theorem 3.1 (Abstract a posteriori error estimate distinguishing the discretization and linearization
errors). Let u ∈ V be the solution of (1.3) and let uL,h ∈ Vh be arbitrary. Then,

(3.2) Ju(uL,h) ≤ ‖f −ALuL,h‖V ′ + ‖ALuL,h −AuL,h‖V ′ .

Proof. Since Au = f in V ′, we infer that

‖Au−AuL,h‖V ′ = ‖f −AuL,h‖V ′ = ‖f ±ALuL,h −AuL,h‖V ′ ,

and we conclude using the triangle inequality. �

Remark 3.2 (Discretization and linearization errors). Following [12], we call the first term in the right-
hand side of (3.2) the discretization error and the second one the linearization error. Since ALuL = f ,
where uL is the solution to the continuous linearized problem (2.11), the discretization error can also be
written as ‖ALuL −ALuL,h‖V ′ .

Remark 3.3 (Arbitrary uL,h). In the statement of Theorem 3.1, the discrete function uL,h need not be
the solution of the discrete linearized problem (2.12), but can instead be arbitrary in Vh. The same remark
holds for the statement of Theorem 3.5 below.

3.2. Guaranteed and fully computable a posteriori error estimate. To define our a posteriori
error estimate, we suppose the following:

Assumption 3.4 (Local conservation). There exists a vector field th ∈Wq(div, Ω) := {v ∈ Lq(Ω); ∇ ·
v ∈ Lq(Ω)} such that

(3.3) (∇ · th, 1)D = (f, 1)D ∀D ∈ Dint
h .

For each D ∈ Dh, let the residual estimator ηR,D, the diffusive flux estimator ηDF,D, and the lineariza-
tion estimator ηL,D be defined as

ηR,D := mD‖f −∇·th‖q,D,(3.4)

ηDF,D := ‖σL(∇uL,h) + th‖q,D,(3.5)

ηL,D := ‖σ(∇uL,h)− σL(∇uL,h)‖q,D.(3.6)

Here, mD = CP,p,DhD if D ∈ Dint
h and mD = CF,p,D,∂ΩhD if D ∈ Dext

h and CP,p,D is the constant from
the generalized Poincaré inequality

(3.7) ‖ϕ− ϕD‖p,D ≤ CP,p,DhD‖∇ϕ‖p,D ∀ϕ ∈W 1,p(D),

D ∈ Dint
h (here ϕD = (ϕ, 1)D/|D|) and CF,p,D,∂Ω is the constant from the generalized Friedrichs inequality

(3.8) ‖ϕ‖p,D ≤ CF,p,D,∂ΩhD‖∇ϕ‖p,D ∀ϕ ∈W 1,p(D) such that ϕ = 0 on ∂Ω ∩ ∂D,

D ∈ Dext
h . If p = 2, CP,p,D = 1/π if D is convex and CF,p,D,∂Ω = 1 in general, cf. [40] and the

references therein. For p ≥ 2, CP,p,D = π−2/pd
1

2
− 1

p if D is convex, see [32]. Note, however, that using
the construction of th by (5.6a)–(5.6b) from Section 5 below, the values of these constants are actually
not needed whenever f is piecewise constant. We can now state the main result of this section:

Theorem 3.5 (A posteriori error estimate). Let u ∈ V be the solution of (1.3) and let uL,h ∈ Vh

be arbitrary. Let the error estimators ηR,D, ηDF,D, and ηL,D be given by (3.4)–(3.6). Then, under
Assumption 3.4, there holds

(3.9) Ju(uL,h) ≤ η :=

{

∑

D∈Dh

(ηR,D + ηDF,D)q

}1/q

+

{

∑

D∈Dh

ηq
L,D

}1/q

.
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Proof. We estimate the two terms in the right-hand side of (3.2).
(i) Estimate on the discretization error. Observe that for all v ∈ V with ‖v‖V = 1, there holds

〈f −ALuL,h, v〉V ′,V = 〈f ±∇·th −ALuL,h, v〉V ′,V = 〈f −∇·th, v〉V ′,V + 〈∇·th −ALuL,h, v〉V ′,V .

The first term is bounded as follows,

〈f −∇·th, v〉V ′,V = (f −∇·th, v) =
∑

D∈Dint

h

(f −∇·th, v)D +
∑

D∈Dext

h

(f −∇·th, v)D

=
∑

D∈Dint

h

(f −∇·th, v − vD)D +
∑

D∈Dext

h

(f −∇·th, v)D

≤
∑

D∈Dint

h

‖f −∇·th‖q,D‖v − vD‖p,D +
∑

D∈Dext

h

‖f −∇·th‖q,D‖v‖p,D

≤
∑

D∈Dh

mD‖f −∇·th‖q,D‖∇v‖p,D =
∑

D∈Dh

ηR,D‖∇v‖p,D,

where we have used the Hölder inequality together with (3.7) and (3.8). Furthermore, for the second
term, using the Green theorem, definition (2.13) of the linearized operator, and the Hölder inequality
yields

〈∇·th −ALuL,h, v〉V ′,V = −(th + σL(∇uL,h),∇v) ≤
∑

D∈Dh

ηDF,D‖∇v‖p,D.

Collecting the two above bounds leads to

〈f −ALuL,h, v〉V ′,V ≤
∑

D∈Dh

(ηR,D + ηDF,D)‖∇v‖p,D,

whence the Hölder inequality yields

‖f −ALuL,h‖V ′ = sup
v∈V, ‖v‖V =1

〈f −ALuL,h, v〉V ′,V ≤

{

∑

D∈Dh

(ηR,D + ηDF,D)q

}1/q

.

(ii) Estimate on the linearization error. For all v ∈ V with ‖v‖V = 1, using definitions (2.1) and (2.13)
along with the Hölder inequality yields

〈ALuL,h −AuL,h, v〉V ′,V = (σL(∇uL,h)− σ(∇uL,h),∇v) ≤

{

∑

D∈Dh

ηq
L,D

}1/q

,

which completes the proof. �

3.3. Balancing discretization and linearization errors. We are now in a position to specify the
stopping criterion for the iterative loop outlined in Section 2.3.

3.3.1. Global stopping criterion. Choose a positive parameter γ and stop the iterative loop whenever

(3.10) ηL :=

{

∑

D∈Dh

ηq
L,D

}1/q

≤ γ

{

∑

D∈Dh

(ηR,D + ηDF,D)q

}1/q

=: γηD.

This criterion equilibrates the global linearization estimator ηL and the global discretization estimator ηD,
up to the constant γ. It is global since it is based on quantities defined for all mesh elements. As we will
see in Theorem 4.8 below, it is sufficient for proving global efficiency.
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3.3.2. Local stopping criterion. Choose a family of positive parameters {γD}D∈Dh
and stop the iterative

loop whenever

(3.11) ηL,D ≤ γD (ηR,D + ηDF,D) ∀D ∈ Dh.

This criterion equilibrates the local linearization estimators ηL,D and the local discretization estimators
ηR,D + ηDF,D, up to the constants γD. It is local since it is based on quantities defined for each mesh
element separately. As we will see in Theorem 4.4 below, it implies local efficiency and hence suitability
of our a posteriori error estimates to adaptive mesh refinement.

4. Efficiency of the estimators

We examine in this section the local and global efficiencies of our estimates.

4.1. Preliminaries. Henceforth, we set for convenience

(4.1) σL,h := σL(∇uh).

Taking into account the definitions (2.14) or (2.15) of the linearized flux function σL and recalling that
both uh and the function u0 at which the linearization is performed are piecewise affine, it is inferred that
σL,h ∈ [P0(Th)]d. The results presented in this section are valid more generally under the assumption
σL,h ∈ [Pk(Th)]d for some fixed polynomial degree k. We also assume in this section that f ∈ Pk(Th).

In the sequel, A . B stands for the inequality A ≤ CB with a generic constant C independent of the
mesh size h, the nonlinear and linearized functions a and aL, and the Lebesgue exponent p, but that can
depend on the shape regularity parameter κ of the mesh family (Sh)h and on the polynomial degree k.

Assumption 4.1 (Approximation property of the reconstructed flux). The reconstructed flux th is in
[Pk(Th)]d and there holds for all D ∈ Dh,

(4.2) ηDF,D . ηres,D :=

{

∑

T∈SD

hq
T ‖f +∇ · σL,h‖

q
q,T +

∑

F∈GT
D

hF ‖[[σL,h · n]]‖qq,F

}
1

q

,

where SD ⊂ Sh collects the simplices of Sh included in D, and GTD ⊂ G
T
h collects the faces of GTh included

in D; moreover, [[·]] denotes the jump across a face.

We will verify Assumption 4.1 in Section 5 below. Under this assumption, we now prove a simple
result, relating our estimates to classical residual ones; see, e.g., [31].

Lemma 4.2 (Upper bound by residual estimators). Under Assumption 4.1, there holds

(4.3) ηR,D + ηDF,D . ηres,D ∀D ∈ Dh.

Proof. Taking into account (4.2), it remains to show the bound on ηR,D. Since hD . hT for all T ∈ SD,
there holds

ηR,D . hD

{

∑

T∈SD

‖f −∇ · th‖
q
q,T

}
1

q

.

{

∑

T∈SD

hq
T ‖f −∇ · th‖

q
q,T

}
1

q

.

As a result, using the triangle inequality and the inverse inequality (A.1) with k = 1 and r = q leads to

ηR,D .

{

∑

T∈SD

hq
T ‖f +∇ · σL,h‖

q
q,T

}
1

q

+

{

∑

T∈SD

hq
T ‖∇ · (σL,h + th)‖qq,T

}
1

q

.

{

∑

T∈SD

hq
T ‖f +∇ · σL,h‖

q
q,T

}
1

q

+ ηDF,D,

whence the result readily follows. �
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4.2. Local efficiency. We address here the local efficiency of the estimators of Theorem 3.5. We first
give a result relying on the techniques presented in [35]. The proof is postponed to Section A.2.

Lemma 4.3 (Local efficiency of residual estimators). For all D ∈ Dh, there holds

(4.4) ηres,D . ‖σ(∇u)− σ(∇uL,h)‖q,D + ηL,D.

We are now ready to announce and prove the main result of this section.

Theorem 4.4 (Local efficiency). Let (3.11), with γD small enough, and (4.2) hold true. Then, for all
D ∈ Dh,

(4.5) ηL,D + ηR,D + ηDF,D . ‖σ(∇u)− σ(∇uL,h)‖q,D.

Proof. Using (3.11), (4.3), and (4.4),

ηL,D + ηR,D + ηDF,D ≤(1 + γD)(ηR,D + ηDF,D) ≤ C(1 + γD)ηres,D

≤C̃(1 + γD)(‖σ(∇u)− σ(∇uL,h)‖q,D + ηL,D)

≤C̃(1 + γD)‖σ(∇u)− σ(∇uL,h)‖q,D + C̃(1 + γD)γD(ηR,D + ηDF,D).

Thus, it suffices to choose γD = min(1, 1/(2C̃)) in order to obtain

ηL,D + ηR,D + ηDF,D ≤ 2C̃(1 + γD)‖σ(∇u)− σ(∇uL,h)‖q,D.

�

Remark 4.5 (Local efficiency). Whereas the estimates are derived for the error measure Ju(uL,h), the
local efficiency of Theorem 4.4 uses the Lq-norm of the difference of fluxes. This is not fully satisfactory,
but it seems to be the price to obtain local efficiency and not only global, as presented in the next section.

Remark 4.6 (Local efficiency on the given element only). Owing to the fact that only (a subset of) the
interior faces of SD appear(s) in (4.2), the local efficiency result (4.5) is stated on the given dual volume
D only (no neighbors appear). This is in correspondence with the fact that the stopping criterion (3.11)
is also purely local.

4.3. Global efficiency. We address here the global efficiency of the estimators of Theorem 3.5, relying
on the techniques presented in [35] and [36]. The proof is postponed to Section A.3.

Lemma 4.7 (Global efficiency of residual estimators). There holds

(4.6) ηres :=

{

∑

T∈Sh

hq
T ‖f +∇ · σL,h‖

q
q,T +

∑

F∈GT
h

hF ‖[[σL,h · n]]‖qq,F

}
1

q

. ‖Au−AuL,h‖V ′ + ηL.

We are now ready to announce the main result of this section. The proof is skipped since it follows by
the same arguments as in Theorem 4.4.

Theorem 4.8 (Global efficiency). Let (3.10), with γ small enough, and (4.2) hold true. Then,

(4.7) η . Ju(uL,h).

Remark 4.9 (Robustness). Theorem 4.8 means that the a posteriori error estimates of Theorem 3.5
are fully robust with respect to the “size” of the nonlinearity. Indeed, the lower bound of Theorem 4.8 is
independent of the nonlinear function a, as well as of the Lebesgue exponent p.
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5. Flux reconstruction

In this section, we give two examples for the reconstructed flux th satisfying Assumptions 3.4 and 4.1.
In both cases, the reconstructed flux th belongs to the lowest-order Raviart–Thomas–Nédélec finite
element space RTN(Sh) associated with the simplicial submesh Sh.

Recalling the notation σL,h := σL(∇uL,h), the finite element approximation to the continuous lin-
earized problem (2.11), namely (2.12), can be written in the form

(5.1) (σL,h,∇vh) = (f, vh), ∀vh ∈ Vh,

and observe that by assumption σL,h is piecewise constant on Th. We first assume that f is piecewise con-
stant on Th. The general case is postponed to Remark 5.5 below. Under these assumptions, following [4,
Lemma 3] (cf. also [40]), we infer that (5.1) is equivalent to finding uL,h ∈ Vh such that

(5.2) −(σL,h · nD, 1)∂D = (f, 1)D ∀D ∈ Dint
h ,

where nD denotes the outward unit normal vector to D. The scheme defined by (5.2) is also nothing but
the vertex-centered finite volume method for approximating (2.11). In the vertex-centered finite volume
framework, f does not need to be piecewise constant on Th.

The degrees of freedom of the reconstructed flux th ∈ RTN(Sh) are its normal components on all the
faces F ∈ Gh. In the sequel, for F ∈ Gh, nF denotes a unit normal vector to F (its orientation is fixed
but irrelevant). We first set

(5.3) th · nF := −σL,h · nF ∀F ∈ GDh .

An immediate and important consequence of (5.2) and (5.3) is

Lemma 5.1 (Local conservation). Assumption 3.4 holds true.

Following [40], there exist several ways of defining th · nF on the remaining faces of Gh (that is, those
located inside some D ∈ Dh and those located on the boundary ∂Ω). We present here two methods.

• Direct prescription: Firstly, we can directly prescribe

(5.4) th · nF := −{{σL,h · nF }}

on all the remaining faces. Here, {{·}} denotes the mean-value on interior faces and the actual
value on boundary faces.
• Prescription by local linear system solves: Secondly, following [5, 18, 40], we can solve local

Neumann problems: for a given D ∈ Dh, let

(5.5) RTNN(SD) = {vh ∈ RTN(SD); vh · nF = −σL,h · nF ∀F ∈ GDh }.

Define RTNN,0(SD) as RTNN(SD) but with the normal flux condition vh · nF = 0 for all
F ∈ GDh . Let P

∗
0(SD) be spanned by piecewise constants on SD with zero mean on D when

D ∈ Dint
h ; when D ∈ Dext

h , the mean value condition is not imposed. The local problem consists
in finding th ∈ RTNN(SD) and qh ∈ P

∗
0(SD), the mixed finite element approximations (cf. [8])

of local Neumann problems on D ∈ Dint
h and local Neumann/Dirichlet problems on D ∈ Dext

h :

(th + σL,h,vh)D − (qh,∇ · vh)D = 0 ∀vh ∈ RTNN,0(SD),(5.6a)

(∇ · th, φh)D = (f, φh)D ∀φh ∈ P
∗
0(SD).(5.6b)

Note in particular that the function −σL,h ·nF , used to impose the Neumann boundary condition
on ∂D for each D ∈ Dint

h , satisfies by (5.2) the compatibility condition with the datum f , whence
the existence and uniqueness of the solution to (5.6a)–(5.6b).

Remark 5.2 (Comparison of the two approaches). A solution of a local linear system on each D ∈ Dh

corresponding to (5.6a)–(5.6b) is necessary in the second case, but the advantage over the first case is
twofold. Firstly, the effectivity indices are close to the optimal value of one, as observed in our numerical
experiments. Secondly, owing to the assumption that f is piecewise constant on Th and to (5.6b), ‖f −
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∇ · th‖q,T = 0 for all T ∈ Sh, so that ηR,D = 0 for all D ∈ Dh and one does not need to evaluate the
constants CP,p,D and CF,p,D,∂Ω from (3.7) and (3.8), respectively. For more details, we refer to [40].

We now consider Assumption 4.1. The proof is given in Section A.4.

Lemma 5.3 (Approximation property). Assume that th is prescribed either directly through (5.4) or by
solving the local problems (5.6a)–(5.6b). Then, Assumption 4.1 holds true.

Remark 5.4 (Other flux equilibration procedures). The procedure (5.6a)–(5.6b) is closely related to [27].
Many other approaches rely on equilibration on the given mesh Th. We cite in particular [1, 7, 14, 23]. All
these procedures can likewise be used to produce a discrete Wq(div, Ω)-conforming vector field satisfying
the local conservation property (Assumption 3.4). It is unknown to the authors whether these vector fields
also satisfy the approximation property Assumption 4.1). If it is the case, then they can be used in the
present framework. Following Remark 4.6, a slight modification of the stopping criterion (3.11) would be
necessary for the approaches relying on the given mesh Th.

Remark 5.5 (General f). When f is not piecewise constant on Th, we can proceed as follows: denote
fh ∈ P0(Th) the function given by elementwise mean values of f . Consider ū, the solution to (1.3) with
f replaced by fh, and uL,h, the approximation of (2.12) with f likewise replaced by fh. Then, by the
triangle inequality,

Ju(uL,h) = ‖Au−AuL,h‖V ′ ≤ ‖Au−Aū‖V ′ + ‖Aū−AuL,h‖V ′ .

The second term fits the framework of Sections 4 and 5 and is therefore bounded by the estimator η (with
f replaced by fh). The first term can be bounded as in the proof of Theorem 3.5 by the data oscillation
term

ηOsc :=

{

∑

T∈Th

(‖f − fh‖q,T CP,p,T hT )q

}1/q

.

Note that this term is localized on the mesh Th and not on Dh.

6. Numerical results

We present in this section numerical experiments for the p-Laplacian. We first recall that the error
measure Ju(uL,h) = ‖Au−AuL,h‖V ′ involves a dual norm that cannot be evaluated explicitly even if u is
known. Following [12], however, we deduce from (3.1) the following computable upper and lower bounds
for Ju(uL,h):

Ju(uL,h) ≤ J up
u (uL,h) := ‖σ(∇u)− σ(∇uL,h)‖q,(6.1a)

Ju(uL,h) ≥ J low
u (uL,h) :=

(σ(∇u)− σ(∇uL,h),∇(u − uL,h))

‖∇(u− uL,h)‖p
.(6.1b)

As we will see below, our estimate η defined in (3.9) turns out to be very close to J up
u (uL,h), whence our

estimates are indeed very close to the error in the fluxes, which are often the physically most interesting
quantity. We will use below the corresponding upper and lower effectivity indices, defined respectively as

Iup :=
η

J up
u (uL,h)

and I low :=
η

J low
u (uL,h)

.

Consequently, the effectivity index for the error Ju(uL,h), defined as

I :=
η

Ju(uL,h)
,

lies between Iup and I low. We observe that Iup can become smaller than one, which does not contradict
that our estimates give a guaranteed upper bound; only I has to be greater than or equal to one.

We use continuous, piecewise affine finite elements and the Newton–Raphson method, which corre-
sponds to solving (2.12) with σL(∇uL,h) defined by (2.15). In order to construct the equilibrated flux
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flux potential

p regularity error up error low estimate regularity error energy
1.4 W1.57,q 1.01 1.01 1.00 W 4.93,p 1.01
3 W2.33,q 1.01 1.01 1.01 W 2.17,p 1.00
10 W2.80,q 1.00 1.68 1.00 W 1.31,p 0.31

Table 1. Flux and potential regularities and experimental orders of convergence, case 1

th, we use the solution of local Neumann problems by the mixed finite element method (5.6a)–(5.6b).
We use the local stopping criterion (3.11) with γD = 0.1 for all D ∈ Dh. On an initial mesh, we start the
nonlinear iterative solver from the interpolation of the exact solution. On refined meshes, we interpolate
the approximate solution from the next coarser mesh. We consider the following overall strategy:

(1) On the given mesh, perform the iterative linearization of Section 2.3 until the local stopping
criterion (3.11) is satisfied;

(2) If η is less than the desired precision, then stop, else refine the mesh adaptively, on the basis of
η, and go to step (1).

In practice, all the elements where the estimate exceeds 50% of the maximal error are marked for refine-
ment. The error stemming from inhomogeneous boundary conditions is not taken into account.

All the linear systems within the nonlinear iterative procedure are solved by a direct solver. The
present approach can also be combined with a linear iterative solver, and to further save computational
effort, the latter can be stopped whenever the algebraic error does not contribute significantly to the
overall error, following [21].

6.1. A first test case. In this first test case, Ω := ]0, 1[× ]0, 1[, f = 2, and the Dirichlet boundary
condition is given by the exact solution

u(x, y) = −
p− 1

p
|(x, y)− (0.5, 0.5)|

p

p−1 +
p− 1

p

(1

2

)

p
p−1

.

This is a two-dimensional extension of a test case from [11]. The Sobolev regularity for the potential u
and the flux −σ(∇u) is reported in Table 1 for the different values of p considered in the experiments.
More generally, u ∈ W su,p(Ω) and σ(∇u) ∈ Wsσ ,q(Ω) := [W sσ ,q(Ω)]d with su < p/(p − 1) + 2/p and
sσ < 3 − 2/p. In particular, the flux is always sufficiently regular for all values of p ∈ (1, +∞) (that
is, sσ > 1), whereas the potential can be less regular than W 2,p for values of p larger than ∼ 3.73. In
Table 1, we also report the experimental orders of convergence

e.o.c. :=
log(eN )− log(eN−1)

1
2 log |VN−1| −

1
2 log |VN |

,

where eN is the error on the last mesh, eN−1 is the error on the last but one mesh, and |VN | and |VN−1|
denote the corresponding number of vertices. For the errors ei, we consider the error upper bound
J up

u (uL,h) from (6.1a), the error lower bound J low
u (uL,h) from (6.1b), the total estimator η, and the

energy error ‖∇(u− uL,h)‖p. We only consider here uniformly refined meshes; since the flux −σ(∇u) is
always regular and our a posteriori error estimates are related to the error in the flux, adaptive refinement
does not lead here to improved convergence rates.

Figures 2–4 present the error upper and lower bounds J up
u (uL,h) and J low

u (uL,h), the total estimators
η, and the corresponding upper and lower effectivity indices Iup and I low as a function of the number
of mesh vertices. We can see from Figures 2–4 that Iup is very close to one for all the considered values
of p. We have proven in Sections 3 and 4 that η ∼ Ju(uL,h), i.e., that η and Ju(uL,h) are equivalent up
to a constant independent of the nonlinear function a and of p. Thus, since numerically η ∼ J up

u (uL,h),
we deduce that in the present case, Ju(uL,h) ∼ J up

u (uL,h). This is not the case for the computable lower
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Figure 2. Estimated and actual errors (left) and corresponding effectivity indices (right)
for p = 1.4, case 1
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Figure 3. Estimated and actual errors (left) and corresponding effectivity indices (right)
for p = 3, case 1

bound J low
u (uL,h) for the larger values of p. The increase of the lower effectivity index I low for p = 10

(see Figure 4, right) can be attributed to the fact that in this case, the potential has low regularity, as
reflected in Table 1 and that J low

u (uL,h) is scaled by the reciprocal of ‖∇(u− uL,h)‖p.
Figure 5 compares the error distribution predicted by our estimator η (we show the quantity ηR,D +

ηDF,D + ηL,D on each dual volume) with the actual error represented by the localized version of its upper
bound, namely ‖σ(∇u) − σ(∇uL,h)‖q,D. By Remark 5.2, ηR,D = 0 for all D ∈ Dh in the present case,
while ηL,D is bounded by (3.11); hence, the only significative contribution to η stems from the diffusive
flux estimators ηDF,D. We stress that all the above results are presented with the Newton–Raphson
method not fully converged but stopped following (3.11) with γD = 0.1.

Finally, Figures 6–7 illustrate the performance of our stopping criterion for the Newton–Raphson
iteration by comparing it to a more classical stopping criterion, namely ηL ≤ 10−8. Firstly, Figure 6
presents the discretization estimator ηD, the linearization estimator ηL, the total estimator η, and error
upper bound J up

u (uL,h) as a function of Newton–Raphson iterations on a fixed mesh. We clearly see
that the linearization estimator dominates the discretization one only at the first few iterations, and then
becomes negligible while the total error stagnates. This confirms that the Newton–Raphson iteration can
be safely stopped rather early. This effect becomes more pronounced as p is increased and the mesh is
refined. For instance, in the left part of Figure 6, the global stopping criterion (3.10) is reached after 5
iterations and the classical one after 11 iterations; in the right part of the figure, these numbers become
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Figure 4. Estimated and actual errors (left) and corresponding effectivity indices (right)
for p = 10, case 1
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Figure 5. Estimated (left) and actual (right) error distribution for p = 3, case 1

respectively 4 and 12. Secondly, the left part of Figure 7 presents the Newton–Raphson iteration numbers
on a series of uniformly refined meshes in two situations, namely the global stopping criterion (3.10)
and the classical one. It appears that around 50% of Newton–Raphson iterations can be spared. The
advantage of the present algorithm shows more noticeably in the right part of Figure 7. Here, we refine the
mesh in an adaptive way. As we remarked before, this does not lead to increased experimental orders of
convergence, as the flux possesses enough regularity. However, it appears that the elements slowing down
the Newton–Raphson convergence are suitably refined, so that now the number of necessary iterations
with the global stopping criterion (3.10) with γ = 0.1 on refined meshes drops down to one or two.
This should be compared with the upper curve in the left part of Figure 7, showing that the number of
iterations using the classical stopping criterion in combination with uniform mesh refinement is about
10. A similar behavior is observed for the case p = 1.4 (not shown). This effect is less pronounced for
p = 3 since in this case, the Newton–Raphson method always converges in a few iterations.

6.2. A second test case. We consider here a test case taken from [9, Example 3]. We consider the
L-shaped domain Ω := ]−1, 1[× ]−1, 1[ \ [0, 1]× [−1, 0] and prescribe the Dirichlet boundary condition
and the source term f by the exact solution

u(r, θ) = rα sin(αθ).
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Figure 6. Discretization and linearization estimators, total estimator, and total error as
a function of Newton–Raphson iterations for p = 10 and the 4th level uniformly refined
mesh (left) and p = 50 and the 5th level uniformly refined mesh (right), case 1
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Figure 7. Number of Newton–Raphson iterations for the classical stopping criterion
and the global stopping criterion (3.10) on uniformly (left)/adaptively (right) refined
meshes, p = 10, case 1

Here (r, θ) are the polar coordinates and α = 7/8. We consider the value p = 4 for which the regularity
of the potential and the flux, as defined above, are su = 1.38 and sσ = 1.13. The experimental orders of
convergence are close to one for the error upper and lower bounds and for the error estimate using either
uniform and adaptively refined meshes, while the experimental order of convergence for the potential
energy norm is 0.38 on uniform meshes and 0.89 on adaptively refined meshes.

For this second test case, f is not piecewise constant and hence, following Remark 5.5, the final a
posteriori error estimate is given by η + ηOsc, with f replaced by fh in η. The stopping criteria of
Section 3.3 are not modified, that is, they rely on η and its components only. Likewise, we only use η
and not η + ηOsc to drive mesh adaptivity. Figure 8 presents the error upper and lower error bounds
J up

u (uL,h) and J low
u (uL,h), the total estimators η, and the effectivity indices (η + ηOsc)/J

up
u (uL,h) and

(η + ηOsc)/J
low
u (uL,h) as a function of the number of mesh vertices. In particular the effectivity indices

(η + ηOsc)/J
up
u (uL,h) are dominated by the data oscillation ηOsc/J

up
u (uL,h) for rough meshes, since

the source term f is singular here. They only tend to the optimal value of one when ηOsc becomes
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Figure 8. Estimated and actual errors (left) and corresponding effectivity indices (right)
for p = 4, case 2
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Figure 9. Estimated (left) and actual (right) error distribution for p = 4, case 2

insignificant. The effectivity index η/J up
u (uL,h) is close to one on all meshes, uniformly or adaptively

refined, in agreement with the theory and similarly to case 1. Finally, Figure 9 shows the comparison of
the predicted error distribution given by our estimator η and of the actual error, both quantities being
localized as before, at the 5th adaptively refined mesh.

Appendix A. Technical results

In this appendix we collect various technical results. Henceforth, Cκ denotes a generic constant that
only depends on the shape-regularity parameter κ of the mesh family (Sh)h and whose value can change
at each occurrence.

A.1. Inverse inequality. Let T ∈ Sh with diameter denoted by hT . For an integer k ≥ 1, let Pk(T )
denote the vector space of polynomials of total degree ≤ k on T .

Lemma A.1. For all v ∈ Pk(T ) and for all r ∈ [1, +∞], there holds

(A.1) ‖∇v‖r,T ≤ Ch−1
T ‖v‖r,T ,

where the constant C can depend on d, k, and κ, but is independent of the Lebesgue exponent r.
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Proof. Following Verfürth [37], for a set K ⊂ Ω with positive d-dimensional measure, we consider the
constants

C♯
d,k,r(K) := sup

v∈Pk(K)\{0}

|K|
1

2
− 1

r ‖v‖r,K
‖v‖K

,(A.2)

C♭
d,k,r(K) := sup

v∈Pk(K)\{0}

‖v‖K

|K|
1

2
− 1

r ‖v‖r,K
,(A.3)

where |K| denotes the d-dimensional Lebesgue measure of K. It is proven in [37] that

C♯
d,k,r(K) ≤

{

1 if 1 ≤ p ≤ 2,

C♯
d,k,∞(K)1−

2

r if 2 < p ≤ +∞,
(A.4)

C♭
d,k,r(K) ≤

{

C♯
d,k,∞(K)

2

r
−1 if 1 ≤ p ≤ 2,

1 if 2 < p ≤ +∞,
(A.5)

so that

C♭
d,k,r(K)C♯

d,k,r(K) ≤ C♯
d,k,∞(K)|1−

2

r
|.

Moreover, for a d-dimensional simplex T , there holds

(A.6) C♯
d,k,∞(T ) ≤ C⋆

d,k := (2k + 2)
1

2 (4k + 2)
d−1

2 .

Hence, since C⋆
d,k ≥ 1 and |1− 2

r | ≤ 1,

C♭
d,k,r(T )C♯

d,k,r(T ) ≤ C⋆
d,k.

As a result, using the constant Cκ from the usual inverse inequality in the L2-setting [17] leads to

‖∇v‖r,T ≤ C♭
d,k,r(T )|T |

1

r
− 1

2 ‖∇v‖T ≤ Cκh−1
T C♭

d,k,r(T )|T |
1

r
− 1

2 ‖v‖T

≤ Cκh−1
T C♭

d,k,r(T )C♯
d,k,r(T )‖v‖r,T ≤ C⋆

d,kCκh−1
T ‖v‖r,T ,

completing the proof. �

A.2. Proof of Lemma 4.3. We will use the following inequalities (see [33] for the L2 framework and [35,
37] for the extension to the Lp framework): for all T ∈ Sh, for all v ∈ Pk(T ), for all F ⊂ ∂T , and for all
φ ∈ Pk(F ), there holds

‖v‖q,T . sup
w∈Pk(T ), ‖w‖p,T =1

(v, ΨT w)T ,(A.7a)

‖∇(ΨT v)‖p,T .h−1
T ‖v‖p,T ,(A.7b)

‖φ‖q,F . sup
w∈Pk(F ), ‖w‖p,F =1

(φ, ΨF w)F ,(A.7c)

‖∇(ΨF φ)‖p,T .h
− 1

q

F ‖φ‖p,F ,(A.7d)

‖ΨF φ‖p,T .h
1

p

F ‖φ‖p,F ,(A.7e)

where ΨT is the usual element bubble associated with T and ΨF the usual extension operator on the
mesh Sh associated with the face bubble on F . The proof is decomposed into three parts. Let D ∈ Dh.

We first prove that

(A.8) hT ‖f +∇ · σL,h‖q,T . ‖σ(∇u)− σL,h‖q,T ∀T ∈ SD.
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Let T ∈ SD, set v := f + ∇ · σL,h and observe that v ∈ Pk(T ). Thus, using (A.7a), (1.3), the Green
theorem, the fact that ΨT vanishes on ∂T , the Hölder inequality, and (A.7b) leads to

‖v‖q,T . sup
w∈Pk(T ), ‖w‖p,T =1

(f +∇ · σL,h, ΨT w)T

= sup
w∈Pk(T ), ‖w‖p,T =1

(σ(∇u)− σL,h,∇(ΨT w))T

. sup
w∈Pk(T ), ‖w‖p,T =1

‖σ(∇u)− σL,h‖q,T h−1
T ‖w‖p,T

= h−1
T ‖σ(∇u)− σL,h‖q,T ,

whence (A.8) follows.
We next show that

(A.9) h
1

q

F ‖[[σL,h · n]]‖q,F . ‖σ(∇u)− σL,h‖q,ωF
∀F ∈ GTD ,

where ωF ⊂ Ω denotes the union of the two simplices of Sh sharing F . Note that ∪F∈GT
D

ωF forms a

partition of the dual volume D. Set φ := [[σL,h · n]] and observe that φ ∈ Pk(F ). Let w ∈ Pk(F ) with
‖w‖p,F = 1. Using (1.3), the Green theorem, the properties of the bubble functions, the Hölder inequality,
(A.7d), (A.7e), (A.8), and the fact that 1/q = 1− 1/p then yields

(φ, ΨF w)F = (f +∇ · σL,h, ΨF w)ωF
− (σ(∇u)− σL,h,∇(ΨF w))ωF

≤ ‖f +∇ · σL,h‖q,ωF
‖ΨF w‖p,ωF

+ ‖σ(∇u)− σL,h‖q,ωF
‖∇(ΨF w)‖p,ωF

. h
1

p

F ‖f +∇ · σL,h‖q,ωF
‖w‖p,F + h

− 1

q

F ‖σ(∇u)− σL,h‖q,ωF
‖w‖p,F

. h
− 1

q

F ‖σ(∇u)− σL,h‖q,ωF
‖w‖p,F = h

− 1

q

F ‖σ(∇u)− σL,h‖q,ωF
,

whence (A.9) follows from (A.7c).
Finally, combining the above results leads to ηres,D . ‖σ(∇u) − σL,h‖q,D, and using the triangle

inequality yields

‖σ(∇u)− σL,h‖q,D ≤ ‖σ(∇u)− σ(∇uL,h)‖q,D + ηL,D,

whence (4.4) follows.

A.3. Proof of Lemma 4.7. We first give a technical extension of (A.7a). Let Pk(Sh) be spanned by
piecewise polynomials of total degree ≤ k on the mesh Sh. Then, for all v ∈ Pk(Sh),

(A.10)

{

∑

T∈Sh

hq
T ‖v‖

q
q,T

}
1

q

. sup
w∈Pk(Sh), ‖w‖p=1

∑

T∈Sh

(v, hT ΨT w)T .

Indeed, for a given T ∈ Sh, multiplying (A.7a) by hT yields

{

hq
T ‖v‖

q
q,T

}
1

q . sup
w∈Pk(T ), ‖w‖p,T =1

(v, hT ΨT w)T .

Thus,

hq
T ‖v‖

q
q,T =

{

hq
T ‖v‖

q
q,T

}
1

q
{

hq
T ‖v‖

q
q,T

}
1

p . sup

w∈Pk(T ), ‖w‖p,T =
{

hq

T
‖v‖q

q,T

} 1

p

(v, hT ΨT w)T .

Consequently, since the restrictions of functions in Pk(Sh) to the elements of Sh can be chosen indepen-
dently,

∑

T∈Sh

hq
T ‖v‖

q
q,T . sup

w∈Pk(Sh), ‖w‖p,T =
{

hq

T
‖v‖q

q,T

} 1

p ∀T∈Sh

∑

T∈Sh

(v, hT ΨT w)T ,
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whence (A.10) follows by extending the supremum set and rescaling the argument w. The following
extension of (A.7c) is proven similarly: For all φ ∈ Pk(GTh ), the vector space spanned by piecewise
polynomials of total degree ≤ k on each face of GTh ,

(A.11)

{

∑

F∈GT
h

hF ‖φ‖
q
q,F

}
1

q

. sup
w∈Pk(GT

h
), ‖w‖

p,GT
h

=1

∑

F∈GT
h

(φ, h
1

q

F ΨF w)F ,

where ‖w‖p,GT
h

:=
{

∑

F∈GT
h
‖w‖pp,F

}
1

p .

We now prove that

(A.12)

{

∑

T∈Sh

hq
T ‖f +∇ · σL,h‖

q
q,T

}
1

q

. ‖∇·(σ(∇u)− σL,h)‖V ′ .

Set v|T := (f +∇ · σL,h)|T for all T ∈ Sh, and observe that v ∈ Pk(Sh). Let w ∈ Pk(Sh) with ‖w‖p = 1.
Set λ|T := hT ΨT w|T for all T ∈ Sh, and observe that λ ∈ V since ΨT vanishes on ∂T , and that owing
to (A.7b), ‖λ‖V = ‖∇λ‖p . ‖w‖p = 1. Then, proceeding as before,

∑

T∈Sh

(v, hT ΨT w)T =
∑

T∈Sh

(v, λ)T = (σ(∇u)− σL,h,∇λ)

≤ ‖∇·(σ(∇u)− σL,h)‖V ′‖λ‖V . ‖∇·(σ(∇u)− σL,h)‖V ′ ,

whence (A.12) follows from (A.10).
We next show that

(A.13)

{

∑

F∈GT
h

hF ‖[[σL,h · n]]‖qq,F

}
1

q

. ‖∇·(σ(∇u)− σL,h)‖V ′ .

Set φ|F := [[σL,h · n]]F for all F ∈ GTh and observe that φ ∈ Pk(GTh ). Let w ∈ Pk(GTh ) with ‖w‖p,GT
h

= 1.

Set λ|F := h
1

q

F ΨF w|F for all F ∈ GTh . This defines the function λ on the set
⋃

F∈GT
h

ωF (recall that

ωF ⊂ Ω denotes the union of the two simplices of Sh sharing F ), and the function λ is extended by zero
outside this set. We first observe that λ ∈ V . Moreover, since for F, F ′ ∈ GTh , F 6= F ′, ωF ∩ ωF ′ has zero
measure, it is inferred using (A.7e) that

{

∑

T∈Sh

h−p
T ‖λ‖

p
p,T

}
1

p

.

{

∑

F∈GT
h

h−p
F ‖λ‖

p
p,ωF

}
1

p

. ‖w‖p,GT
h

= 1.

Similarly, owing to (A.7d), ‖λ‖V = ‖∇λ‖p . 1. As a result,

∑

F∈GT
h

(φ, h
1

q

F ΨF w)F =
∑

F∈GT
h

(φ, λ)F =
∑

T∈Sh

{

(f +∇ · σL,h, λ)T − (σ(∇u)− σL,h,∇λ)T

}

≤

{

∑

T∈Sh

hq
T ‖f +∇ · σL,h‖

q
q,T

}
1

q
{

∑

T∈Sh

h−p
T ‖λ‖

p
p,T

}
1

p

+ ‖∇·(σ(∇u)− σL,h)‖V ′‖λ‖V

. ‖∇·(σ(∇u)− σL,h)‖V ′ ,

owing to (A.12), whence (A.13) follows from (A.11).
Finally, (A.12) and (A.13) together with the triangle inequality imply that ηres . ‖σ(∇u)− σL,h‖V ′ ,

and using a further triangle inequality leads to

‖∇·(σ(∇u)− σL,h)‖V ′ ≤ ‖∇·(σ(∇u)− σ(∇uL,h))‖V ′ + ‖∇·(σ(∇uL,h)− σL,h)‖V ′ .
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The first term in the right-hand side is equal to ‖Au− AuL,h‖V ′ , while using the Hölder inequality, the
second term is bounded by ηL as defined by (3.10). This concludes the proof.

A.4. Proof of Lemma 5.3. Consider first the case of direct prescription. Let D ∈ Dh and let T ∈ SD

with outward unit normal nT . Then, for all vh ∈ RTN(T ), the lowest-order Raviart–Thomas–Nédélec
finite element space on T ,

‖vh‖q,T ≤ C♭
d,1,q(T )|T |

1

q
− 1

2 ‖vh‖T ≤ Cκh
− 1

2

T C♭
d,1,q(T )|T |

1

q
− 1

2 ‖vh·nT ‖∂T

≤ CκC♭
d,1,q(T )C♯

d−1,0,q(∂T )h
− 1

2

T |T |
1

q
− 1

2 |∂T |
1

2
− 1

q ‖vh·nT ‖q,∂T

≤ CκC♭
d,1,q(T )C♯

d−1,0,q(∂T )(|T |/|∂T |)
1

q ‖vh·nT ‖q,∂T ,

where |∂T | denotes the (d − 1)-dimensional Lebesgue measure of ∂T and where the constant Cκ re-
sults from the usual equivalence result in the L2-setting for RTN(T ) functions. Then, using the

bounds (A.4)–(A.5) and since for all k ≥ 0, C♯
d−1,k,∞(∂T ) ≤ CκC⋆

d−1,k where the constant C⋆
d−1,k

is defined as in (A.6) (indeed, for v ∈ Pk(∂T ), there is F ⊂ ∂T such that ‖v‖∞,∂T = ‖v‖∞,F so

that ‖v‖∞,∂T ≤ C♯
d−1,k,∞(F )|F |−1/2‖v‖F ≤ C♯

d−1,k,∞(F )Cκ|∂T |−1/2‖v‖∂T and since F is a simplex,

C♯
d−1,k,∞(F ) ≤ C⋆

d−1,k), it is inferred that

‖vh‖q,T ≤ Cκ,d(|T |/|∂T |)
1

q ‖vh·nT ‖q,∂T ,

where Cκ,d denotes a generic constant only depending on κ and d. Finally, since |T | ≤ CκhT |∂T | and
since 1

q ≤ 1, this yields

‖vh‖q,T ≤ Cκ,dh
1

q

T ‖vh·nT ‖q,∂T .

We now apply this estimate to vh := σL,h + th. Then, owing to (5.3)–(5.4),

‖σL,h + th‖
q
q,T . hT

∑

F⊂∂T, F∈GT
D

‖[[σL,h · n]]‖qq,F .

Hence, ηq
DF,D .

∑

F∈GT
D

hF ‖[[σL,h · n]]‖qq,F , whence (4.2) follows.

We now consider the case of local linear system solves. Let D ∈ Dh. Using the approach of [39,
Section 4.1] (cf. also [3, 2]), there exists a postprocessing q̃h ∈M(SD) of qh such that

−∇q̃h = σL,h + th ∀T ∈ SD,

(q̃h, 1)T

|T |
= qh|T ∀T ∈ SD.

Here, M(SD) is a space of particular piecewise polynomials on SD of total degree ≤ 2 whose means of
traces on interior faces are continuous and whose mean value over D is zero when D ∈ Dint

h and whose
mean values over faces lying in ∂Ω are zero when D ∈ Dext

h . Then,

(A.14) ‖σL,h + th‖q,D . sup
mh∈M(SD), ‖∇mh‖p,D=1

(σL,h + th,∇mh)D.

Indeed, ‖σL,h +th‖q,D = (∇q̃h,∇m̃h)D with m̃h = (‖∇q̃h‖q,D/‖∇q̃h‖
2
D)q̃h, so that introducing constants

as in (A.2) yields

‖∇m̃h‖p,D =
‖∇q̃h‖q,D‖∇q̃h‖p,D

‖∇q̃h‖2D
≤ C♯

d,2,p(D)C♯
d,2,q(D),
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and bounding the constants by Cd,2,∞(D) and using the shape-regularity of the submesh of the dual
volume D leads, as before, to the bound ‖∇m̃h‖p,D . 1. We now develop the right-hand side of (A.14),

(σL,h + th,∇mh)D =
∑

T∈SD

{−(mh,∇ · (σL,h + th))T + ((σL,h + th) · n, mh)∂T }

=−
∑

T∈SD

(mh, f +∇ · σL,h)T +
∑

F∈GT
D

([[σL,h · n]], mh)F

≤

{

∑

T∈SD

h−p
T ‖mh‖

p
p,T

}
1

p
{

∑

T∈SD

hq
T ‖f +∇ · σL,h‖

q
q,T

}
1

q

+

{

∑

F∈GT
D

h
− p

q

F ‖mh‖
p
p,F

}
1

p
{

∑

F∈GT
D

hF ‖[[σL,h · n]]‖qq,F

}
1

q

.h−1
D ‖mh‖p,D

{

∑

T∈SD

hq
T ‖f +∇ · σL,h‖

q
q,T +

∑

F∈GT
D

hF ‖[[σL,h · n]]‖qq,F

}
1

q

,

using the Green theorem, the fact that∇·th = f for all T ∈ SD owing to (5.6b), the fact that [[th ·n]]|F = 0
for all F ∈ GTD since th ∈ RTNN(SD), the Hölder inequality, and the inverse inequality

‖mh‖p,F . h
− 1

p

F ‖mh‖p,T ,

which can be proven by proceeding as above using the usual inverse inequality in the L2-setting and
the norm equivalence constants. We now use the discrete Poincaré/Friedrichs inequality (recall that
(mh, 1)D = 0 or that (mh, 1)∂D∩∂Ω = 0 since mh ∈M(SD))

‖mh‖p,D . hD‖∇mh‖p,D,

which can be proven by proceeding as above using the usual discrete Poincaré/Friedrichs inequality in
the L2-setting (for nonconvex D, an upper bound only depending on κ can be inferred from [38]) and
the norm equivalence constants. Then,

(σL,h + th,∇mh)D .

{

∑

T∈SD

hq
T ‖f +∇ · σL,h‖

q
q,T +

∑

F∈GT
D

hF ‖[[σL,h · n]]‖qq,F

}
1

q

,

and (4.2) now follows from (A.14).
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[18] Ern, A., and Vohraĺık, M. Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods
on general nonmatching grids. C. R. Math. Acad. Sci. Paris 347 (2009), 441–444.

[19] Glowinski, R., and Marrocco, A. Sur l’approximation, par éléments finis d’ordre 1, et la résolution, par pénalisation-
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