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Infinitesimal projective rigidity under Dehn filling

Michael Heusener and Joan Porti∗
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Abstract

To a hyperbolic manifold one can associate a canonical projective
structure and a fundamental question is whether or not it can be de-
formed. In particular, the canonical projective structure of a finite
volume hyperbolic manifold with cusps might have deformations which
are trivial on the cusps.

The aim of this article is to prove that if the canonical projective
structure on a cusped hyperbolic manifold M is infinitesimally projec-
tively rigid relative to the cusps, then infinitely many hyperbolic Dehn
fillings on M are locally projectively rigid. We analyze in more detail
the figure eight knot and the Whitehead link exteriors, for which we
can give explicit infinite families of slopes with projectively rigid Dehn
fillings.

MSC: 57M50; 53A20; 53C15
Keywords: Projective structures; variety of representations; infinitesi-
mal deformations.

1 Introduction

A closed hyperbolic n-dimensional manifold inherits a canonical projec-
tive structure. This can be easily seen by considering the Klein model for
the hyperbolic space. Projective structures on manifolds were studied by
Benzécri in the 1960’s [3]. Though the hyperbolic structure is rigid for
n > 2 (cf. [31, 24]), it might be possible to deform the canonical projective
structure. Kac and Vinberg [30] gave the first examples of such deforma-
tions. Koszul [20] and Goldman later generalized these examples. Johnson
and Millson provide deformations of the canonical projective structure by
means of bending along totally geodesic surfaces [17]. Examples of defor-
mations for Coxeter orbifolds have been obtained by Choi [8] and Marquis
[23].

In the sequel we will use the following notation:
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1.1 Definition A closed hyperbolic manifold is called locally projectively
rigid if the canonical projective structure induced by the hyperbolic metric
cannot be deformed.

Cooper, Long and Thistlethwaite have studied the deformability of 4500
hyperbolic manifolds from the Hodgson-Weeks census with rank 2 funda-
mental group [9], proving that at most 61 can be deformed. The goal of this
paper is to provide infinite families of projectively locally rigid manifolds,
by means of Dehn filling.

Let N be a closed hyperbolic 3-dimensional manifold. We will make use
of the fact that geometric structures on N are controlled by their holonomy
representation. Hence we consider the holonomy representation of the closed
hyperbolic 3-manifold N

ρ : π1(N) → PSO(3, 1) ⊂ PGL(4).

If not specified, the coefficients of matrix groups are real: PGL(4) =
PGL(4,R). The closed manifold N is locally projectively rigid if and only
if all deformations of ρ in PGL(4) are contained in the PGL(4)-orbit of ρ .

Existence or not of deformations is often studied at the infinitesimal
level. We may consider the adjoint action on the lie algebra so(3, 1). Then
Weil’s infinitesimal rigidity [31] asserts that

H1(π1(N); so(3, 1)Ad ρ) = 0.

The adjoint action extends to the Lie algebra sl(4) := sl(4,R) and motivates
the following definition.

1.2 Definition A closed hyperbolic three manifold N is called infinitesi-
mally projectively rigid if

H1(π1(N); sl(4)Ad ρ) = 0.

Infinitesimal rigidity implies local rigidity, but the examples of [10] and
[9] show that the converse is not true.

We are working with aspherical manifolds, so computing the cohomology
of a manifold or of its fundamental group does not make any difference.

For cusped manifolds one has a similar definition. Let M denote a
compact three manifold with boundary a union of tori and whose interior is
hyperbolic with finite volume.

1.3 Definition The manifold M is called infinitesimally projectively rigid
if the inclusion ∂M ⊂ M induces an injective homomorphism

0 → H1(M ; sl(4)Ad ρ) → H1(∂M ; sl(4)Ad ρ).
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The following theorem provides infinitely many examples of infinitesi-
mally projectively rigid 3-dimensional manifolds.

1.4 Theorem Let M be a compact orientable 3-manifold whose interior is
hyperbolic with finite volume. If M is infinitesimally projectively rigid, then
infinitely many Dehn fillings on M are infinitesimally projectively rigid.

A hyperbolic Dehn filling on M induces a noncomplete structure on M ,
that can be viewed as a hyperbolic cone structure with cone angles 2π . In
some cases this cone angle can be decreased to zero, yielding the complete
structure on M . The methods of Theorem 1.4, give the following:

1.5 Theorem Let M be compact orientable 3-manifold whose interior is
hyperbolic with cusps. If a Dehn filling on M satisfies:

(i) it is infinitesimally projectively rigid,

(ii) the noncomplete induced structure on M can be joined to the complete
one by a path of hyperbolic cone structures parametrized by cone angle
from 2π to 0,

then infinitely many Dehn fillings on M are infinitesimally projectively rigid.

By Hodgson and Kerckhoff estimation of the size of the Dehn filling space
[16], in a cusped manifold the deformation of Theorem 1.5 exists for all but
at most 60 Dehn fillings. Hence:

1.6 Corollary Let M be a one cusped hyperbolic manifold of finite vol-
ume. If 61 Dehn fillings on M are either non-hyperbolic or infinitesimally
projectively rigid, then infinitely many fillings are so.

Those results are proved using the fact that all parameters of Thurston’s
hyperbolic Dehn filling space corresponding to non infinitesimally projec-
tively rigid fillings on M are contained in a proper analytic subset of the
Dehn filling space, provided M itself is infinitesimally projectively rigid.
This technique goes back to Kapovich in the setting of deformations of lat-
tices of PSO(3, 1) in PSO(4, 1) [18].

Moreover, we obtain explicit examples of infinite families of infinites-
imally projectively rigid manifolds. The Dehn filling parameters of these
families lie on certain real analytic curves, and a careful analysis of the
infinitesimal deformations of the corresponding manifolds results in the fol-
lowing proposition:

1.7 Proposition For n sufficiently large, the homology sphere obtained by
1/n-Dehn filling on the figure eight knot is infinitesimally projectively rigid.

In fact, for every k ∈ Z , k 6= 0, there exists nk > 0 such that if
n ≥ nk then the k/n-Dehn filling on the figure eight knot is infinitesimally
projectively rigid.
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Theorem 1.4 provides infinitely many rigid Dehn fillings. On can ask
whether there are still infinitely many non-rigid Dehn fillings. Though we
do not have an example for manifolds, the following proposition shows that
there are infinitely many non-rigid orbifolds obtained by Dehn fillings on
the cusped manifold that satisfies the hypothesis of Theorem 1.4.

1.8 Proposition The orbifold On with underlying space S3 , branching
locus the figure eight knot and ramification index n is not locally projectively
rigid for sufficiently large n . More precisely, its deformation space is a curve.

For any n ∈ N , the Fibonacci manifold Mn is the cyclic cover of order
n of the orbifold On in Proposition 1.8 [14]. Hence Mn is not projectively
rigid, as deformations of the projective structure of On induce deformations
of Mn . There is an abundant literature about those manifolds. For instance,
M4 is not Haken but Mn is Haken for n ≥ 5, and Scannell has proved that
they are not infinitesimally rigid in SO(4, 1) [28].

Using that punctured torus bundles with tunnel number one are obtained
by n-Dehn filling on the Whitehead link (cf. [1]), we shall prove:

1.9 Proposition All but finitely many punctured torus bundles with tun-
nel number one are infinitesimally projectively rigid.

All but finitely many twist knots complements are infinitesimally pro-
jectively rigid.

The real hyperbolic space H3 naturally embeds in the complex hyper-
bolic space H3

C . We may study the corresponding deformation theory com-
ing from viewing PSO(3, 1) = Isom+(H3) in PSU(3, 1) = Isom0(H

3
C), i.e.

the identity component of complex hyperbolic isometries.

1.10 Definition We say that M is infinitesimally H3
C -rigid if the sequence

0 → H1(M ; su(3, 1)Ad ρ) → H1(∂M ; su(3, 1)Ad ρ)

is exact

In particular, if ∂M = ∅, then we require H1(M ; su(3, 1)Ad ρ) = 0. The
study of deformations in PGL(4) and PSU(3, 1) are related, as we shall see
in Subsection 3.3. In particular we have the following theorem of Cooper,
Long and Thistlethwaite.

1.11 Theorem [10] Let Mn be a real hyperbolic manifold of finite volume,
n ≥ 3. Then Mn is infinitesimally projectively rigid if and only if Mn is
infinitesimally Hn

C -rigid
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This equivalence is described by means of Lie algebras, and it is used
along the paper, because some things are easier to understand in the complex
hyperbolic setting instead of the projective one.

The article is organized as follows. In Section 2 we recall Thurston’s con-
struction of deformations of hyperbolic structures and the generalized Dehn
filling coefficients. In Section 3 we introduce the main tools in order to study
infinitesimal deformations. The next two sections are devoted to cohomol-
ogy computations, namely in Section 4 we compute invariant subspaces of
the Lie algebras and in Section 5 we analyze the image in cohomology of
the restriction to the torus boundary. The proof of Theorems 1.4 and 1.5
is given in Section 6, by means of an analytic function on the deformation
space: when this function does not vanish, then the corresponding Dehn
filling is infinitesimally rigid. To prove Propositions 1.7 and 1.9, we require
the notion of flexing slope, treated in Section 7, as well as explicit compu-
tations on the figure eight knot and the Whitehead link exteriors, made in
Section 8.

2 Dehn filling and Thurston’s slice

In this section we recall the deformation space introduced by Thurston in
his proof of hyperbolic Dehn filling theorem [29].

Along the paper, M denotes a compact manifold with boundary a union
of k > 0 tori and hyperbolic interior:

∂M = ∂1M ⊔ · · · ⊔ ∂kM,

where each ∂iM ∼= T 2 .
The deformation space of hyperbolic structures is described by the Thurston

slice. Given λi, µi ∈ π1(∂M) a pair of simple closed curves that generate
the fundamental group on each component ∂Mi , Thurston introduced a
parameter

u = (u1, . . . , uk) ∈ U ⊂ Ck,

defined on U a neighborhood of 0. The neighborhood U parametrizes the
deformations of the complete holonomy of the interior of M . Two structures
parametrized by u and u′ ∈ U are equivalent (the developing maps differ
by composing with an isometry of H3 ) if and only if

(u1, . . . , uk) = (±u′1, . . . ,±u′k). (1)

This is a consequence of the fact that (1) is a criterion for having the same
character, and the fact that deformations are parametrized by conjugacy
classes of holonomy [7].
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2.1 Theorem (Thurston’s slice) There exists an open neighborhood 0 ∈
U ⊂ Ck , an analytic family of representations {ρu}u∈U , of π1(M) in
PSL2(C) and analytic functions vi = vi(u) , i = 1, . . . , k so that:

(i) The parameters ui and vi are the complex length of ρu(µi) and ρu(λi)
respectively.

(ii) The function τi(u) = vi(u)/ui is analytic. Moreover vi = τi(0)ui +
(|u|3) , where τi(0) ∈ C is the cusp shape and has nonzero imaginary
part.

(iii) The structure with holonomy ρu is complete on the i-th cusp if and
only if ui = 0.

(iv) When ui 6= 0, the equation

pi ui + qi vi = 2π i (2)

has a unique solution for (pi, qi) ∈ R2 . The representation ρu is the
holonomy of a incomplete hyperbolic structure with generalized Dehn
filling coefficients (pi, qi) on the i-th cusp.

See [4, App. B] for a proof, for instance.
In his proof of hyperbolic Dehn filling, Thurston shows that there is

a diffeomorphism between U and a neighborhood of ∞ in (R2 ∪ {∞})k
that maps componentwise 0 to ∞ and ui 6= 0 to (pi, qi) ∈ R2 satisfying
pi ui + qi vi = 2π i .

The geometric interpretation of generalized Dehn filling coefficients is
the following one:

(i) When pi, qi ∈ Z are coprime, then the completion for ρu is precisely
the Dehn filling with slope piµi + qiλi .

(ii) When pi/qi = p′i/q
′
i ∈ Q ∪∞ with p′i, q

′
i ∈ Z coprime, then the com-

pletion for ρu is a cone manifold, obtained by Dehn filling with slope
p′iµi + q′iλi where the core of the torus is a singular geodesic with cone
angle 2πp′i/pi .

(iii) When pi/qi ∈ R \ Q , then the metric completion is the one point
compactification.

A particular case that we will use later is when ui = αi i for some αi ∈ R ,
αi > 0. Then pi = 2π/αi and qi = 0, and ρ(iα1,...,iαk) is the holonomy of a
hyperbolic cone manifold with cone angles (α1, . . . , αk).

The real analytic structure will be crucial in our arguments. When
viewed in PSL2(C), ρu is complex analytic, but we will work with the real
analytic structure, which is the same as for PSO(3, 1). In particular the
following lemma will be useful.
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2.2 Lemma For each i = 1, . . . , k , if τi(u) = vi(u)/ui , then the map

U ⊂ Ck → R2

u 7→ 1
|pi+qiτi|2 (pi, qi)

is real analytic.

Proof. Using Equation (2), we obtain:

pi = −2π
Re(uiτi)

|ui|2Im(τi)
, qi = 2π

Re(ui)

|ui|2Im(τi)
, pi + qiτi =

2πi

ui
.

The lemma is an straightforward consequence from these equalities and the
fact that the imaginary part of τi(0) does not vanish. 2

3 Infinitesimal deformations

The matrix of the Lorentzian inner product is denoted by

J =




1
1

1
−1


 .

So that
O(3, 1) = {A ∈ GL(4) | AtJA = J},

and the connected component of the identity of its projectivization PSO(3, 1)
is the group of orientation preserving isometries of H3 . Its Lie algebra is

so(3, 1) = {a ∈ sl(4) | atJ = −Ja}.

Following Johnson and Millson [17], along the paper we shall use the
decomposition of sl(4) as direct sum of PSO(3, 1)-modules via the adjoint
action:

sl(4) = so(3, 1) ⊕ v, (3)

where
v = {a ∈ sl(4) | atJ = Ja}.

Notice that v is not a Lie algebra, but just a PSO(3, 1)-module.
Hence given a representation ρ : π1(M) → PSO(3, 1) we obtain a canon-

ical splitting in homology:

H∗(M ; sl(4)Ad ρ) = H∗(M ; so(3, 1)Ad ρ)⊕H∗(M ; vAd ρ).

In the remaining of the section, we shall recall the known results about the
cohomology group H1(M ; so(3, 1)Ad ρ) (Subsection 3.1) and provide some
properties of H∗(M ; vAd ρ).
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3.1 Infinitesimal deformations in real hyperbolic space

Infinitesimal deformations in Isom+(H) = PSO(3, 1) are well understood,
and described by H1(M ; so(3, 1)Ad ρ). We summarize here the main results:

3.1 Proposition Let M be a finite volume hyperbolic 3-manifold with k
cusps and let U be as in Theorem 2.1. For all u ∈ U :

(i) The inclusion ∂M ⊂ M induces a monomorphism

0 → H1(M ; so(3, 1)Ad ρu) → H1(∂M ; so(3, 1)Ad ρu).

(ii) If we choose one essential simple closed curve µi ⊂ ∂iM for each
boundary component, then the inclusion of the union µ = µ1 ∪ · · · ∪
µk ⊂ M induces a monomorphism

0 → H1(M ; so(3, 1)Ad ρu) → H1(µ; so(3, 1)Ad ρu).

(iii) dimH1(M ; so(3, 1)Ad ρu) = 2k .

(iv) dimH1(M,µ; so(3, 1)Ad ρu) = 2k .

This proposition can be seen as the algebraic part of Thurston’s hyper-
bolic Dehn filling theorem. When ∂M = ∅ it is due to Weil [31], and when
∂M 6= ∅, it is Garland rigidity [12]. See [19] or [12] for a proof.

3.2 Killing form, cup product and Kronecker pairing in v

The Killing form on any Lie algebra g is defined as:

B(X,Y ) = trace(adX ◦ adY ) ∀X,Y ∈ g,

where adX ∈ End(g) denotes the endomorphism given by adX(Y ) = [X,Y ] .
If g = sl(4), then B(X,Y ) = 8 tr(X · Y ).

Both the form B on sl(4) and its restriction to so(3, 1) are nondegen-
erate. Moreover v is the orthogonal complement to so(3, 1):

sl(4) = so(3, 1) ⊥ v.

Therefore B restricted to v is nondegenerate
A cup product on cohomology is defined by using B :

Hp(M ; v)⊗Hq(M,∂M ; v)
∪−→ Hp+q(M,∂M ; v ⊗ v)

B∗−−→ Hp+q(M,∂M ;R)
(4)

where the first arrow is the usual cup product, and B∗ denotes the map
induced by B : v ⊗ v → R . Since we do not use any other cup product,
this one will be simply denoted by ∪ . This cup product induces Poincaré
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duality since B is non degenerated, cf. [17]. As B is symmetric, this cup
product is symmetric or antisymmetric depending on whether the product
of dimensions p q is even or odd, as the usual cup product.

The Killing form is also used to define a Kronecker pairing between
homology and cohomology. Consider C∗(M̃) the group of chains of the
universal covering, with the action of π1(M). The chain group is the

tensor product v ⊗π1M C∗(M̃), so that a cycle is an element
∑

vi ⊗ ci ,

ci ∈ C∗(M̃) and vi ∈ v . Moreover the cochain group is the set of mor-

phisms Homπ1M (C∗(M̃ ); v), and a cocycle is a morphism of π1M -modules,

θ : C∗(M̃ ) → v . Then the Kronecker pairing is given by:

Hp(M ; v) × Hp(M ; v) → R
[θ] [

∑
i vi ⊗ ci] 7→ ∑

iB(θ(ci), vi) .
(5)

This pairing gives duality between homology and cohomology.

3.3 Complex hyperbolic space

Consider C3,1 i.e. C4 with the hermitian product

〈w, z〉 = w1z̄1 +w2z̄2 + w3z̄3 − w4z̄4 = wtJz̄ = z∗w

where z∗ = z̄tJ . Its projectivization P3,1 := P(C3,1) gives rise to complex
hyperbolic space H3

C . More precisely, H3
C = {[v] ∈ P3,1 | 〈v, v〉 < 0}

cf. [13, 11]. Here and in the sequel [v] denotes the line generated by the non
zero vector v ∈ C3,1 .

Let
SU(3, 1) = {A ∈ SL(4,C) | ĀtJA = J}.

The group of holomorphic isometries of complex hyperbolic space is its pro-
jectivization PSU(3, 1) = PU(3, 1), with Lie algebra:

su(3, 1) = {a ∈ sl(4,C) | ātJ = −Ja}.
The key point is that, as SO(3, 1)-module, this Lie algebra has a decompo-
sition:

su(3, 1) = so(3, 1) ⊥ i v. (6)

Thus:

3.2 Remark The subspace v = {a ∈ sl(4) | at J = J a} can be seen as the
imaginary part of infinitesimal deformations in complex hyperbolic space.

Proof of Theorem 1.11. Equation (6) holds true in any dimension, and,
since it is an isomorphism of PSO(n, 1)-modules, it gives an isomorphism
in cohomology:

H1(M ; sl(n+ 1)) = H1(M ; so(n, 1)) ⊕H1(M ; v) ∼=
H1(M ; so(n, 1)) ⊕H1(M ; iv) = H1(M ; su(n, 1)).
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Using this isomorphism, the proof follows. 2

We will use Remark 3.2 and Equation (6) to understand the computa-
tions for the cohomology with coefficients in v in a Riemannian setting.

In order to understand the Killing form on su(3, 1) we follow the expo-
sition of Goldman [13, 4.1.3]. Let

v+ =




0
0
1
1


 and v− =




0
0
−1
1




be two null vectors in C3,1 representing two distinct boundary points of
H3

C . Then the element

η := −1

2
(v+v

∗
− − v−v

∗
+) =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0




is the infinitesimal generator of a 1-parameter subgroup of isometries fixing
the points [v±] ∈ ∂H3

C and translating along the geodesic between [v+] and
[v−] .

Decompose the Lie algebra su(3, 1) into eigenspaces

gk = Ker(adη −kI)

of adη . The eigenspace gk is nonzero only for k ∈ {0,±1,±2}. More
explicitly we have:

g0 =
{


a 0 0

0 − tr(a)
2 t

0 t − tr(a)
2



∣∣∣a ∈ u(2), t ∈ R

}
,

g±1 = {vv∗± − v±v∗ | v ∈ V (v±)⊥} and g±2 = {isv±v∗± | s ∈ R} where
V (v±) denotes the vector space generated by v+ and v− . Note that V (v±)
the positive two-dimensional complex subspace of C3,1 given by z3 = z4 = 0.
As usual we have [gk, gl] ⊂ gk+l with the convention that gk+l = 0 if
|k + l| > 2. This tells us immediately that gk is orthogonal with respect to
the Killing form to gl for all k 6= −l .

Now let G± ⊂ PSU(3, 1) denote the stabilizer of the point [v±] ∈ ∂H3
C .

The Lie algebra g± of G± is given by

g± = g0 ⊕ g±1 ⊕ g±2.

Note also that h± = g±1⊕g±2 is the Lie algebra of parabolic transformations
fixing the point [v±] .

As a consequence of this discussion we obtain the following lemma.
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3.3 Lemma The Killing form of su(3, 1) restricted to g± is degenerated.
More precisely, the radical rad(g±) = g± ∩ g⊥± = h± consist exactly the
infinitesimal parabolic transformations.

Proof. Let us consider the sign +, the other case is analogous. We have

g⊥0 = h+ ⊕ h−, g⊥1 = g0 ⊕ h+ ⊕ g−2 and g⊥2 = g0 ⊕ h+ ⊕ g−1 .

This follows since gk is orthogonal with respect to the Killing form to gl for
all k 6= −l . Hence g+ ∩ g⊥+ = g+ ∩ g⊥0 ∩ g⊥1 ∩ g⊥2 = h+ = g1 ⊕ g2 . 2

4 Invariant subspaces in complex hyperbolic ge-

ometry

In this section we shall compute subspaces of the module v that are invariant
by certain elements of PSO(3, 1). This will be used later when computing
cohomology. For a set of hyperbolic isometries Γ ⊂ PSO(3, 1), we shall
compute the invariant subspace in v :

vΓ = {v ∈ v | Adγ(v) = v, ∀γ ∈ Γ}.

For our computations, we will view elements in v as lying in iv , namely
as infinitesimal isometries of H3

C . We also use the following lemma (see [5,
III.9.3] for a proof).

4.1 Lemma For γ ∈ PSU(3, 1) , su(3, 1)γ = Ker(Adγ −1) is the Lie alge-
bra of the centralizer of γ (i.e. the Lie subgroup of elements in PSU(3, 1)
that commute with γ ).

Alternatively, the computation of invariant subspaces could also be made
with the analogue of Lemma 4.1 for GL(4) or just by explicit computation
of the adjoint action on v .

The centralizer of an element is obtained by means of the stabilizer of
an invariant object in H3

C ∪ ∂H3
C . This explains the organization of this

section, one subsection for each object.

4.1 Geodesics.

Consider the Riemannian geodesic γ in H3
C between [v+] and [v−] . Let

g0 ⊂ su(3, 1) denote the Lie algebra of the subgroup G0 ⊂ PSU(3, 1) which
fixes the endpoints of the geodesic γ (see [13, 4.1.3]). Notice that G0

∼=
R×U(2), where R acts by translations and U(2) is the pointwise stabilizer,
isomorphic to the stabilizer of a point in H2

C , hence g0 ∼= R⊕ u(2).

4.2 Lemma Let A ∈ PSO(3, 1) be a hyperbolic element of complex length
l + iα , l 6= 0.

11



(i) If α 6∈ πZ , then dim vA = 1.

(ii) If α ∈ πZ , then dim vA = 3.

Proof. We let γ denoted the axis of A . After conjugation we might assume
that γ is the geodesic between [v+] and [v−] and hence

A =




cosα − sinα 0 0
sinα cosα 0 0
0 0 cosh l sinh l
0 0 sinh l cosh l


 .

If α = π , then A commutes with the whole stabilizer G0 . Moreover,
the subgroup of PSO(3, 1) preserving γ is isomorphic to P (O(2)×O(1, 1)).
Thus

dim vA = dim(g0)− dim(so(2) ⊕ so(1, 1))

= 5− 2 = 3.

If α 6= π , then the Lie algebra of the centralizer of A in su(3, 1) is
isomorphic to R⊕ (so(2) × u(1)) ⊂ R⊕ u(2), hence three-dimensional and
therefore

dim vA = 3− 2 = 1.

2

4.2 Complex hyperbolic lines

Complex hyperbolic space is the projectivization of the subset of the time-
like vectors of C3,1 . A complex hyperbolic line is defined as the intersection of
H3

C with a complex projective line. The group SU(3, 1) acts transitively on
the set of complex planes that contain time-like vectors. Hence all complex
hyperbolic lines are isomorphic to H1

C , and a standard model for a complex
hyperbolic line is the image of the plane given by x1 = x2 = 0. The
intersection of a complex hyperbolic line with ∂H3

C is a smooth circle called
a chain. Two distinct boundary points of H3

C are contained in a unique
chain and the Riemannian geodesic between the two boundary points is
contained in the corresponding complex hyperbolic line.

The identity component of the stabilizer of a chain is given by P (U(2)×
U(1, 1)) ⊂ PSU(3, 1).

4.3 Lemma Let A ∈ PSO(3, 1) be an elliptic element of rotation angle
α ∈ (0, 2π) .

(i) If α = π , then dim vA = 5.

(ii) If α 6= π , then dim vA = 3.

12



Proof. The fixed point set of A is a complex line, whose stabilizer is
P (U(2) × U(1, 1)).

If α = π then A commutes with all elements in this stabilizer. As the
stabilizer of a geodesic in PSO(3, 1) is two dimensional (SO(2) × R) we
obtain:

dim vA = dim((u(1, 1) ⊕ u(2)) − 1− dim(so(2)⊕R)

= dim u(1, 1) + dim u(2)− 3 = 4 + 4− 3 = 5.

When α 6= π , then the centralizer of A is the projectivization of

{(ζC 0
0 B

) ∣∣∣C ∈ SO(2), ζ ∈ U(1), B ∈ U(1, 1)
}

and therefore

dim vA = dim(u(1, 1) ⊕ so(2)) − 2

= 4 + 1− 2 = 3.

2

4.3 Parabolic elements and Heisenberg geometry

In the sequel we will use the notation of Section 3.3, i.e. we will fix two light-
like vectors v± ∈ C3,1 representing two distinct boundary points [v±] ∈
∂H3

C . Moreover we will use the root-space decomposition of su(3, 1). The
Heisenberg group H− is the group of parabolic transformations fixing the
point [v−] , i.e. exp: g−1 ⊕ g−2 → H− is given by

exp(v−v
∗ − vv∗− + i t v−v

∗
−)

= I4 + v−v
∗ − vv∗− − (‖v‖2/2− it)v−v

∗
−

=




1 0 z1 z1
0 1 z2 z2

−z̄1 −z̄2 1− ‖v‖2/2 + it −‖v‖2/2 + it
z̄1 z̄2 ‖v‖2/2 − it 1 + ‖v‖2/2− it




=: H(z1, z2, t) (7)

where v = (z1, z2, 0, 0)
t ∈ v⊥+ ∩ v⊥− is a space-like vector and hence 〈v, v〉 =

‖v‖2 = |z1|2 + |z2|2 ≥ 0.
Following the exposition in Goldman’s book [13, 4.2], the boundary a

∞ of H3
C minus the point [v−] can be identified with a Heisenberg space,

i.e. a space equipped with a simply transitive left action of the Heisenberg
group H− . Hence by looking at the orbit of [v+] we have a bijection H− →
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∂H3
C \ {[v−]} given by

H(z1, z2, t) 7→ H(z1, z2, t)[v+] =




2z1
2z2

1− ‖z‖2 + 2it
1 + ‖z‖2 − 2it




where ‖z‖2 = |z1|2 + |z1|2 .
In the sequel we shall represent points of H− by triples of points (z1, z2, t)

where z1, z2 ∈ C , t ∈ R with multiplication

(ω1, ω2, s) · (z1, z2, t) = (ω1 + z1, ω2 + z2, s+ t+ Im(ω1z̄1 + ω2z̄2)),

∀(ω1, ω2, s), (z1, z2, t) ∈ H. (8)

Therefore, H− is a nilpotent 5-dimensional real Lie group, which is a non-
trivial central extension

0 → R → H− → C2 → 0 .

The center are the elements of the form (0, 0, t), t ∈ R .
In the sequel we will make use of the Siegel domain model H3 of H3

C .
Here

H3 =
{
w =



w1

w2

w3


 ∈ C3

∣∣∣ |w1|2 + |w2|2 < 2ℜ(w3)
}

is obtained in the following way: we choose the point [v−] ∈ ∂H3
C and

we denote by H ⊂ P3,1 the projective hyperplane tangent to ∂H3
C at [v−] .

More precisely, H is the projectivization of v⊥− ⊂ C3,1 given by the equation
z3 + z4 = 0. The corresponding affine embedding C3 → CP3 \H is given
by



w1

w2

w3


 7→




w1

w2

1/2 −w3

1/2 +w3


 .

It is easy to see that H3
C correspond to the Siegel domain H3 ⊂ C3 . In this

model the whole stabilizer G− of the point [v−] at infinity is the semidirect
product:

G− = H− ⋊ (U(2) ×R) .

Here U(2) acts linearly on the factor C2 , and trivially on the factor R .
Moreover R acts as follows:

(I2, λ)(z1, z2, t)(I2,−λ) = (e−λz1, e
−λz2, e

−2λt), ∀λ ∈ R, ∀(z1, z2, t) ∈ H.

In this construction, the subgroup of real parabolic transformations cor-
responds to R2 × {0} ⊂ H− .
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4.4 Lemma (i) If A is a nontrivial parabolic element of PSO(3, 1) , then
dim vA = 3.

(ii) If Γ < PSO(3, 1) is a rank 2 parabolic subgroup, then dim vΓ = 1.

Proof. Using the representation in the Heisenberg group H− , we may as-
sume that up to conjugation A is (1, 0, 0) ∈ H− . Note that the centralizer
of A is contained in G− . This follows from the fact that A has a unique
fixed point on H3

C and every element which commutes with A has to fix
this point.

Now a direct calculation gives that the centralizer of A in G− is 5-
dimensional and given by

{
(s, z, t)

(
1 0
0 a

)
∈ G− | s, t ∈ R, z ∈ C and a ∈ U(1)

}
.

Thus dim(su(3, 1)A) = 5, and since dim(so(3, 1))A = 2 (the tangent
space to the real parabolic group itself), the first assertion follows.

For the last assertion, we view Γ as a rank 2 subgroup of the Heisenberg
group

Γ < R2 × {0} < H−.

Its centralizer is contained in G− and is precisely the subgroup of elements
with real coordinates:

R3 ∼= {(s1, s2, t) ∈ H− | s1, s2, t ∈ R} < H− .

As the subgroup of real parabolic transformations R2×{0} is the centralizer
of Γ in PSO(3, 1), it follows that vΓ = {(0, 0)}×R is one dimensional. 2

5 Cohomology of the torus

In this section, we analyze the cohomology of the boundary ∂M and the
image of the map induced by inclusion ∂M ⊂ M , which is a Lagrangian
subspace.

5.1 A Lagrangian subspace

As in Section 2, let ρu denote a representation contained in Thurston’s
slice, where u = (u1, . . . , uk) ∈ U ⊂ Ck is a point in the deformation space.
The subspace invariant by the image of the peripheral subgroup of the i-th
component is denoted by vρu(π1(∂iM)) , and its orthogonal complement by

(
vρu(π1(∂iM))

)⊥
= {v ∈ v | B(v,w) = 0, ∀w ∈ vρu(π1(∂iM))}.

15



5.1 Lemma (i) For ui 6= 0, the radical of vρu(π1(∂iM)) is trivial, i.e.

(
vρu(π1(∂iM))

)⊥ ∩ vρu(π1(∂iM)) = 0.

(ii) For every u ∈ U , the invariant subspace vρu(π1(∂iM)) has dimension
one.

Proof. When ui 6= 0, ρu(π1(∂iM)) consists of loxodromic and/or elliptic
elements that preserve a geodesic, and we want to apply Lemma 4.2 (i).
For this, we need an element γ ∈ π1(∂iM) such that ρu(γ) satisfies the
hypothesis of Lemma 4.2 (i). If the real part of ui does not vanish and the
imaginary part of ui is not contained in Zπ then we choose µi . If the real
part of ui vanishes, by Theorem 2.1 the real part of vi does not, and the
condition on the complex length applies to either γ = λi or γ = λiµi , that
have respective complex lengths vi and ui+ vi . The same argument applies
when the imaginary part of ui is zero.

By Lemma 4.2 (i) and its proof, vρu(π1(∂iM)) is the one dimensional
subspace generated by (a conjugate of)

(
1
1
−1

−1

)
,

and both assertions of the lemma are clear when ui 6= 0.
When ui = 0, assertion (ii) is Lemma 4.4 (ii). 2

Note that the cup product on H1(∂M ; v) is the orthogonal sum of
the cup products on the groups H1(∂iM ; v). More precisely, if we denote
by res i : H

1(∂M ; v) → H1(∂iM ; v) la restriction induced by the inclusion
∂iM →֒ ∂M then for z1, z2 ∈ H1(∂M ; v) we have

z1 ∪ z2 =
k∑

i=1

res i(z1) ∪ res i(z2) . (9)

5.2 Lemma Let u = (u1, . . . , uk) ∈ U .

(i) When ui 6= 0, there is a natural isomorphism

H∗(∂iM ; vAdρu)
∼= H∗(∂iM ;R) ⊗ vρu(π1(∂iM)).

(ii) For u ∈ U , dimH1(∂M ; vAd ρu) = 2 k , and the image of the map

H1(M ; vAd ρu) → H1(∂M ; vAd ρu)

is a Lagrangian subspace of H1(∂M ; vAdρ) for the cup product (in
particular it has dimension k ).
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Proof. To prove assertion (i), we use the decomposition of Lemma 5.1:

v =
(
vρu(π1(∂iM))

)⊥ ⊕ vρu(π1(∂iM)),

which is a direct sum of π1(∂M)-modules, and therefore it induces a direct

sum in cohomology. Since
(
vρu(π1(∂iM))

)⊥
has no invariant subspaces,

H0(∂iM,
(
vρu(π1(∂iM))

)⊥
) = 0.

In addition, the Killing form restricted to
(
vρu(π1(∂iM))

)⊥
is non-degenerate,

thus by duality and by vanishing of the Euler characteristic

H∗(∂iM,
(
vρu(π1(∂iM))

)⊥
) = 0.

Hence

H∗(∂iM ; v) = H∗(∂iM ; vρu(π1(∂iM))) ∼= H∗(∂iM ;R)⊗ vρu(π1(∂iM)).

The proof of assertion (ii) is a standard application of duality, that we
reproduce for completeness (cf. [15]). We are interested in the following part
of the exact cohomology sequence of the pair (M,∂M):

H1(M ; v)
j∗−→ H1(∂M ; v)

∆−→ H2(M,∂M ; v) .

The maps j∗ and ∆ are dual to each other: for z1 ∈ H1(M ; v) and z2 ∈
H1(∂M ; v),

〈j∗(z1) ∪ z2, [∂M ]〉 = 〈z1 ∪∆(z2), [M,∂M ]〉,

where [M,∂M ] ∈ H3(M,∂M ;R) and [∂M ] ∈ H2(∂M ;R) denote the re-
spective fundamental classes. It follows that dim Im(j∗) = 1

2 dimH1(∂M ; v) =
k . Moreover ∆ ◦ j∗ = 0 implies that Im(j∗) is isotropic and hence La-
grangian since dim Im(j∗) = k . 2

5.3 Corollary Let M be a cusped manifold, then dimH1(M ; vAd ρu) ≥ k ,
∀u ∈ U ⊂ Ck .

Moreover M is infinitesimally projectively rigid iff dimH1(M ; vAd ρ0) =
k .

Proof. Follows directly from Lemma 5.2 and from the decomposition sl(4) =
so(3, 1) ⊕ v (3). 2
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5.2 Parabolic representations

Let λ and µ be two generators of Z2 and

̺ : Z2 → PSO(3, 1)

a representation into a parabolic group. Up to conjugation we suppose that
the boundary point [v−] is the fixed point of the parabolic group. Viewing
the parabolic group as translations of R2 , ̺(λ) is a translation of vector
vλ , and ̺(µ) of vector vµ . Assume that the representation has rank 2, (i.e.
vλ and vµ are linearly independent). Then:

5.4 Lemma If the angle ϕ between vλ and vµ is not in π
3Z then the map

induced by restrictions

H1(Z2; vAd̺)
i∗λ⊕i∗µ−−−→ H1(λ; vAd ̺)⊕H1(µ; vAd ̺)

is injective. Moreover, rank(i∗λ) = rank(i∗µ) = 1.

Proof. We follow the notation from Subsection 4.3. We may assume that
vλ = (1, 0), vµ = (a cosϕ, a sinϕ) ∈ R2 , a sinϕ 6= 0. In the Heisenberg
model H− , ̺(λ) = (1, 0, 0) and ̺(µ) = (a cosϕ, a sinϕ, 0). For θ ∈ R , we
define a representation ̺θ : Z⊕ Z → G− by

̺θ(λ) = ̺(λ) and ̺θ(µ) = ̺(µ)

(
1 0
0 eiθ

)
.

Notice that ̺θ(λ) and ̺θ(µ) commute, because
(
1 0
0 eiθ

)
fixes (1, 0).

Differentiating at θ = 0, we obtain an infinitesimal deformation i.e. a
cocycle dµ : Z

2 → g− = g0 ⊕ g−1 ⊕ g−2 given by

dµ(γ) =
d̺θ(γ)

dθ

∣∣∣∣
θ=0

̺0(γ)
−1 .

The cocycle dµ : Z
2 → g− is trivial when restricted to λ . More precisely we

obtain

dµ(λ) = 0 and dµ(µ) =

(
0 0
0 i

)
.

Notice that the derivative of the canonical embedding U(2) → PSU(3, 1)
determinate by

A 7→
(
A 0
0 I2

)

is the map u(2) → su(3, 1) given by

a 7→
(
a 0
0 0

)
− tr a

4
I4
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and that

(
0 0
0 i

)
7→ i

4




−1
3

−1
−1


 ∈ iv .

Hence we obtain a cocycle zµ : Z
2 → v given by zµ(λ) = 0 and zµ(µ) =

aλ where

aλ :=




−1
3

−1
−1


 ∈ v .

In the same way we obtain a second cocycle zλ : Z
2 → v given by zλ(λ) =

aµ and zλ(µ) = 0 where

aµ =




1− 2 cos(2ϕ) 2 sin(2ϕ)
2 sin(2ϕ) 1 + 2 cos(2ϕ)

−1
−1


 ∈ v .

Here ϕ is the angle between vµ and vλ . The matrix aµ is the analogue of
aλ , as i aµ is an infinitesimal rotation in the direction perpendicular to vµ ,
and of course it is invariant by ̺(µ) (it can be obtained by conjugating aλ
by a rotation of angle ϕ).

We claim that the cocycle zµ is cohomologically nontrivial when re-
stricted to µ , i.e. nontrivial in H1(µ; vAd ̺). This proves that zµ is a
nontrivial cocycle, and rank(i∗µ) ≥ 1. By symmetry of the generators, zλ is
a nontrivial cocycle and rank(i∗λ) ≥ 1. Moreover, since i∗µ(zλ) = 0 = i∗λ(zµ)
it follows that the image of i∗µ⊕ i∗λ is 2-dimensional and the assertion of the
lemma follows.

To prove the claim, we will use the cup product

H1(µ; vAd ̺)×H0(µ; vAd ̺) → H1(µ;R) ∼= R

associated to the Killing form defined in (4). Recall that aµ ∈ H0(µ; vAd ̺) =
v̺(µ) is invariant under the action of µ . The cup product i∗µ(zµ) ∪ aµ is a
represented by the homomorphism H1(µ;R) → R given by

(
i∗µ(zµ) ∪ aµ

)
(µ) = B(aλ, aµ) = 8 tr(aλ · aµ)

= 32(1 + 2 cos(2ϕ)) = 128
(
cos2(ϕ) − 1

4

)
.

This is nonzero by the hypothesis about the angle ϕ between vλ and vµ ,
hence i∗µ(zµ) ∪ aµ is not homologous to zero. 2
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Notice that in the proof of Lemma 5.4, instead of the cup product we
could have considered the Kronecker paring between homology and coho-
mology, and we would have ended up checking the non-vanishing of the same
evaluation of the Killing form B(aλ, aµ).

Before the next lemma, we still need a claim about symplectic forms on
vector spaces.

5.5 Claim Let (V, ω) be a 2-dimensional symplectic subspace. Suppose
that f, g : V → R are linear forms which form a basis of the dual space V ∗ ,
i.e. f ⊕ g : V → R2 is an isomorphism.

Then there exists a constant c ∈ R , c 6= 0, such that, for every x, y ∈ V

ω(x, y) = c(f(x)g(y) − g(x)f(y)) .

Proof. The claim is a consequence of the fact that the space of antisymmetric
bilinear forms on R2 is one dimensional. 2

5.6 Lemma If a subspace L ⊂ H1(∂M ; vAd ρ0) is Lagrangian for the cup
product, then there exist simple closed curves µ1 ∈ π1(∂1M) , . . . , µk ∈
π1(∂kM) so that the image of L injects in H1(µ1; vAd ρ0)⊕· · ·⊕H1(µk; vAdρ0) .
Moreover, injectivity fails if we consider only k − 1 curves.

Proof. Along this proof, the action on v is the adjoint of the holonomy of
the complete structure, so Ad ρ0 is omitted from notation. For j = 1, . . . , k ,
let resj : H

1(∂M ; v) → H1(∂jM ; v) denote the map induced by restriction,
which is also the projection to the j -th factor of the isomorphism

H1(∂M ; v) ∼= H1(∂1M ; v) ⊥ · · · ⊥ H1(∂kM ; v).

Recall that this is an orthogonal sum for the cup product (9).
We prove the lemma by induction on k . When k = 1, it suffices to chose

two curves µ1 and λ1 in ∂1M that satisfy the hypothesis of Lemma 5.4.
Hence

i∗µ1
⊕ i∗λ1

: H1(∂1M ; v) → H1(µ1; v)⊕H1(λ1; v)

is injective. Then for at least one of the curves, say µ1 , i
∗
µ1
(L) 6= 0.

For the induction step, we chose the corresponding curves on the k -th
component µk and λk , so that

i∗µk
⊕ i∗λk

: H1(∂kM ; v) → H1(µk; v)⊕H1(λk; v)

is injective, and assume that i∗µk
(L) 6= 0.

Let L′ ⊂ H1(∂1M ; v) ⊥ · · · ⊥ H1(∂k−1M ; v) be the projection to the
first k − 1 factors of the kernel of i∗µk

restricted to L ; i.e.

L′ = (res1 ⊕ · · · ⊕ resk−1)(ker i
∗
µk
|L)

20



We first check that L′ is isotropic. Given x, y ∈ L′ , there exist xk, yk ∈
H1(∂kM ; v) such that (x, xk), (y, yk) ∈ L and i∗µk

(xk) = i∗µk
(yk) = 0. Thus,

by Claim 5.5 and equation (9):

0 = (x, xk) ∪ (y, yk) = x ∪ y + ck(i
∗
µk
(xk)i

∗
λk
(yk)− i∗λk

(xk)i
∗
µk
(yk)) = x ∪ y.

Finally we claim that the dimension of L′ is k−1. Since dim((ker(i∗µk
|L)) =

k − 1, we need to check that res1 ⊕ · · · ⊕ resk−1 restricted to ker i∗µk
|L is

injective. Let x ∈ ker(res1) ∩ · · · ∩ ker(resk−1) ∩ ker(i∗µk
|L), we want to

check that x = 0. Notice that x ∈ H1(∂kM ; v)∩L∩ker(i∗µk
). Choose y ∈ L

such that i∗µk
(y) 6= 0, this is possible because i∗µk

(L) 6= 0. Then, using that
x ∈ H1(∂kM ; v), Claim 5.5 and Equation (9),

0 = x ∪ y = ck(i
∗
µk
(x)i∗λk

(y)− i∗λk
(x)i∗µk

(y)) = −cki
∗
λk
(x)i∗µk

(y)

for some ck 6= 0. Since i∗µk
(y) 6= 0, i∗λk

(x) = 0. Therefore x = 0. 2

6 The function on the deformation space

Recall that M denotes a compact manifold with boundary a union of k > 0
tori and hyperbolic interior. The goal of this section is to give a sufficient
cohomological condition which guarantees that infinitely many fillings on M
are infinitesimally rigid. For this we need several tools for constructing a
function on the deformation space. The first one is given by the following
lemma. All statements are up to taking a smaller neighborhood of 0, U ⊂
Ck .

6.1 Lemma As in Section 2, let U ⊂ Ck be an open neighborhood of
0 which parametrizes the deformations of the complete holonomy of the
interior of M .

1. There exists a nonvanishing element aiu ∈ vρu(π1(∂iM)) that varies an-
alytically in u ∈ U .

2. There exists a family of cohomology classes {z1u, . . . , zku} that define
a basis for the image of H1(M ; vAd ρu) → H1(∂M ; vAd ρu) and that
varies analytically in u ∈ U .

6.2 Remark To vary analytically depends on the construction we take for
cohomology, but we always think of an analytic map on a finite dimensional
space of cocycles, either in simplicial cohomology (fixing a triangulation and
varying the bundle) or in group cohomology (fixing a generating set for the
fundamental group).

21



Proof. The first assertion follows directly from Lemma 5.1 (ii).
For the second part we will use Lemma 5.2 (ii). The rank of H1(M ; vAd ρu) →

H1(∂M ; vAd ρu) is k . Hence it suffices to take a basis when u = 0, {z10 , . . . , zk0}
and then make it vary in the kernel of H1(∂M ; vAd ρu) → H2(M,∂M ; vAd ρu),
which is an analytic family of k -dimensional vector spaces. 2

For i = 1, . . . , k we consider the following 1-cycle in the i-th torus ∂iM
of the boundary

aiu ⊗
1

|pi + qiτi|2
(piµi + qiλi)

in simplicial homology. This twisted cycle is the image of the untwisted
cycle

piµi + qiλi

|pi + qiτi|2
∈ H1(∂iM,R)

by the natural map

H1(∂iM,R)
aiu⊗·−−−→ H1(∂iM, vρu(π1(∂iM))) → H1(∂iM, v)

that consists in tensorizing by aiu and composing with the map induced by
the inclusion of coefficients vρu(π1(∂iM)) → v .

Let 〈. , .〉 denote the Kronecker pairing between homology and cohomol-
ogy. We define

f(u) = det

((
〈ziu, aju ⊗

pjµj + qjλj

|pj + qjτj|2
〉
)
ij

)

where pi and qi are the generalized Dehn filling coefficients corresponding
to u ∈ U (see Section 2). If we view zu as a map on simplicial chains taking
values on v , and B denotes the Killing form, then

f(u) = det

(
B
(
ziu(

pjµj + qjλj

|pj + qjτj|2
), aju

))
.

6.3 Remark The function f depends on several non-canonical choices.
But we are only interested in the zero locus of f and this set does not
depend on the different cocycles involved in the definition of f . Notice also
that Lemma 2.2 implies that f is analytic and f(0) = 0. Proposition 1.8
below shows that the zero locus f−1({0}) of f might be one dimensional
and that in general 0 ∈ f−1({0}) is not isolated point (see Section 8.2).

In the sequel let u(p,q) denote the parameter of the structure whose
completion gives the Dehn filling with coefficients (p1, q1), . . . , (pk, qk) where
(pi, qi) are pairs of coprime integers.

6.4 Lemma If
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(i) f(u(p,q)) 6= 0 and

(ii) dimH1(M, vAd ρu(p,q)
) = k ,

then H1(M(p,q), vAd ρu(p,q)
) = 0.

Proof. In this proof the representation ρu(p,q)
is fixed and we remove Ad ρu

from notation.
Hypothesis (i) and (ii) imply that

{a1u ⊗ (p1µ1 + q1λ1), . . . , a
k
u ⊗ (pkµk + qkλk)}

is a basis for H1(M ; v). Hence for γ := γ1 ∪ · · · ∪ γk , γi = piµi + qiλi , the
following composition gives an isomorphism in homology:

k⊕

i=1

H1(γi;R) →
k⊕

i=1

H1(γi; v
ρu(π1(∂iM))) → H1(γ; v) → H1(M ; v).

Equivalently, we have an isomorphism in cohomology:

H1(M ; v) → H1(γ; v) →
k⊕

i=1

H1(γi; v
ρu(π1(∂iM))) →

k⊕

i=1

H1(γi;R). (10)

Let N denote a tubular neighborhood of the filling geodesics, so that
N = N1 ∪ · · · ∪Nk is the union of k solid tori, N ∪M is the closed man-
ifold M(p,q) and N ∩ M = ∂M . We claim that the inclusions induce an
isomorphism

H i(M ; v)⊕H i(N ; v) → H i(∂M ; v)

for i = 0 and i = 1. Then by Mayer-Vietoris, H1(M(p,q), v) = 0 follows.

Let us check the claim. When i = 0, H0(M ; v) ∼= vAdρu(π1M) = 0, and
the required isomorphism comes from the fact that π1(Nj) and π1(∂jM)
have the same image under ρu and hence the same invariant subspace.

When i = 1, we notice that by Lemma 5.2

H1(∂iM, v) = H1(∂iM,R) ⊗ vρu(π1(∂iM)),

and dim vρu(π1(∂iM)) = 1, by Lemma 5.1. Similarly,

H1(Ni, v) = H1(Ni,R) ⊗ vρu(π1(∂iM)).

Then the proof follows from isomorphism (10) and the natural isomorphism
induced by inclusions:

H1(∂iM ;R) ∼= H1(Ni;R)⊕H1(γi;R).

2
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By analyticity we get:

6.5 Corollary If the generic dimension of H1(M ; vAd ρu) is k and if f is
non-constant in a neighborhood of 0, then infinitely many Dehn filling are
infinitesimally rigid.

Proof. The dimension of H1(M ; vAd ρu) is bounded below by k and lower
semicontinuous on u ∈ U (it is larger on a proper analytic subset). Hence
the set of u ∈ U where dimH1(M ; vAd ρu) 6= k or f(u) = 0 is a proper
analytic subset of U , and it misses infinitely many Dehn fillings by [25,
Lemme 4.4]. 2

For a collection of simple closed curves µ = {µ1, . . . µk}, where µi ⊂ ∂iM
is non trivial in homology, let ρiα denote the holonomy of the corresponding
hyperbolic cone structure with cone angle α and meridians µ .

6.6 Proposition Assume that there exists a collection of simple closed
curves as above µ ⊂ π1(∂M) and some ε > 0 so that, ∀0 < α < ε ,

dimH1(M,µ; vAdραi
) = 3k.

Then infinitely many Dehn fillings are infinitesimally rigid.

Proof. Our goal is to prove the proposition by applying Corollary 6.5. Since
ραi(µj) is a rotation of angle 0 < α < π , by Lemma 4.2 dimH0(µj; vAdραi

) =
dim vAdραi(µj ) = 3, and therefore dimH0(µ; vAdραi

) = 3k .
Then the long exact sequence of the pair (M,µ) starts as follows:

0 → H0(µ, vAdραi
) → H1(M,µ, vAdραi

) → H1(M, vAdραi
) → · · · .

Since dimH0(µ; vAdραi
) = dimH1(M,µ, vAdραi

), we have an inclusion

0 → H1(M ; vAdραi
) → H1(µ; vAdραi

).

The inclusion of µ in M factors through ∂M , hence by Lemma 5.2, it
follows that

dimH1(M ; vAdραi
) = k,

which is the first condition for applying Corollary 6.5, by lower semiconti-
nuity of the dimension of H1 .

Moreover, using Lemma 5.2 (i), it follows that

H1(M ; vAdραi
) ∼=

k⊕

j=1

H1(µj ;R)⊗ vραi(π1(∂jM)) .
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This implies that one can choose a basis {z1u, . . . , zku} for H1(M ; vAdραi
),

where zju = µ̂j ⊗ ajα i and µ̂j ∈ H1(µj;Z) is the dual of the fundamental
class in H1(µj ;Z). Thus, since pj = 2π/α and qj = 0, we get

f(αi) =
αk

(2π)k
B(a1α i, a

1
α i) · · ·B(akα i, a

k
α i) 6= 0,

as the Killing form on vρα i(π1(∂jM)) is nondegenerate. 2

Proof of Theorem 1.4. As M is infinitesimally projectively rigid, by
Lemma 5.6 we can choose a set of slopes µ = µ1 ∪ · · · ∪ µk , so that

0 → H1(M ; vAd ρ0) → H1(µ; vAd ρ0)

is exact. By the long exact sequence of the pair (M,µ), since dim vAdρ0(µj ) =
3, this is equivalent to saying that dimH1(M,µ; vAd ρ0) = 3k . By ana-
lyticity and lower semicontinuity of the dimension of the cohomology, the
hypothesis of Proposition 6.6 holds true. 2

Proof of Theorem 1.5. Let M(p,q) be infinitesimally projectively rigid.
Then u(p,q) ∈ U denotes the parameter in the Thurston slice corresponding
to the holonomy of the structure on M induced by the Dehn filling.

As in the proof of Lemma 6.4, a Mayer-Vietoris argument gives that

dimH1(M ; vAd ρu(p,q)
) = k.

Moreover, if the parameter u(p,q) is contained in the domain of definition
of f then f(u(p,q)) 6= 0. A priory the domain of definition of f could be
a smaller neighborhood of the origin: the problem is that the cohomology
classes z1u, . . . , z

k
u ∈ Im(H1(M ; vAd ρ) → H1(∂M ; Ad ρ)) could be linearly

dependent or even not be defined outside a small neighborhood of 0. To fix
that, we use the path of hyperbolic cone structures, that gives a segment
in U , that we parametrize by the cone angle α ∈ [0, 2π] . Let uα ∈ U de-
note the parameter of the deformation space and γ1, . . . , γk the boundary
slopes. By compactness, the segment [0, 2π] is covered by intervals (αi, αi+1)
where there exists cohomology classes z1α, . . . , z

k
α ∈ Im(H1(M ; vAd ρ) →

H1(∂M ; Ad ρ)) that vary analytically on α and are linearly independent
for each α ∈ (αi, αi+1), by Lemma 6.1. On each interval we may use the
cohomology classes to construct functions similar to f , i.e. as the deter-
minant of the matrix of Kronecker pairings between ziα and the homology
class represented by ajα ⊗ α

2πγj . This finite sequence of paths and the usual
analyticity argument gives that in a neighborhood of 0, f 6= 0 and the
generic dimension of the cohomology is the expected one. Hence we may
apply Corollary 6.5. 2

25



7 Flexing slopes

7.1 Definition Let M3 be a cusped hyperbolic manifold of finite volume
which is infinitesimally projectively rigid. Let γ be a slope of ∂1M , We say
that γ is a flexing slope if the map

i∗γ : H
1(M ; vAd ρ0) → H1(γ; vAd ρ0)

is nontrivial.

7.2 Proposition Let M3 be a cusped hyperbolic manifold of finite volume
which is infinitesimally projectively rigid and let µ, λ ∈ ∂1M be a pair
of simple closed curves generating the fundamental group of ∂1M . Let
(pn, qn) ∈ Z2 be a sequence of coprime integers lying on a line a pn+b qn = c .
If γ = −bµ + aλ is a flexing slope, then M3

(pn,qn),∞,··· ,∞ is infinitesimally
rigid for n large enough.

Proof. After changing the basis in homology, the curves µ and λ are chosen
such that a = 1, b = 0, i.e. λ = (0, 1) is the flexing slope. We also may
assume (pn, qn) = (c, n).

Let us consider the path

s 7→
{
(c, 1s ) if s 6= 0

∞ if s = 0

in the parameter space. Denote by u(s) the corresponding point in the
deformation space.

7.3 Lemma The path u(s) is a real analytic on s ∈ (−ε, ε) .

Proof. Setting τ(u) = v(u)/u , from p u+ q v = u(c + 1
sτ(u)) = 2πi we can

write
u(s c+ τ(u)) = s 2πi.

Since τ(0) 6= 0 and τ is analytic on u , this allows to define u as analytic
function on s , by applying the analytic version of the implicit function
theorem. 2

Let θu ∈ Im
(
H1(M ; vAdρu) → H1(∂1M ; vAdρu)

)
be an analytic family

of cohomology classes, so that i∗λ(θ0) 6= 0. This is always possible since i∗λ
factors through H1(∂1M ; vAdρu).

The two cohomology classes zµ, zλ ∈ H1(∂1M ; vAdρ0) as defined in the
proof of Lemma 5.4 satisfy i∗µ(zλ) = i∗λ(zµ) = 0, i∗µ(zµ) 6= 0, and i∗λ(zλ) 6= 0.
Hence we may assume that

θ0 = zλ + βzµ, for some β ∈ R.
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Let also au(s) ∈ vAdρu(s)(π1(∂1M)) be an analytic family of invariant ele-
ments, with a0 6= 0. As in Lemma 6.1, we want to see that for s > 0, the
following function does not vanish:

f(s) :=

〈
θu(s), au(s) ⊗

cµ+ 1
sλ

|c+ 1
sτ |2

〉

=
s

|s c+ τ |2
〈
θu(s)(s cµ+ λ), au(s)

〉
.

Notice that it follows from the proof of Lemma 5.1 that for small s ,
s 6= 0, the restriction of the Killing form on the subspace vAdρu(s)(π1(∂1M))

is positive definite i.e. B(au(s), au(s)) > 0 for sufficiently small s 6= 0.

7.4 Lemma If ‖au(s)‖ = B(au(s), au(s))
1/2 , then

lim
s→0

B(θu(s)(λ), au(s))

‖au(s)‖
= 16 and lim

s→0

B(θu(s)(µ), au(s))

‖au(s)‖
= 16β.

Assuming the lemma we obtain

f(s)

s ‖au(s)‖
=

1

|s c+ τ |2
(
B(θu(s)(λ), au(s))

‖au(s)‖
+ s c

B(θu(s)(µ), au(s))

‖au(s)‖

)

and hence

lim
s→0

f(s)

s ‖au(s)‖
=

16

|τ0|2
.

Hence f(s) 6= 0 for s 6= 0. Moreover, since the dimension of H1(M ; vAdρu)
is lower semicontinuous, it still satisfies dim(H1(M ; vAdρu(s))) = k . By
analyticity those conditions are satisfied for all but finitely many s , hence
we may apply Lemma 6.4.

This concludes the proof of Proposition 7.2 assuming Lemma 7.4. 2

Before proving Lemma 7.4, we still need a further computation. Let
w0 ∈ su(3, 1) denote

w0 =
i

2
V0, where V0 =




1
1

−1
−1


 .

Note that w0 is contained in g0 ⊂ su(3, 1) which is the Lie algebra of the
stabilizer of [v±] ∈ ∂∞H3

C .

7.5 Lemma The invariant element au ∈ vρu(π1(∂M)) can be chosen such
that:

au = p(u) + 4
(
sinh2

u

2

)
V0

where p(u) is an infinitesimal parabolic transformation.
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Proof. Since w0 is invariant by the stabilizer G0 for u 6= 0, au can be
obtained by conjugating w0 , and then by normalizing the result so that the
limit exists if u tends to 0.

Recall that in the Heisenberg model the subgroup of real parabolic rep-
resentations corresponds to R2 × {0} ⊂ H− ⊂ G− = H− ⋊ (U(2) × R).
Note also that w0 is the image of iI2 under the canonical inclusion u(2) →֒
su(3, 1).

Suppose that (x, y, 0) ∈ R2×{0} is the second fixed point of ρu(π1∂M).
In the notation of PSL2(C) we have

ρu(µ) = ±
(
eu/2 1

0 e−u/2

)
,

hence

x+ iy =
−1

2 sinh(u/2)
.

Using the formalism of G− , the conjugate of w0 we are looking for is:

Ad(x,y,0)

(
i 0
0 i

)
=

d

dt
(x, y, 0)

(
eit 0
0 eit

)
(−x,−y, 0)

∣∣∣∣
t=0

=
d

dt
(x, y, 0)(−xeit,−yeit, 0)

(
eit 0
0 eit

) ∣∣∣∣
t=0

=
d

dt

(
x(1− eit), y(1− eit), (x2 + y2) sin(t)

)(eit 0
0 eit

) ∣∣∣∣
t=0

=
(
− ix,−iy, (x2 + y2)

)
+

(
i 0
0 i

)
.

Under the inclusion g− →֒ su(3, 1) this element is written as



i
2

i
2

− i
2

− i
2


− i




0 0 x y
0 0 x y
−x x 0 0
−y y 0 0


+ i(x2 + y2)




0 0 0 0
0 0 0 0
0 0 1 −1
0 0 1 −1


 .

Hence Ad(x,y,0)(w0) = w0 + Parabolic.

Now x2 + y2 = 1
4 sinh2(u/2)

and in order to obtain an invariant matrix

which converges when u → 0 we take

au = −i4
(
sinh2

u

2

)
Ad(x,y,0)(w0) = 4

(
sinh2

u

2

)
V0 + Parabolic

and the lemma is clear. 2

Proof of Lemma 7.4. Using Lemmas 7.5 and 3.3 we obtain:

B(au, au)
1/2 = 4 sinh2

u

2
B(V0, V0)

1/2 = 8 sinh2
u

2
;

B(θu(s)(λ), au(s)) = B(θu(s)(λ), V0) 4 sinh
2 u

2
.
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Hence

B(θu(s)(λ), au(s))

‖au(s)‖
=

1

2
B(θu(s)(λ), V0) →

1

2
B(θu(0)(λ), V0) as s → 0,

and
B(θu(0)(λ), V0) = B(zλ(λ), V0) = B(aµ,W0) = 32 .

A similar computation holds for θu(s)(µ). 2

8 Examples

In this section we compute two examples, the figure eight knot and the
Whitehead link exteriors. We start introducing some notation. Let x ∈ R4

be a column vector. As in Section 3.3 we will use the following notation:
x∗ = xtJ . Then for all x,y ∈ R4 we have that xy∗ + yx∗ ∈ v . In the
sequel we will make use of the following basis {v1, . . . , v9} of v :

vi = eie
∗
i + e4e

∗
4 for i = 1, . . . , 3 ,

and

v4 = e1e
∗
2 + e2e

∗
1, v5 = e1e

∗
3 + e3e

∗
1, v6 = e1e

∗
4 + e4e

∗
1,

v7 = e2e
∗
3 + e3e

∗
2, v8 = e2e

∗
4 + e4e

∗
2, v9 = e3e

∗
4 + e4e

∗
3 .

8.1 The figure eight knot

In this section we explain the computations to show that the figure eight
knot exterior is infinitesimally projectively rigid.

Let Γ be the fundamental group of the figure eight knot exterior. We
fix a presentation of Γ:

Γ = 〈x, y | xy−1x−1yxy−1xyx−1y−1〉. (11)

where x and y represent meridians.
By Corollary 5.3, it suffices to show that dimH1(Γ, vAdρ0) = 1.
We start with a holonomy representation of the complete structure in

SL2(C) [27]:

x 7→
(

1 1

0 1

)
y 7→

(
1 0

1−i
√
3

2 1

)
,

Using for instance the construction described in [9], the representation
in PSO(3, 1) is given by:

ρ0(x) =




1 0 0 0
0 1 −1 1
0 1 1/2 1/2
0 1 −1/2 3/2


 ρ0(y) =




1 0
√
3/2

√
3/2

0 1 1/2 1/2

−
√
3/2 −1/2 1/2 −1/2√
3/2 1/2 1/2 3/2



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Notice that the holonomy of x and y have a fixed point in the light cone,
which are respectively:

v+ =




0
0
1
1


 and v− =




0
0
−1
1


 .

With respect to the basis {v1, . . . , v9} for v the adjoint representation is
given by:

Ad ρ0(x) =




1 0 0 0 0 0 0 0 0

1 2 2 0 0 0 −2 2 −2

1
4

5
4

1
2 0 0 0 1 1 1

2

0 0 0 1 −1 −1 0 0 0

0 0 0 1 1
2 −1

2 0 0 0

0 0 0 −1 1
2

3
2 0 0 0

1
2

3
2 0 0 0 0 −1

2
3
2 0

3
2

5
2 2 0 0 0 −3

2
5
2 −2

3
4

7
4

1
2 0 0 0 0 2 1

2




and

Ad ρ0(y) =




7

4

3

4

3

2
0

√
3 −

√
3 0 0 3

2

1

4

5

4

1

2
0 0 0 1 1 1

2

1 1

2

1

2

√

3

2
−

√

3

2
−

√

3

2
− 1

2

1

2
− 1

2
√

3

4

√

3

4

√

3

2
1 1/2 −1/2

√

3

2

√

3

2

√

3

2

− 3
√

3

4
−

√

3

4
0 − 1

2
− 1

4

5

4
−

√

3

4
−

√

3

4
0

− 5
√

3

4
− 3

√

3

4
−
√
3 − 1

2
− 5

4

9

4
−

√

3

4
−

√

3

4
−
√
3

− 1

4
− 3

4
0 −

√

3

2
−

√

3

4

√

3

4

1

4
− 3

4
0

3

4

5

4
1

√

3

2

√

3

4
−

√

3

4

3

4

7

4
1

− 3

2
−1 − 1

2
−

√

3

2
0

√
3 0 −1 1

2




.

The cohomology group H1(Γ; v) is computed as the quotient Z1/B1 , where
Z1 is the space of cocycles and B1 the space of coboundaries:

Z1 = {d : Γ → v | d(γ1γ2) = d(γ1) +Adρ0(γ1)d(γ2), ∀γ1, γ2 ∈ Γ},
B1 = {d ∈ Z1 | d(γ) = (Adρ0(γ)− 1)a, ∀γ ∈ Γ, for some a ∈ v}.

Since v has no element globally invariant by Γ, dimB1 = dim v =
9. We claim that dimZ1 = 10. To compute this dimension, we use the
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isomorphism of R-vector spaces:

Z1 ↔ {(a, b) ∈ v2 | ∂w
∂x · a+ ∂w

∂y · b = 0}
d ↔ (d(x), d(y))

,

where w = xy−1x−1yxy−1xyx−1y−1 is the relation in the presentation of Γ,
and ∂w

∂x ,
∂w
∂y stand for the Fox derivatives [22]:

∂w

∂x
= 1− xy−1x−1 + xy−1x−1y + yxy−1x−1 − y,

∂w

∂y
= −xy−1 + xy−1x−1 − yxy−1x−1 + yxy−1 − 1.

Thus, Z1 is isomorphic to the kernel of the linear map from v×v to v with
matrix: (

Ad ρ0(
∂w

∂x
) , Ad ρ0(

∂w

∂y
)

)
. (12)

One can check that this matrix has rank 8, by means of an elementary
but tedious computation. Hence dimZ1 = 10, as claimed.

To prove Proposition 1.7 we need to show:

8.1 Remark The longitude is a flexing slope.

With this remark, Proposition 1.7 is just an application of Proposi-
tion 7.2. To prove that the longitude is a flexing slope, we need to analyze
more carefully the previous computation.

By looking at the kernel of matrix (12), we choose one cocycle d deter-
mined by:

d(x) =




0 0 0 0
0 0 −3 −1
0 −3 0 0
0 1 0 0


 and d(y) = 0 .

Let l = yx−1y−1x2y−1x−1y be the longitude that commutes with x . Then,
by Fox calculus,

d(l) =




60 −4
√
3 60

√
3 −68

√
3

−4
√
3 −4 −12 12

60
√
3 −12 178 −206

68
√
3 −12 206 −234


 .

To see that d restricted to l is nontrivial, following the proof of Lemma 5.4,
we must find an invariant element a ∈ vAdρ0(l) such that B(d(l), a) 6= 0.
Since:

ρ0(l) =




1 0 −2
√
3 2

√
3

0 1 0 0

2
√
3 0 −5 6

2
√
3 0 −6 7


 ,
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following again the proof of Lemma 5.4, we choose

a =




−1
3

−1
−1


 ,

and we have that B(d(l), a) = −16 6= 0.

8.2 Orbifolds with branching locus the figure eight knot

Let On denote the orbifold with underlying space S3 , branching locus
Sing(On) the figure eight knot and ramification index n . The orbifold On is
hyperbolic for n ≥ 4. Note that the orbifold On has a finite cyclic covering
Õn → On where Mn := Õn is the so called Fibonacci manifold which is
widely studied in the literature [14].

The aim of this subsection is to prove Proposition 1.8, which states that
On is not locally projectively rigid for sufficiently large n , and that its
deformation space is a curve.

As before, Γ0 := Γ = π1(On \ Sing(On)) denotes the fundamental group
of the figure eight knot exterior, so that

Γ1/n := πorb
1 (On) ∼= Γ/〈mn〉,

for m ∈ Γ representing a meridian. Note that there exists an exact sequence

0 → π1(Mn) → πorb
1 (On) → Z/nZ → 0 .

The figure eight knot is amphicheiral and hence there exists an auto-
morphism of Γ0 preserving the longitude and sending the meridian to its
inverse. Such an automorphism ϕ0 : Γ0 → Γ0 is given by

ϕ0(x) = x−1 and ϕ0(y) = yx−1y−1xy−1.

By direct calculation using Presentation (11) and the meridian/longitude
pair m = x and l = yx−1y−1x2y−1x−1y , one checks that ϕ0 is an automor-
phism and that

ϕ0(m) = m−1 and ϕ0(l) = l.

Hence ϕ0 induces automorphisms

ϕ1/n : Γ1/n → Γ1/n.

Let ρ0 : Γ0 → PSO(3, 1) and ρ1/n : Γ1/n → PSO(3, 1) denote the holon-
omy representations. Then by Mostow–Prasad rigidity there exists a unique
element A1/n ∈ PSO(3, 1) such that

ρ1/n ◦ ϕ1/n = AdA1/n
◦ρ1/n (13)
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for n ≥ 4, including 0 = 1/∞ .
For any group homomorphism ϕ : Γ → Γ′ and any Γ′ -module a′ we

denote by ϕa′ the Γ-module with underlying set a′ and the Γ action γ◦a′ =
ϕ(γ) ◦ a′ . It is easy to check that ϕ induces a map

f∗ : H∗(Γ′, a′) → H∗(Γ, ϕa′)

(see [6, III.8]). Now any Γ-module a and any morphism of Γ-modules
α : ϕa′ → a there is an induced map in cohomology (ϕ,α)∗ : H∗(Γ, a) →
H∗(Γ, a) given by

(ϕ,α)∗ = α∗ ◦ ϕ∗.

Now Equation (13) tells us that AdA−1
1/n

: ϕ1/nvρ1/n → vρ1/n is a Γ1/n -

module morphism and hence there is a induced map

ϕ∗
1/n := (ϕ1/n,AdA−1

1/n
)∗ : H1(Γ1/n, vρ1/n) → H1(Γ1/n, vρ1/n)

given by ϕ∗
1/n(z) = AdA−1

1/n
◦z ◦ ϕ1/n .

In the sequel we shall compute the action of ϕ∗
1/n first on the homology

H∗(∂M, vρ1/n) and then we shall deduce its action on H∗(Γ1/n, vρ1/n).
For 4 ≤ n < ∞ , we have a natural isomorphism

H∗(∂M, vρ1/n)
∼= H∗(∂M,R) ⊗ vρ1/n(π1∂M)

(see Lemma 5.2). For n = ∞ Lemma 5.4 applies and hence

i∗l ⊕ i∗m : H1(∂M, vρ0) → H1(l, vρ0)⊕H∗(m, vρ0)

is injective. Moreover rk(i∗l ) = rk(i∗m) = 1.
In the sequel let ϕ∗ : H∗(∂M,R) → H∗(∂M,R) denote the the map

induced in the untwisted cohomology with real coefficients.

8.2 Lemma For n < ∞ , with respect to the isomorphism H∗(∂M, vρ1/n)
∼=

H∗(∂M,R)⊗vρ1/n(π1∂M) , the isomorphism ϕ∗
1/n on cohomology is given by

ϕ∗
1/n = ϕ∗ ⊗ Id

v
ρ1/n(π1∂M) .

For n = ∞ , we have

i∗l ◦ ϕ∗
0 = i∗l and i∗m ◦ ϕ∗

0 = −i∗m .

Proof. If n ≥ 4 then ρ1/n(m) is an elliptic element and ρ1/n(l) is a pure
hyperbolic translation. This can be seen for example by using the trace
identity

tr ρ(l) = tr4 ρ(m)− 5 tr2 ρ(m) + 2,
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which holds for every irreducible representation ρ : Γ → SL(2,C) (see for
example [25, p. 113]). Hence up to conjugation we may assume that

ρ1/n(m) =




cos(2π/n) − sin(2π/n) 0 0
sin(2π/n) cos(2π/n) 0 0

0 0 1 0
0 0 0 1




and

ρ1/n(l) =




1 0 0 0
0 1 0 0
0 0 cosh(λn) sinh(λn)
0 0 sinh(λn) cosh(λn)


 .

With this normalization we obtain

vρ1/n(π1∂M) =
〈( 1 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 −1

)〉

and

A1/n =

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)(
Rα 0
0 Tη

)

where Rα is a rotation of angle α ∈ R and Tη is a hyperbolic translation
of length η ∈ R . The actual values of α and η are not needed since the
above form of A1/n already implies that it acts trivially on vρ1/n(π1∂M) i.e.

AdA1/n

∣∣
v
ρ1/n(π1∂M) = Id

v
ρ1/n(π1∂M) ,

and the first assertion of the lemma follows.
In order to prove the second assertion recall that

ρ0(m) = ρ0(x) = exp

(
0 0 0 0
0 0 −1 1
0 1 0 0
0 1 0 0

)
and ρ0(l) =

(
0 0 −2

√
3 2

√
3

0 0 0 0
2
√
3 0 0 0

2
√
3 0 0 0

)
.

Hence A0 = M

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)
for some M in the parabolic group that fixes

v+ = Fix(〈ρ0(m), ρ0(l)〉), and that maps v− , the point fixed by the parabolic
group containing ρ0(y), to ρ0(yx

−1) · v− , because ϕ0(y) = yx−1y−1xy−1 .
With respect to our normalization we have

v+ =




0
0
1
1


 , v− =




0
0
−1
1


 and ρ0(yx

−1) · v− =




√
3

−1
0
2


 .
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Hence

M = exp




0 0 −
√
3/2

√
3/2

0 0 1/2 −1/2√
3/2 −1/2 0 0√
3/2 −1/2 0 0


 and A0 =




1 0 −
√
3/2

√
3/2

0 −1 1/2 −1/2√
3/2 1/2 1/2 1/2√
3/2 1/2 −1/2 3/2


 .

Let us consider the two cocycles zm, zl : π1(∂M) → vρ0 which were con-
structed in the proof of Lemma 5.4: zm : π1(∂M) → vρ0 given by zm(l) = 0
and zm(m) = al where

al =




−1
3

−1
−1


 ∈ v,

and zl : π1(∂M) → vρ0 given by zl(l) = am and zl(m) = 0 where

am =




3
−1

−1
−1


 ∈ v .

These cocycles satisfy:

i∗m([zm]) 6= 0, i∗l ([zm]) = 0,

i∗m([zl]) = 0, i∗l ([zl]) 6= 0 .

Moreover we have

ϕ∗
0zm(m) = AdA−1

0
zm(m−1)

= −AdA−1
0

Adρ0(m)−1 al

= −




−1 0 0 0
0 3 2 −2
0 2 0 −9
0 2 9 −2




and

ϕ∗
0zm(l) = AdA−1

0
zm(l) = 0 .

Since

〈i∗mϕ∗
0zm, am〉 = B(am, ϕ∗

0zm(m)) = 32 = −B(am, al)
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it follows that i∗mϕ∗
0zm ∼ −i∗mzm (see the argument at the end of the proof

of Lemma 5.4). On the other hand we have:

ϕ∗
0zl(m) = 0 and ϕ∗

0zl(l) = AdA−1
0
(am) =




3 0 −2
√
3 2

√
3

0 −1 0 0

−2
√
3 0 2 −3

−2
√
3 0 3 −4


 .

Since B(al, ϕ
∗
0zl(l)) = −32 = B(al, am) it follows that i∗l ϕ

∗
0zl ∼ i∗l zl . 2

8.3 Corollary For sufficiently large n ∈ N the composition

H1(M, vρ1/n) →֒ H1(∂M, vρ1/n) → H1(m, vρ1/n)

is the zero map.

Proof. The longitude l is a flexing slope (see Remark 8.1). Thus by
Lemma 8.2 the map ϕ∗

0 : H
1(M, vρ0) → H1(M, vρ0) is the identity.

Next notice that for n sufficiently large, we have an inclusion

H1(M, vρ1/n) →֒ H1(∂M, vρ1/n) .

The eigenvalues of ϕ∗
1/n : H

1(∂M, vρ1/n) → H1(∂M, vρ1/n) are ±1 since the
restriction of ϕ1/n to the subgroup generated by m and l is an involution.
Moreover, ϕ∗

1/n preserves H1(M, vρ1/n) →֒ H1(∂M, vρ1/n) and hence the

induced map ϕ∗
1/n on H1(M, vρ1/n) is ±Id and by continuity this restriction

is the identity.
On the other hand we have ϕ1/n(m) = m−1 , hence by Lemma 8.2

and Lemma 5.2, ϕ∗
1/n induces −Id on the image of H1(∂M, vρ1/n) →

H1(m, vρ1/n).
2

8.4 Lemma There is a natural isomorphism H∗(On, vρ1/n)
∼= H∗(Γ1/n, vρ1/n) .

Proof. The orbifold On has a finite cyclic covering Õn → On where Õn is a
manifold. The compact, hyperbolic manifold Õn is aspherical, hence there
is a canonical isomorphism

H∗(π1(Õn), vρ1/n)
∼= H∗(Õn, vρ1/n) .

Then the lemma follows since H∗(π1(On), vρ1/n) and H∗(On, vρ1/n) are the
invariant subspaces of the map t∗ induced by the covering transformation
t : Õn → Õn , i.e.

H∗(π1(On), vρ1/n) = H∗(π1(Õn), vρ1/n)
t∗ and H∗(On, vρ1/n) = H∗(Õn, vρ1/n)

t∗ .

2
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8.5 Proposition For sufficiently large n ∈ N we have

1. H1(Γ1/n, sl(4)ρ1/n)
∼= H1(Γ1/n, vρ1/n)

∼= R is one-dimensional and
ϕ∗
1/n acts trivially on it.

2. H2(Γ1/n, sl(4)ρ1/n)
∼= H2(Γ1/n, vρ1/n)

∼= R is one-dimensional and
ϕ∗
1/n acts by multiplication by −1 on it.

Proof. We start with the decomposition

H∗(Γ1/n, sl(4)ρ1/n) = H∗(Γ1/n, so(3, 1)ρ1/n )⊕H∗(Γ1/n, vρ1/n).

The group H1(Γ1/n, so(3, 1)ρ1/n ) = 0 vanishes by Weil’s infinitesimal rigidity
and hence

H2(Γ1/n, so(3, 1)ρ1/n ) = 0

by Poincaré duality and Lemma 8.4. Thus

H i(Γ1/n, sl(4)ρ1/n) = H i(Γ1/n, vρ1/n) for i = 1, 2.

In order to compute H i(Γ1/n, vρ1/n)
∼= H i(On, vρ1/n) we shall apply the

Mayer-Vietoris sequence to the decomposition On = M ∪Nn where Nn =
N (Sing(On)) is a regular neighborhood of the singular locus such that M ∩
Nn = ∂M . Since

H0(On, vρ1/n)
∼= H0(M, vρ1/n)

∼= vρ1/n(π1(M)) = 0

and

H0(∂M, vρ1/n)
∼= vρ1/n(π1(∂M)) = vρ1/n(π1(Nn)) ∼= H0(Nn, vρ1/n),

we obtain the following exact sequence

H1(On, vρ1/n) ֌ H1(M, vρ1/n)⊕H1(Nn, vρ1/n) → H1(∂M, vρ1/n) ։ H2(On, vρ1/n) .

Notice that the last arrow is surjective, as dimH2(∂M, vρ1/n) = dimH2(M, vρ1/n) =

1. By Corollary 8.3, both groups H1(M, vρ1/n) and H1(Nn, vρ1/n) have

the same image in H1(∂M, vρ1/n) which is exactly the kernel of the map

H1(∂M, vρ1/n) → H1(m, vρ1/n). Notice also that dimH1(∂M, vρ1/n) = 2
and

dimH1(Nn, vρ1/n) = dimH0(Nn, vρ1/n) = dim vρ1/n(π1Nn) = 1 .

Therefore we get dimH1(On, vρ1/n) = 1. Moreover, the map ϕ∗
1/n acts

trivially on H1(On, vρ1/n) since by the proof of Corollary 8.3 it acts trivially

on H1(M, vρ1/n), and H1(On, vρ1/n) injects into H1(M, vρ1/n).
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On the other hand we have

H1(∂M, vρ1/n)
∼= H1(∂M,R) ⊗ vρ1/n(π1∂M),

ϕ(m) = m−1 and ϕ(l) = l . Hence the eigenvalues of ϕ∗
1/n : H

1(∂M, vρ1/n) →
H1(∂M, vρ1/n) are ±1. The eigenspace corresponding to the eigenvalue +1

is the image of H1(M, vρ1/n) (and H1(Nn, vρ1/n)). Hence ϕ∗
1/n acts as −Id

on H2(On, vρ1/n). 2

Proof of Proposition 1.8. We shall show that every Zariski tangent vector
v ∈ H1(Γ1/n, sl(4)ρ1/n ) is integrable. We use the following general setup: let
Γ be a finitely presented group and let ρ : Γ → GL(m,R) be a representa-
tion. A formal deformation of ρ is a representation ρt : Γ → GL(m, ,R[[t]])
such that ρ0 = ρ . Here R[[t]] denotes the ring of formal power series and
ρ0 : Γ → C is the evaluation of ρt at t = 0.

Every formal deformation ρt of ρ can be written in the form

ρt(γ) = (Im + tu1(γ) + t2u2(γ) + · · · )ρ(γ)

where Im denotes the identity matrix and ui : Γ → gl(m) are maps i.e. ele-
ments of C1(Γ, gl(m)ρ). An easy calculation gives that u1 ∈ Z1(Γ, gl(m)ρ)
is a cocycle (Weil’s theorem). More generally we have the following:

8.6 Lemma Let ρ : Γ → GL(m) be a homomorphism. Then ρt : Γ →
GL(m,R[[t]]) given by

̺t(γ) = (Im + tu1(γ) + t2u2(γ) + t3u3(γ) + · · · )ρ(γ)

is a homomorphism if and only if for all k ∈ Z , k ≥ 1, we have

δuk +
k−1∑

i=1

ui
.∪ uk−i = 0 .

The proof of this lemma is an easy calculation, by induction on k . Here
the cup product

.∪ is the composition of the usual cup product ∪ with the
matrix multiplication

H1(Γ, gl(m)ρ)⊗H1(Γ, gl(m)ρ)
∪−→ H2(Γ, gl(m)ρ ⊗ gl(m)ρ)

·−→ H2(Γ, gl(m)ρ)

i.e. given to cochains c1, c2 ∈ C1(Γ, gl(n)ρ) the cup product c1
.∪ c2 ∈

C1(Γ, gl(m)ρ) is given by

c1
.∪ c2(γ1, γ2) = c1(γ1)Adρ(γ1)

(
c2(γ2)

)
.

The sequel the representation ρ is going to be always ρ1/n , hence we
omit it from notation. Note that the Γ1/n -module gl(4) decomposes as a
direct sum

gl(4) = R⊕ sl(4)
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where R ∼= R · In is the trivial module, it is the center of gl(4). Moreover
H i(Γ1/n,R) = 0 for i = 1, 2 since H1(Mn,Z) is finite (no root of unity is a
zero of the Alexander polynomial of the figure eight-knot). Hence

H i(Γ1/n, gl(4)) = H i(Γ1/n, v) for i = 1, 2.

First we claim that the cup product

H1(Γ1/n, gl(4)) ⊗H1(Γ1/n, gl(4))
.
∪−→ H2(Γ1/n, gl(4))

vanishes. This is because H i(Γ1/n, gl(4)) = H i(Γ1/n, v), i = 1, 2, and
ϕ∗
1/n acts as multiplication with (−1)i+1 on H i(Γ1/n, v) by Proposition 8.5.

Hence
−(v

.∪ v) = ϕ∗
1/n(v

.∪ v) = ϕ∗
1/n(v)

.∪ ϕ∗
1/n(v) = (v

.∪ v) .

Therefore the first obstruction to integrability of a vector v ∈ H1(Γ1/n, gl(4))

which is this cup product v
.∪ v vanishes. The next obstruction is a Massey

product: if u1 ∈ Z1(Γ1/n, sl(4)) is a cocycle representing v , then u1
.∪ u1 +

δu2 = 0, for some 1-cochain u2 , and the Massey product 〈v〉3 is the coho-
mology class of u1

.∪ u2 + u2
.∪ u1 . In general this is not unique, because u2

can be replaced u2+z for any cocycle z , which means that two possible val-
ues for 〈v〉3 differ by an element in v

.∪H1(Γ1/n, gl(4))+H1(Γ1/n, gl(4))
.∪v .

Since the cup product vanishes, 〈v〉3 is unique. Using the naturality of the
constructions and by Proposition 8.5 (1), we have:

ϕ∗
1/n(〈v〉3) = 〈ϕ∗

1/n(v)〉3 = 〈v〉3

Moreover, by Proposition 8.5 (2) and uniqueness of the Massey product,

ϕ∗
1/n(〈v〉3) = −〈v〉3,

which implies that 〈v〉3 = 0. In a similar way, one can define all Massey
products of higher order and the same argument shows that they are zero
(see [21]). This implies that all obstructions to integrability vanish, and
we apply Artin’s theorem [2], to conclude that formal integrability implies
actual integrability of v .

2

8.3 The Whitehead link

A similar computation as for the figure eight knot tells us that the Whitehead
link L = K1⊔K2 is infinitesimally projectively rigid. Let Γ = π1(M) denote
the fundamental group of the Whitehead link exterior M . We will work with
the presentation:

Γ = 〈x, y | xy−1x−1yx−1y−1xyx−1yxy−1xyx−1y−1〉
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Figure 1: The thrice punctured sphere S in the Whitehead link.

where x is a meridian for K1 and y is a meridian for K2 . The holonomy
representation ρ : Γ → SL2(C) is given by

x 7→
(

1 1

0 1

)
y 7→

(
1 0

−1− i 1

)

(see [26] for details). A computation analogous to the one of the previous
subsection shows that dimH1(M ; vAdρ) = 2.

Once we know the dimension of the deformation space, we have a geomet-
ric tool to understand the deformations: let S denote the thrice puncture
sphere illustrated in Figure 1. By symmetry of the components of the link,
there are two of them. The surface S intersects one boundary torus in a
longitude lx = yx−1y−1xy−1x−1yx , and the other one in two meridians y
and z = x−1y−1xyx−1yx , with opposite orientation. The restriction of the
holonomy onto π1(S) is conjugate to a representation into SL2(R). Hence
S a totally geodesic thrice puncture sphere in the link complement.

8.7 Lemma Let ∂1M denote the boundary component of K1 . Every slope
on ∂1M different from the longitude lx is a flexing slope.

Proof. We consider the bending along S . If we restrict this bending to
∂1M , it is itself a bending along the longitude lx , and it happens to be
precisely the deformation constructed in the proof of Lemma 5.4. Thus,
except for the longitude itself, this deformation is nontrivial when restricted
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to any slope of the torus, because the cusp shape of the Whitehead link lies
in the Gaussian integers Z[i] , thus the angle of any slope with the longitude
lx can never be π/3, and we can apply Lemma 5.4. 2

Proof of Proposition 1.9. Lemma 8.7 and Proposition 7.2 imply that for
almost all n the (n, 1)-Dehn fillings are infinitesimally projectively rigid.
According to [1] those fillings are precisely the punctured torus bundles
with tunnel number one.

Twists knots are obtained by (1, n)-Dehn fillings, but we cannot apply
Proposition 7.2, because the longitude is not a flexing slope. However, the
path (p, q) = (1, s) for s ∈ R and s ≥ 1 is contained in the whole defor-
mation space (cf. [1]). Hence, since the coefficients (1, 1) correspond to the
figure eight knot exterior, with an argument similar to Theorem 1.5, the
(1, n)-Dehn fillings are infinitesimally rigid for all but finitely many n . 2
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[20] J.-L Koszul. Déformations de connexions localement plates. Ann. Inst.
Fourier (Grenoble), 18(fasc. 1):103–114, 1968.

[21] David Kraines. Massey higher products. Transactions of the American
Mathematical Society, 124:431–449, 1966.

[22] Alexander Lubotzky and Andy R. Magid. Varieties of representations
of finitely generated groups. Mem. Amer. Math. Soc., 58(336):xi+117,
1985.

42



[23] Ludovic Marquis. Espace des modules de certains polyedres projectifs
miroirs. arXiv:0806.3569, 2008.

[24] G. D. Mostow. Quasi-conformal mappings in n-space and the rigidity of
hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math., (34):53–
104, 1968.

[25] Joan Porti. Torsion de Reidemeister pour les variétés hyperboliques.
Mem. Amer. Math. Soc., 128(612):x+139, 1997.

[26] Robert Riley. Discrete parabolic representations of link groups. Math-
ematika, 22(2):141–150, 1975.

[27] Robert Riley. A quadratic parabolic group. Math. Proc. Cambridge
Philos. Soc., 77:281–288, 1975.

[28] Kevin P. Scannell. Infinitesimal deformations of some SO(3, 1) lattices.
Pacific J. Math., 194(2):455–464, 2000.

[29] William P. Thurston. The Geometry and Topology of Three-Manifolds.
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