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Abstract

A mini-compression jig was built to perform in situ tests on bovine trabecular bone monitored 

by micro-MRI. The MRI antenna provided an isotropic resolution of 78 µm that allows for a 

volume correlation method to be used. Three-dimensional displacement fields are then 

evaluated within the bone sample during the compression test. The performances of the 

correlation method are evaluated and discussed to validate the technique on trabecular bone. 

By considering correlation residuals and estimates of acquisition noise, the measured results 

are shown to be trustworthy. By analyzing average strain levels for different interrogation 

volumes along the loading direction, it is shown that the sample size is less than that of a 

representative volume element. This study shows the feasibility of the 3D-displacement and 

strain field analyses from micro-MRI images. Other biological tissues could be considered in 

future work.
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Introduction

Mechanical properties of cancellous bone have been investigated for many years using 

different methods and it has been proven that they depend upon their apparent density (Carter 

et al. 1976; Rice et al. 1988). Moreover the contribution of the microstructure to the 

mechanical properties is widely accepted (Mosekilde 1988; Parfitt 1987). In order to take into 

account these different parameters, finite element models of cancellous bone specimens have 

been proposed (Hollister et al. 1994; van Rietbergen et al. 1995). Model validations are often 

based on global measurements. Local measurements thanks to the digital image correlation

(DIC) that is based on textured surfaces were used to measure local strains with cortical bone 

images (Duchemin et al. 2008; Liu et al. 2007; Nicolella et al. 2001). This technique was also 

developed in 3D and applied to bone (Bay et al. 1999; Nazarian et al. 2004) or to solid foam 

to estimate 3D displacement fields (Verhulp et al. 2004, Roux et al. 2008). Such data are

extremely useful in particular for extensive finite element model validation (Zauel et al. 

2006). Moreover 3D displacement fields may also be used to determine material properties. 

We propose in this study to apply such measurement technique on cancellous bone by using a 

non irradiating imaging method such as micro-MRI. The resolution can be less than the 

trabecular thickness so that the trabecular network is used as a random texture for the 

correlation technique. Moreover micro-MRI limits temperature rise within the tested 

specimen and allows for future (similar) works on ligaments, muscles or cartilage.

Displacement mapping at subvoxel accuracy in soft tissues (e.g., muscle, cartilage) has been 

already demonstrated by different MR techniques (Neu et al. 2008). Among these, MR 

elastography directly maps the shear stiffness in different tissues by visualizing the 

propagation velocity of shear waves (Glaser et al. 2006). However such approaches would fail 

with trabecular bone, due to the complexity of the bone marrow interface, namely, local field 

heterogeneities due to magnetic susceptibility mismatch would make phase encoding 

displacement unreliable, and shear wave propagation would not be exploitable due to the 

strong difference in mechanical response between the stiff matrix and the soft marrow. For 

these reasons, we resorted to a direct method to obtain 3D-displacement fields in trabecular 

bone.

In the present study, a 3D ‘finite element based’ digital image correlation method is used to 

determine displacement and strain fields of trabecular bone based on the real microstructure 

imaged with micro-MRI. The aim of the study is to show the feasibility of the technique, and 

to evaluate measurement uncertainties in order to assess displacements in a compression test 

of cancellous bone taken from bovine femoral head. 
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Materials and methods

Specimen preparation

A (16-mm long, 100-mm2 square cross-section) parallelepiped was extracted from a frozen

bovine femoral head; its axis was parallel to that of the femoral neck. The dimensions were 

limited by the MRI antenna and the achievable field of view, which was 40 mm × 20 mm ×

20 mm. A 20-mm thick slice was first cut with a band saw, perpendicular to the axis of the 

femoral neck. Then, the parallelepiped was extracted from this slice with a diamond saw and 

kept frozen until the MR experiment is performed. The marrow could be kept intact inside the 

sample thus providing an MR signal from the trabecular cavities.

Compression device

A mini-compression jig (Figure 1) was built from a glass fiber reinforced PEEK 

(polyethyletherketone) to be MRI-compatible. The specimen was held in a threaded pipe (wall 

thickness of 2 mm) between two compression platen, a calibrated washer (acting as a load 

cell, which is not used herein) and two outer screws. It was glued with cyanoacrylate to one 

surface of the platen to place it at the center of the device without touching the inner wall. The 

container was entirely filled with water so that the washer load cell deformation could be 

monitored. A silicone cap was encapsulated around the lower end of the pipe to make it 

watertight. The load was prescribed by rotating the screw in contact with the washer so that 

the ball joint between the platen and the washer limited the rotation of the specimen with the 

screw. Two steps of loading were applied corresponding to a translation of the screw equal to 

0.25 mm and 0.5 mm. The tested specimen was allowed to relax 20 minutes prior to image 

acquisition, so that the specimen reaches an equilibrium stress (as suggested by many studies 

from the literature (Nazarian et al. 2004; Nagaraja et al. 2005;Thurner et al. 2006).

The compression device was put in the MRI coil. Its position was reproducible thanks to 

markers indicating the position in rotation and translation of the device inside the coil. The 

uncertainty of the positioning was about ± 5° in rotation and ± 0.5 mm in translation. The 

translation has been easily calculated as a rigid body motion thanks to the correlation 

algorithm, but the images had to be rotated in order to decrease the rotation gap.

Image acquisition (micro-MRI)

MRI was performed on a vertical 9.4 T magnet with a 3D SE sequence and the following 

parameters: FOV 40 mm × 20 mm × 20 mm, matrix 512 × 256 × 256 voxels, TE/TR 
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8/1000 ms, BW 120 kHz, scan time 9h (RARE factor 2), to get an isotropic resolution of 

78 µm per voxel. A (37-mm in diameter) birdcage coil provided by the manufacturer was 

used. It created a B1 radio-frequency field uniform over a cylindrical region of dimensions of 

about 20 mm in diameter and 20 mm in height.

The noise level of the 3D pictures was assessed in background areas in the images (out of 

signal areas). The noise distribution is known to follow a Rayleigh distribution, since MR 

images are obtained as the magnitude of a complex data set, after 3D Fourier transform of the 

measured signal. In signal areas, the signal distribution around the mean due to noise is 

expected to be Gaussian, with a standard deviation equal to the noise level n. The expected 

relationship between the mean m and the standard deviation n in the noise areas 

( )2/2)(2/(   nm ), see (Gudbjartsson et al. 1995)) was confirmed, and the noise 

level n was computed as

)2/2( 



 nn   (1)

Displacement measurement by image correlation

An in-house ‘finite element based’ digital image correlation software was used (Roux et al. 

2008) to measure displacement fields. The spirit is to register as well as possible two gray 

level volumes, a first one, )(xf , called reference image, which corresponds to the unloaded 

stage, and a second one, )(xg , called deformed image, under load by using displacement 

bases associated with finite element discretizations. They are assumed to be related through 

the brightness conservation hypothesis

))(()( xuxx  fg   (2)

The displacement field, )(xu , is decomposed over a set of finite-element shape functions 

 )()( xxu nna  . Here 8-node cubic elements with polynomial functions of order 1 (C8-

P1) are used. A weak form of the brightness conservation (Galerkin approach) is implemented 

through the minimization of the domain integral over the whole considered domain of the

quadratic difference  22 ))(()()( xuxxx  fgr . After an initial rigid body translation 

correction, a multiscale linearization procedure allowing for good convergence properties is 

used. Details on the algorithm can be found in (Roux et al. 2008). This implementation is a 

major difference with “local” approaches (Bay et al. 1999), or such as the ones compared in 

(Liu et al. 2007) that consist in registering small and independent volumes. 
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A priori performances

To give confidence in the following results, a performance analysis is first performed. The 

performance of the correlation depends on the quality of the texture of the images to be 

analyzed. An image that has large gradients, with an almost random texture will be a good 

choice. Hence, the uncertainty of the displacement measurement is first assessed a priori on 

the reference image, when the specimen is not loaded. This was performed over a volume of 

96 × 96 × 96 voxels or 7.5 mm × 7.5 mm × 7.5 mm. An artificial displacement of 0.5 voxel in 

each direction is artificially prescribed to the volume, creating a new (and artificially) 

“deformed” image. This displacement corresponds to a critical situation where the 

information contained in the reference and deformed images is the most biased (Roux et al. 

2008). Then, the two images are registered and the artificial translation is subtracted from the 

measured displacement. The mean error thus corresponds to the average of the difference 

between the measured and prescribed displacements, and the standard uncertainty to the 

corresponding standard deviation.

To assess a posteriori the quality of the displacement measurement a distance criterion (or 

dimensionless correlation residual) between the two images f and g is used

)min()max( ff

r
R


 (3)

where  is the average value over the considered ROI, max(.) and min(.) are the maximum 

and minimum values of the gray levels present in the image. This dimensionless indicator is 

equal to 0 when the two images are identical, or when no correlation error occurs.

Strain evaluations

From the measured displacement fields, the mean strain per element is assessed by using the 

C8 interpolation functions. Further, when the displacement field is interpolated over a gauge 

volume by using a single trilinear polynomial, macroscopic principal strains are assessed by 

using the mean transformation gradient.

Results

A priori performances

Figure 2 shows the mean displacement error and the standard uncertainty as functions of the 

element size used for the volume correlation calculation. The mean error is always less than 



-6-

the standard uncertainty, the results of the correlation were therefore considered as unbiased. 

Its level is very low, and is independent of the element size. Moreover the standard 

displacement uncertainty decreases when the element size increases. From these values, it is 

concluded that the displacements are assessed with subvoxel resolution.

Strain uncertainties are also evaluated by using the previously measured displacement field. 

Very small standard uncertainties are obtained yielding strain resolutions less than 3 × 10-2 for 

element sizes greater than or equal to 12 voxels.

Displacement measurement

The quality of the displacement measurement is analyzed for both loading steps on a Region 

Of Interest (ROI) of 96 × 192 × 96 voxels (or 7.5 mm × 15 mm × 7.5 mm). The initial value 

of R between the reference image and the image of the specimen after the first loading step is 

equal to 11.3 % when only the ROI was considered. As a starting point, rigid body 

translations (corresponding to an isometric transformation) are corrected for, and this leads to 

a reduction of R to 4.2 %. With optical images of good quality, the correlation algorithm 

enables one to reach a final value of about 1 % (Besnard et al 2006). In the present case, the 

correlation residuals are about 1.4 % for the first step of loading with an element size of 12

voxels at the end of the correlation procedure. For the second loading step, the initial value of 

R is 10.8 %. After removal of the rigid body translation, it reduces to 5.7 %, and after 

convergence it reached 1.6 % for 12-voxel elements. The quality of the correlation was very 

satisfactory although it varied slightly with the element size. Table 1 summarizes the final 

gaps as functions of the element size.

The residual maps (Figure 4) show that correlation residuals are not only very small on 

average, but also locally for the two loading steps. The gray level histograms of Figure 4 can 

be compared to that of the reference picture (Figure 3). The residual level is very small. 

Furthermore, the standard deviation of the residual can be compared to the noise level that 

was estimated.  The noise level is about 2.4 gray levels when the image data is limited to an 8-

bit range. It changes by less than 10% along the long specimen axis (also the probe axis) over 

the region of interest. From the standard deviation of the correlation residual (respectively 

equal to 4 and 4.3 gray levels), the standard deviation associated with each volume is equal to 

the former divided by 2 (namely, 2.8 and 3 gray levels). The two values are very close to 

the noise level. The measurement results are therefore deemed trustworthy.
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Strain fields

In the present case, the mean strain levels per element are determined by using the (trilinear) 

interpolation functions associated with the discretization. The values of the latter are assigned

to the center of the element, and linearly interpolated between these points to obtain 3D maps 

whose cuts by two perpendicular planes containing the longitudinal axis of the ROI are shown 

in Figure 5 for the two load levels when 12-voxel elements are used. The strain field is not 

uniform for the first and second load levels. 

To quantify even more this result, a gauge volume of size 96 × 96 × 96 voxels (or 7.5 

mm × 7.5 mm × 7.5 mm) is moved along the specimen axis by increments equal to the 

element size. The displacement field is interpolated trilinearly and the mean transformation 

gradient estimated. The nominal strain tensor is computed and its eigen values extracted. The 

change of the three eigen strains is shown in Figure 6 for the two load levels for 12-voxel 

elements. As one moves from the top to the bottom of the longitudinal axis, it is observed that 

the mean strain state varies significantly. When compared to the previous results, the use of 

16, 24 and 32-voxel elements in the gauge volume changes the results by  2  10-4 at most.

Discussion

This article presents a mechanical compression device and a three dimensional DIC technique 

that uses micro-MRI images of bovine cancellous bone that allows for the measurement of 

displacement and strain fields. The overall aim of this study is to demonstrate the feasibility 

of using 3D digital image correlation on compressed bovine cancellous bone monitored by 

micro-MRI.

The standard displacement and strain uncertainties decrease when the element size increases. 

This result is explained by the fact that there are more data (voxels) in large size elements to 

make the correlation between the reference and deformed images more secure. However, if 

the element size is too large, the number of measurement points in the specimen will be 

limited and the displacement will be prone to interpolation errors, in particular in the presence 

of localized phenomena.

The map and histogram of correlation residuals (Figure 4) show that the errors are very small, 

and very close to the noise levels due to the acquisition device. This result fully validates not 

only the a priori analysis on artificial displacement, but also the whole experimental 

procedure developed to measure accurately displacement fields when using MRI. 

From the measured strain fields, it is concluded that for the two analyzed load levels, no 

uniformity is achieved in terms of mesoscopic strains (i.e., on the scale of each finite 
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element), and macroscopic strains (i.e., at the level of the gauge volume). This phenomenon is 

related to the coarse microstructure (at the scale of micro-MRI) of trabecular bone. Even 

though a compressive load is applied, the material response is not that expected from a 

homogeneous medium. This observation shows that even if elasticity can be assumed (since 

the first mean strain level is equal to 0.6 %), the elastic properties (e.g., Poisson’s ratio) 

cannot be inferred from the present observations. This is not a drawback of the experimental 

procedure, or of the measurement technique, but an effect of the microstructure at hand. This 

result shows that more advanced identification procedures are called for to evaluate the 

microscopic properties. 

Conclusion

Volume correlation was used on a loaded bovine cancellous bone monitored by micro-MRI 

leading to 3D-displacement fields of subvoxel uncertainty less than 0.1 voxel (or 8 µm) for 

element sizes greater than 12 voxels. The mean correlation residuals remain less than 1.4% of 

the image dynamic range for 12-voxel elements, and the displacement fields were stable for 

each tested element size. The corresponding standard deviation is very close to the noise 

level, thereby proving that the registration was successful, and the measured displacements 

are trustworthy.

From the measured displacements, macroscopic and mesoscopic strain fields were evaluated. 

The latter show that the local strain field is not uniform in the present experiment. This 

phenomenon is due to the coarseness of the studied microstructure. Furthermore, the variation 

of the macroscopic principal strains along the height of the sample shows that a classical 

identification procedure to evaluate Poisson’s ratio would lead to erroneous results. More 

advanced identification tools are needed to determine the elastic parameters at a microscopic

(at the level of trabeculae), mesoscopic (at the level of the elements considered herein) or 

even macroscopic scale (i.e., the studied sample). This analysis shows that the representative 

volume element is significantly larger than the volume tested herein. Such methodology opens 

the way for in-depth validation of micro-finite element models of cancellous bone.

Last, MRI has a wide field of application to other types of biological tissues. By means of 

some adaptations, it could be possible to measure macroscopic damage on soft tissues such as 

cartilages or ligaments.

Conflict of interest

There are no conflicts of interest related to the work submitted in this manuscript.



-9-

Acknowledgements

The authors would like to acknowledge Claude Verliac and Joachim Magnier for technical 

advice on the manufacturing process of the mechanical loading system.



-10-

References

Bay, B. K., Yerby, S. A., McLain, R. F. and Toh, E., 1999. Measurement of strain 
distributions within vertebral body sections by texture correlation. Spine 24, 10-17.

Besnard, G., Hild, F. and Roux, S., 2006, Finite-element displacement fields analysis from 
digital images: Application to Portevin-Le Châtelier bands, Exp. Mech. 46, 789-803.

Carter, D. R. and Hayes, W. C., 1976. Bone compressive strength: the influence of density 
and strain rate. Science 194, 1174-1176.

Duchemin, L., Bousson, V., Raossanaly, C., Bergot, C., Laredo, J. D., Skalli, W. and Mitton, 
D., 2008. Prediction of mechanical properties of cortical bone by quantitative computed 
tomography. Med Eng Phys 30, 321-328.

Glaser, K. J., Felmlee, J. P., Manduca, A., Kannan Mariappan, Y. and Ehman, R. L., 2006. 
Stiffness-weighted magnetic resonance imaging. Magn Reson Med 55, 59-67.

Gudbjartsson, H. and Patz, S., 1995. The Rician distribution of noisy MRI data. Magn Reson 
Med 34, 910-914.

Hollister, S. J., Brennan, J. M. and Kikuchi, N., 1994. A homogenization sampling procedure 
for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27, 433-
444.

Liu, L. and Morgan, E. F., 2007. Accuracy and precision of digital volume correlation in 
quantifying displacements and strains in trabecular bone. J Biomech 40, 3516-3520.

Mosekilde, L., 1988. Age-related changes in vertebral trabecular bone architecture--assessed 
by a new method. Bone 9, 247-250.

Nagaraja, S., Couse, T. L. and Guldberg, R. E., 2005. Trabecular bone microdamage and 
microstructural stresses under uniaxial compression. Journal of Biomechanics 38, 707.

Nazarian, A. and Muller, R., 2004. Time-lapsed microstructural imaging of bone failure 
behavior. J Biomech 37, 55-65.

Neu, C. P. and Walton, J. H., 2008. Displacement encoding for the measurement of cartilage 
deformation. Magn Reson Med 59, 149-155.

Nicolella, D. P., Nicholls, A. E., Lankford, J. and Davy, D. T., 2001. Machine vision 
photogrammetry: a technique for measurement of microstructural strain in cortical bone. 
Journal of Biomechanics 34, 135.

Parfitt, A. M., 1987. Trabecular bone architecture in the pathogenesis and prevention of 
fracture. Am J Med 82, 68-72.

Rice, J. C., Cowin, S. C. and Bowman, J. A., 1988. On the dependence of the elasticity and 
strength of cancellous bone on apparent density. J Biomech 21, 155-168.



-11-

Roux, S., Hild, F., Viot, P. and Bernard, D., 2008. Three-dimensional image correlation from 
X-ray computed tomography of solid foam. Composites Part A: Applied Science and 
Manufacturing 39, 1253.

Thurner, P. J., Wyss, P., Voide, R., Stauber, M., Stampanoni, M., Sennhauser, U. and Müller, 
R., 2006. Time-lapsed investigation of three-dimensional failure and damage accumulation in 
trabecular bone using synchrotron light. Bone 39, 289.

van Rietbergen, B., Weinans, H., Huiskes, R. and Odgaard, A., 1995. A new method to 
determine trabecular bone elastic properties and loading using micromechanical finite-
element models. J Biomech 28, 69-81.

Verhulp, E., van Rietbergen, B. and Huiskes, R., 2004, A three-dimensional digital image 
correlation technique for strain measurements in microstructures. J Biomech 37, 1313–20.

Zauel, R., Yeni, Y. N., Bay, B. K., Dong, X. N. and Fyhrie, D. P., 2006. Comparison of the 
linear finite element prediction of deformation and strain of human cancellous bone to 3D 
digital volume correlation measurements. J Biomech Eng 128, 1-6.



List of figures:

1. Compression device.

2. Mean error (a), standard uncertainty (b) of the displacement measurement and 

standard strain uncertainty (c) as functions of the element size.

3. Reference region of interest (a) in gray levels (size: 96 × 192 × 96 voxels or 

7.5 × 15 × 7.5 mm3) and corresponding histogram of gray levels (b) (dynamic range: 8 

bits).

4. Correlation residual measured in gray levels and corresponding histogram with the 

same dynamic range as Figure 3(b) for a ROI of 96 × 192 × 96 voxels and an element 

size of 12 voxels, for the first loading step (a) and for the second loading step (b).

5. Cuts along two planes containing the longitudinal axis of the region of interest. The 

gray level picture and the longitudinal strain fields corresponding to the two loading 

steps are shown.

6. Macroscopic principal strains as functions of the longitudinal position of the gauge 

volume for the first loading step (a) and for the second loading step (b).

Figure Legend(s)



Figure 1: Compression device.
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Figure 2: Mean error (a), standard uncertainty (b) of the displacement measurement and 
standard strain uncertainty (c) as functions of the element size.



(a) (b)

Figure 3: Reference region of interest (a) in gray levels (size: 96 × 192 × 96 voxels or 
7.5 × 15 × 7.5 mm3) and corresponding histogram of gray levels (b) (dynamic range: 8 bits).
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(b)

Figure 4: Correlation residual measured in gray levels and corresponding histogram with the 
same dynamic range as Figure 3(b) for a ROI of 96 × 192 × 96 voxels and an element size of
12 voxels, for the first loading step (a) and for the second loading step (b).



(a)

(b)

Figure 5: Cuts along two planes containing the longitudinal axis of the region of interest. The 
gray level picture and the longitudinal strain fields corresponding to the two loading steps are 
shown.



(a) (b)

Figure 6: Macroscopic principal strains as functions of the longitudinal position of the gauge 
volume for the first loading step (a) and for the second loading step (b).



Table 1: Influence of the element size for the first (a) and the second (b) loading steps on 
various parameters: mean displacement, correlation residual, minimum principal strain.

Element 
size

(voxels)

xu

(voxels)

yu

(voxels)

zu

(voxels)

Residual 
(%)

1
(%)

12 -4.68 -9.82 -6.62 1.4 -0.6
16 -4.70 -9.81 -6.61 1.4 -0.6
24 -4.68 -9.81 -6.62 1.5 -0.5
32 -4.67 -9.81 -6.62 1.7 -0.5

(a)
Element 

size
(voxels)

xu

(voxels)

yu

(voxels)

zu

(voxels)

Residual 
(%)

1
(%)

12 -11.81 4.53 -20.63 1.6 -1.0
16 -11.80 4.54 -20.63 1.7 -1.0
24 -11.79 4.55 -20.64 1.9 -0.9
32 -11.78 4.55 -20.64 2.2 -0.9

(b)

Table(s)




