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Tassigny, 75016, Paris, France.
3 Faculty of Mathematics, University “Al. I. Cuza”, Bd. Carol I nr. 11, 700506, Iaşi,
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1. Introduction

We consider in this work the evolution of a quantum system with wavefunction Ψ(t)

under the external influence of a laser field; the system satisfies the Time Dependent

Schrödinger equation (TDSE)

i
d

dt
Ψ(t) = H(t)Ψ(t), (1)

with H(t) a Hermitian operator; the control is realized by selecting a convenient laser

intensity u(t). When the laser is shut off H(t) is the internal Hamiltonian of the system,

denoted H0; when the laser is present H(t) is the sum of H0 and additional terms that

describe the interaction of the system with the laser field. The first order term is the

dipole coupling [30] of the form u(t)H1; in the limit of small laser intensities this term

may be enough to adequately describe the interaction.

However, situations exist where the dipole coupling does not have enough influence

on the system to reach the control goal; the goal may become accessible only after

adding a polarizability term u2(t)H2 in the expansion of H(t) (see e.g. [13, 14] and

related works); to make effective use of this term one needs higher laser intensities u(t).

The focus of the paper is on practical procedures to find suitable control fields u(t)

for the Hamiltonian H(t) = H0+u(t)H1+u
2(t)H2 by adapting feedback tracking control

procedures to this setting. Here and in the following H0, H1 and H2 are n×n Hermitian

matrices with complex coefficients and the control is the laser intensity u(t) ∈ R.

In what concerns the mere possibility to find a control, we recall that the

controllability of the finite dimensional quantum system evolving with equation

i
d

dt
Ψ(t) = (H0 + u(t)H1 + u2(t)H2)Ψ(t), (2)

can be studied via the general accessibility criteria [4, 32] based on Lie brackets; more

specific results can be found in [34].

Let us consider for a moment the system with Hamiltonian H0 + u(t)H1 + v(t)H2,

v(t) being a second control independent of u(t). It can be shown [34] that this system

is controllable under the same circumstances as H0 + u(t)H1 + u2(t)H2 i.e. all target

states that can be reached with Hamiltonian H0 + u(t)H1 + v(t)H2 can also be reached

by H0 + u(t)H1 + u2(t)H2 (although obviously the second Hamiltonian is a particular

case of the first for v(t) = u2(t)). This rather counter-intuitive result suggests that u2(t)

can be considered, for the purpose of theoretical controllability, as independent of u(t);

however, u2(t) having a particular functional dependence on u(t) will play a role at the

level of the numerical procedure to find the control: in general finding the control for

H0 + u(t)H1 + u2(t)H2 is more difficult than for H0 + u(t)H1 + v(t)H2.

The characterization of the controllability does not provide in general a simple

and efficient way for open-loop trajectory generation. Optimal control techniques (cf.,

[23] and [30] and the references herein) provide a first set of methods. A different

approach consists in using feedback to generate trajectories and open-loop steering

control [5, 19, 22]. More recent results can be found in [27] for decoupling techniques,
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in [3, 15, 17, 23, 31, 35, 36] for Lyapunov-based techniques and in [1, 7, 28] for

factorizations techniques of the unitary group.

In order to study feedback control of systems with Hamiltonian H(t) = H0 +

u(t)H1 +u2(t)H2 we adapt the analysis [20, 24], initially proposed for bilinear quantum

systems H0 + u(t)H1. In the previous work it has been shown that the success of the

feedback control depends on whether there exists (non-zero) direct coupling, throughH1,

between the target state and all other eigenstates. When H1 has the same property for

H(t) = H0 + u(t)H1 + u2(t)H2 we show that same feedback formulas hold. However we

argued that the polarizability term u2(t)H2 is added when dipole u(t)H1 is not enough

to control the system; consequently the most interesting question is what happens

when some of the (direct) coupling is realized by H2 instead of H1. We show that

the previous feedback formulas do not hold any more and we propose two alternatives.

Our method is valid to track any eigenstate trajectory of a Schrödinger equation (2)

when the Hamiltonian includes a second order coupling operator.

The balance of the paper is as follows: in Section 2 we introduce the main

notations and the Lyapunov tracking feedback for a particular case. Section 3

contains the presentation of two types of feedback: discontinuous and time-dependent

(periodic) forcing, that can be applied for all types of second order coupling operators.

Both sections present theoretical results on the convergence illustrated by numerical

simulations. Concluding remarks are presented in Section 4.

2. Tracking feedback design

2.1. Dynamics and global phase

We consider a n-level quantum system evolving under the equation (2). The wave

function Ψ = (Ψj)
n
j=1 is a vector in Cn, verifying

∑n

j=1 |Ψj|2 = 1, thus it lives on the

unit sphere S
2n−1 of C

n. Physically, Ψ and eiθ(t)Ψ describe the same physical state for

any global phase θ(t) ∈ R, i.e. Ψ1 and Ψ2 are identified when exists θ(t) ∈ R such that

Ψ1 = exp(iθ(t))Ψ2. To take into account such non trivial geometry we add a second

control ω corresponding to θ̇ (see also [24]). Thus we consider the following control

system

i
d

dt
Ψ(t) = (H0 + u(t)H1 + u2(t)H2 + ω(t))Ψ(t), (3)

where ω ∈ R is a new control playing the role of a gauge degree of freedom. We can

choose it arbitrarily without changing the physical quantities attached to Ψ. With such

additional fictitious control ω, we will assume in the sequel that the state space is S2n−1

and the dynamics given by (3) admits two independent controls u and ω.

2.2. Lyapunov control design

Take a reference trajectory t 7→ (Ψr(t), ur(t), ωr(t)), i.e., a smooth solution of (3):
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i
d

dt
Ψr = (H0 + urH1 + u2

rH2 + ωr)Ψr.

We introduce the following time varying function V (Ψ, t):

V (Ψ) = 〈Ψ − Ψr|Ψ − Ψr〉 = ‖Ψ − Ψr‖2 (4)

where 〈.|.〉 denotes the Hermitian product. The fonction V is nonnegative for all t > 0

and all Ψ ∈ S2n−1 and vanishes when Ψ = Ψr, such a V is called a Lyapunov function.

The derivative of V is given by:

dV

dt
= 2(u− ur)Im(〈H1Ψ(t)|Ψr〉)

+ 2(u2 − u2
r)Im(〈H2Ψ(t)|Ψr〉) (5)

+ 2(ω − ωr)Im(〈Ψ(t) | Ψr〉)

where Im denotes the imaginary part.

For convenience we denote: I1 = Im(〈H1Ψ(t)|Ψr〉) and I2 = Im(〈H2Ψ(t)|Ψr〉). Note

that if, for example, one takes
{

u = ur(t) − k(I1 + 2urI2)/(1 + kI2)

ω = ωr(t) − cIm(〈Ψ(t) | Ψr〉), (6)

with k and c strictly positive parameters, one gets

dV/dt = −2

k
(u− ur)

2 − 2c(Im(〈Ψ(t) | Ψr〉))2 ≤ 0,

and thus V is nonincreasing.

Remark 2.1 In order for the denominator 1+kI2 in Eqn. (6) to be non-zero one notes

that |I2| ≤ |〈H2Ψ(t)|Ψr〉| ≤ ‖H2‖; therefore 1 + kI2 > 0 as soon as k < 1
‖H2‖

. From now

on, unless specified otherwise, this condition will be supposed satisfied.

Let us focus on the important case when the reference trajectory corresponds to an

equilibrium: ur = 0, ωr = −λ and Ψr = φ where φ is an eigenvector of H0 associated to

the eigenvalue λ ∈ R (H0φ = λφ, ‖φ‖ = 1). We obtain:

I1 = Im(〈H1Ψ(t)|φ), I2 = Im(〈H2Ψ(t)|φ). (7)

Then (6) becomes a static-state feedback:
{

u = −kI1/(1 + kI2)

ω = −λ− cIm(〈Ψ(t) | φ〉). (8)

Denote by λj , with j = 1, ..., N the eigenvalues of the matrix H0. Let φ1, . . . , φn be an

orthogonal system of corresponding eigenvectors.
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We say that H0 has non-degenerate spectrum if for all j 6= l, j, l = 1, ..., n, λj 6= λl.

Although V being nonincreasing is a very important property, this is not enough

to ensure that the target state φ is reached asymptotically. The following theoretical

result for the feedback (8) explains when convergence to target state holds:

Theorem 2.1 Consider (3) with Ψ ∈ S2n−1 and an eigenstate φ ∈ S2n−1 of H0

associated to the eigenvalue λ. Take the static feedback (8) with c > 0, k < 1
‖H2‖

and

suppose that the spectrum of H0 is non-degenerate. Then the two following propositions

are true:

(i) The limit set of the closed loop system (3) is in the intersection of S2n−1 with the

vector space E = Rφ
⋃

α Cφα where φα is any eigenvector of H0 not co-linear to φ

such that 〈φα|H1φ〉 = 0.

(ii) If E = Rφ, the limit set is a subset of {φ,−φ}.
The proof follows the same ideas as in [24] and it can be found in [16].

Remark 2.2 The theorem above shows that tracking to φ works when all eigenstates

of H0, φ2, ....φn, other than φ are coupled to φ by H1. However we do not know

what happens when some of the coupling are realized by H2 instead (the theorem

does not apply but the system is still controllable cf. [34]). We analyze such a case

in Section 3. Note that, as pointed out in the Introduction, one uses the model

H0 + u(t)H1 + u2(t)H2 precisely in the cases when H1 coupling is not enough to control

(otherwise taking low laser intensities u(t) make H0 + u(t)H1 effective Hamiltonian

instead of H0 + u(t)H1 + u2(t)H2 and H2 is not longer used to model the system).

2.3. Examples and simulations

In order to solve (3), we use the following numerical scheme:

ψ((m+ 1)∆t) = e−i∆t(H0+u(m∆t)H1+u2(m∆t)H2)+ω(m∆t))ψ(m∆t), (9)

where m is the index of the time step, ∆t = T/M is the discretization time step, and

M is the total number of time steps. Numerical simulations have been performed for a

three-dimensional test system with H0, H1 and H2 given by:

H0 =







0 0 0

0 1 0

0 0 3
2






, H1 =







0 1 1

1 0 0

1 0 0






, H2 =







0 0 1

0 0 0

1 0 0






. (10)

In this case the wave function is Ψ = (Ψ1,Ψ2,Ψ3)
T . We use the Lyapunov control

(8) in order to reach the first eigenstate φ = (1, 0, 0) of energy λ = 0, at the final time T .

Remark 2.3 We note that the conditions of Theorem 2.1 are fulfilled since: 〈φ2|H1φ〉 6=
0 and 〈φ3|H1φ〉 6= 0. In addition ‖H2‖ = 1.
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In Figure 1 we plot the evolution of V = V (Ψ) = 〈Ψ − φ|Ψ − φ〉 and u, corresponding

to system defined by (10) with feedback (8). We can remark a fast convergence of

the Lyapunov function V towards zero, that implies the convergence of Ψ towards

φ = (1, 0, 0). The target goal is achieved with high accuracy at T = 100.

0 20 40 60 80 100
−0.5

0

0.5

Time

u  V

u

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

V

Figure 1. Evolution of the Lyapunov function V (Ψ) (blue line) and control u

(green line); initial condition Ψ(t = 0) = (0, 1/
√

2, 1/
√

2); system defined by (10)

with feedback (8). We take k = 0.2, c = 0.8.

We consider another three-dimensional test system with H0, H1 and H2 given by:

H0 =







0 0 0

0 1 0

0 0 3
2






, H1 =







0 1 0

1 0 0

0 0 0






, H2 =







0 0 1

0 0 0

1 0 0






. (11)

In this case the wave function is Ψ = (Ψ1,Ψ2,Ψ3)
T . We use the previous Lyapunov con-

trol in order to reach the first eigenstate φ = (1, 0, 0) of energy λ = 0, at the final time T .

Simulations of Figure 2 start with (0, 1/
√

2, 1/
√

2) as initial condition for Ψ. Such

a feedback reduces the distance to the first state but does not ensure its convergence

to φ = (1, 0, 0) (the Lyapunov function V (Ψ), does not reach the value zero, but stalls

at V = 10−0.1.) This is not due to a lack of controllability. This system is controllable

since the Lie algebra spanned by H0/i, H1/i and H2/i coincides with u(3) (see [24]).

As explained in Remark 2.2, such convergence deficiency comes from the fact that

operator H1 couples φ only with the state φ2. We plot the evolution of V (Ψ), u, I1 and

I2, corresponding to system defined by (11) with feedback (8), in Figure 2 and Figure

3.
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Figure 2. Evolution of the Lyapunov function V (Ψ) (blue line) and control u (green

line); initial condition Ψ(t = 0) = (0, 1/
√

2, 1/
√

2); system defined by (11) with

feedback (8). The feedback (8) fails to reach the target, V stalls at V = 10−0.1.

We take k = 0.2, c = 0.8.

0 20 40 60 80 100
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−0.5
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1

Time
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I1
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−1

−0.5
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0.5

1

Time

I2

 

 

I2

Figure 3. Time evolution of I1 and I2; system defined by (11) with feedback (8). We

note that I1 converges to zero. Contrary to I1, I2 does not converge to zero.

3. Discontinuous and periodic feedback

In order to stabilize the system when formulas (8) are ineffective, we propose two

methods. The first one is to use a special discontinuous feedback ([2, 6, 12, 26], as

well as [10, Section 11.4] and the references therein). The second approach is through

periodic time dependent feedback ([8, 9] as well as [10, Sections 11.2 and 12.4] and the

references therein).
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3.1. Discontinuous feedback

For the case of discontinuous feedback we consider the regions: A = {|I1| < δ and I2 <

−
√
δ}, B = {|I1| < δ and I2 >

√
δ}, C = {|I1| > δ/2 or |I2| < 2

√
δ}. Note that A,B,C

are open sets; the regions A,C, respectively B,C are overlapping. For k1, k2, c, δ > 0

we define the control as follows:

u(I1, I2) =



















k1I2, in A \ C
0, in B \ C
−k2I1/(1 + k2I2), in C \ (A ∪ B)

for A ∩ C and A ∩ B see below,

ω = −λ− cIm(〈Ψ(t) | φ〉).

(12)

The definition of u(I1, I2) on A∩C is either u(I1, I2) = k1I2 (i.e. formula for set A)

or u(I1, I2) = −k2I1/(1+k2I2) (i.e. formula for set C) is such a way to ensure continuity

(with respect to time) of the feedback u(I1, I2). Remark that a discontinuity may appear

when reaching the border ∂C of C situated in the interior of A (here the formula used

is always u(I1, I2) = k1I2). Same considerations apply for A ∩ B (continuity).

We define the propagator S1Ψ0 by solving the feedback equation such that: if the

initial state Ψ0 ∈ A ∩ C, we initiate with the feedback corresponding to C and if the

initial state Ψ0 ∈ B ∩ C, we initiate also with the feedback corresponding to C. We

define also the propagator S2Ψ0 by solving the feedback equation such that : if the initial

state Ψ0 ∈ A ∩ C, we initiate with the feedback corresponding to A and if the initial

state Ψ0 ∈ B ∩ C, we initiate also with the feedback corresponding to B. We continue

with the feedback for the given region until reaching the boundary of this one, then

we switch to the feedback corresponding to the next overlapping region. Observe that

neither S1 nor S2 define a classical dynamical system, that is the semigroup property is

lost. One has instead:

S1(t+ s)Ψ0 = S1(t)S1(s)Ψ0 or S1(t + s)Ψ0 = S2(t)S1(s)Ψ0. (13)

The propagators S1(t)Ψ0 and S2(t)Ψ0 are solutions in the sense of Carathéodory

for the feedback controlled system and depend continuously on the initial data. These

solutions are well defined locally and they are globally defined on [0,∞[; this follows

from the fact that intervals of time between switching moments are bounded from bellow

by a strictly positive constant.

We now turn to the question of the negativity of dV/dt.

(i) when u(I1, I2) = −k2I1/(1 + k2I2), i.e. in the region C \ (A ∪ B) and possibly

A ∩ C and B ∩ C, we obtain the following constraint on k2 (cf. also Remark 2.1):

k2 <
1

‖H2‖
; with this provision dV/dt < 0 in this region.

(ii) when u = 0, i.e. in the region B \ C and possibly C ∩B: dV/dt = 0

(iii) when u(I1, I2) = k1I2, i.e. in the region A \ C and possibly A ∩ C: dV/dt =

uI1 + u2I2 = u(I1 + uI2) = k1I2(I1 + k1(I2)
2). On the set A the term I2 is less
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than −
√
δ and thus k1I2 is strictly negative. From the definition of A the term

I1 + k1(I2)
2 is lower bounded by −δ + k1δ; thus for k1 > 1 the term I1 + k1(I2)

2 is

strictly positive thus dV/dt < 0.

Therefore k1 > 1 and k2 < 1
‖H2‖

imply dV/dt ≤ 0 with dV/dt = 0 only when

u(I1, I2) = 0. Moreover one has the following convergence result for the feedback (12)

(see also [11]).

Theorem 3.1 Consider (3) with Ψ ∈ S
2n−1
C

and an eigenstate φ ∈ S
2n−1
C

of H0

associated to the eigenvalue λ. Take the feedback (12) with k1 > 1, k2 < 1
‖H2‖

and

c, δ > 0. If H0 is not degenerate and for every k with φk 6= φ either 〈φk|H1φ〉 6= 0 or

〈φk|H2φ〉 6= 0 then the limit set of Ψ(t) reduces to a solution of the uncontrolled system,

with |I1| < δ, |I2| ≤ C
√
δ with a constant C depending only on H0.

Proof of Theorem 3.1. Up to a shift on ω and H0, we can assume that λ = 0.

Trajectories corresponding to the propagator S1 are relatively compact so the limit

points at infinity form a limit set Ωδ which is compact and connected.

On the limit set Ωδ, V is constant and from the relation (13), Ωδ is invariant either

to S1 or to S2, that is if Ψ1 ∈ Ωδ then S1(t)Ψ1 ∈ Ωδ, t > 0 or S2(t)Ψ1 ∈ Ωδ, t > 0.

The limit set Ωδ is a union of trajectories of equation (3) corresponding either to

the propagator S1 or to the propagator S2, along this trajectories V is constant, so

dV/dt = 0 where V is defined by (4). The equation dV/dt = 0 means that:

u(I1 + uI2) = 0, (14)

Im〈Ψ, φ〉 = 0. (15)

Since u is defined by (12) it follows that the limit set, Ωδ, consists in fact of trajectories

of the uncontrolled system:

i
d

dt
Ψ = H0Ψ. (16)

with the solutions of the form:

Ψ =
n
∑

j=1

bje
−iλjtφj. (17)

For the same reasons as above we obtain that the limit set Ωδ is characterized by:

Ωδ ⊂ {I1 = 0 and |I2| < 2
√
δ} ∪ {|I1| < δ and I2 >

√
δ}. (18)

From relation (18) we have that on the limit set |I1| < δ. We substitute (17) in (15)

and we have:

Im〈Ψ, φ〉 = Im(b1)〈φ, φ〉 +

n
∑

j=2

Im(bj〈φj, φ〉e−iλjt) = 0. (19)

We obtain Im(b1) = 0. We denote by J1 = {j|j 6= 1, 〈H1φj|φ〉) 6= 0} and J2 = {j|j 6=
1, 〈H2φj |φ〉) 6= 0}. We have by the hypothesis that J1 ∪ J2 = {2, 3, . . . , n}.
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We substitute (17) in (7), and we obtain:

I1 = Im(b1)〈H1φ, φ〉 +
∑

j∈J1

Im(bj〈H1φj, φ〉e−iλjt), (20)

I2 = Im(b1)〈H2φ, φ〉 +
∑

j∈J2

Im(bj〈H2φj, φ〉e−iλjt). (21)

Since Im(b1) = 0 we have:

I2 =
∑

j∈J2

Im(bj〈H2φj, φ〉e−iλjt) =
∑

j∈J2

Bj sin(λjt+ θj). (22)

where the coefficients Bj = 0 if and only if bj = 0, j ∈ J2. We define M = sup(I2) and

m = inf(I2). There exists C > 0 independent of Bj and θj such that M 6 −Cm. Since

on the limit set Ωδ, I2 > −2
√
δ it is easy to verify that |I2| 6 C

√
δ.

Remark 3.1 In order to make the conclusion of the theorem more precise note that if

Ψδ is a trajectory of (16) belonging to Ωδ, then when δ converges to zero, Ψδ → φ , if

the initial state is different of −φ. Accordingly, when I1, I2 are small V (Ψ) will also be

small and the system is close to the target state.

The practical question is then how small should one choose δ. A way to circumvent

this question is to consider not a constant value δ but one that decreases over time; this

way the problem will take itself care of finding the good value of δ for a given precision.

Numerical results (not shown here) confirm the interest of this approach.

Remark 3.2 An important ingredient of the proof is finding the limit sets of the

evolution, which itself depends very much on the choice of the sets A,B,C and of

the controls u. The general rationale behind these choice are to modify formula (8)

minimally in order to have good properties of Ωδ.

3.1.1. Examples for non-degenerate cases. We take the system (11) and apply the

discontinuous feedback (12). Simulations of Figure 4 describe the evolution of the

Lyapunov function V (Ψ) and control u, for the initial state Ψ(t = 0) = (0, 1/
√

2, 1/
√

2).

In this case: k1 = 1.1, k2 = c = 0.8 and δ = 1.e− 4.
It appears that this feedback is quite efficient for system (11). We present the

evolution of I1 and I2 corresponding to system defined by (11), with feedback (12), in
Figure 5.
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Figure 4. Evolution of the Lyapunov function V (Ψ)(blue line) and control u (green

line); initial condition: Ψ(t = 0) = (0, 1/
√

2, 1/
√

2); system defined by (11) with

feedback (12)( k1 = 1.1, k2 = c = 0.8, δ = 1.e − 4.).
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Figure 5. Time evolution of I1 and I2; system defined by (11) with feedback (12);

|I1| < δ and |I2| 6 Cδ.

We consider next the five-dimensional system (see [33]) defined by

H0 =





1.0 0 0 0 0
0 1.2 0 0 0
0 0 1.3 0 0
0 0 0 1.4 0
0 0 0 0 2.15



 , H1 =





0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0



 , H2 =





0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



.(23)

We use the previous Lyapunov control in order to reach the first eigenstate

φ = (1, 0, 0, 0, 0, 0) of energy λ = 1, at the final time T . Note that here ‖H2‖ = 1.

Simulations of Figure 6 describe the evolution of the Lyapunov function V (Ψ) and

control u, for the initial state Ψ(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4). We take

k1 = 1.1, k2 = c = 0.8 and δ = 1.e− 4.
We present the evolution of I1 and I2 corresponding to system defined by (23), with

feedback (12), in Figure 7.
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Figure 6. Evolution of the Lyapunov function V (Ψ)(blue line) and control u (green

line); initial condition: Ψ(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4); system defined by

(23) with feedback (12) ( k1 = 1.1, k2 = c = 0.8, δ = 10−4).

0 5000 10000 15000
−0.2

0

0.2

0.4

0.6

Time

I1

 

 
I1

0 5000 10000 15000
−0.5

0

0.5

1

Time

I2

 

 
I2

Figure 7. Time evolution of I1 and I2; system defined by (23) with feedback (12);

|I1| < δ and |I2| 6 Cδ.

3.1.2. Examples for degenerate cases. There are various situations where the condition

of non degeneracy of the Hamiltonian H0, present in Theorem 2.1 and Theorem 3.1 is

non fulfilled. One such example is given below (see [18, 25]):

H0 =

(

0 0 0 0
0 0.04556 0 0
0 0 0.095683 0
0 0 0 0.095683

)

, H1 =

(

0 1 1 −1
1 0 1 1
1 1 0 0
−1 1 0 0

)

, H2 =

(

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

)

.(24)

The internal Hamiltonian H0 is degenerate since λ3 = λ4 = 0.095683, but it can be

stabilized using the discontinuous feedback defined by (12). Here ‖H2‖ = 1.

Simulations of Figure 8 describe the evolution of the Lyapunov function V (Ψ)

and control u, system defined by (24) starting from the initial state Ψ(t = 0) =

(0, 1/
√

3, 1/
√

3, 1/
√

3).
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Figure 8. Evolution of the Lyapunov function V (Ψ) (blue line) and control u (green

line); initial condition Ψ(t = 0) = (0, 1/
√

3, 1/
√

3, 1/
√

3); system defined by (24) with

feedback (12) (k1 = 1.1, k2 = c = 0.8, δ = 1.e − 4).

This positive result for degenerate system shows that the theoretical results

are sufficient but not necessary; however the approach may fail in some particular

degenerate cases.This is consistent with the literature on quantum control that shows

that degenerate cases have special structure (starting even with controllability criteria).
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Figure 9. Time evolution of I1 and I2; system defined by (24) with feedback (12).

3.2. Periodic feedback

Although the discontinuous feedback (12) gives satisfactory results in terms of the

control quality, the fact that it is discontinuous motivates trying to find additional

procedures. To this end we introduce in this section a periodic, time dependent, feedback

u = u(t,Ψ) stabilizing (3) to the ground state φ. The idea is to use a highly oscillatory

field component whose linear contribution averages to zero while the quadratic part

averages to a constant; then we compare the asymptotic behavior of the system with

the behavior of the averaged system. We recall that we are in the case when the reference
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trajectory corresponds to an equilibrium.

We consider the following time dependent feedback:

u(t,Ψ) = α(Ψ) + β(Ψ) sin(t/ε). (25)

We substitute (25) in (3) and we obtain the system:

i
d

dt
Ψ(t) =

(

H0 + α(Ψ)H1 + β(Ψ) sin(t/ε)H1

+ α2(Ψ)H2 + 2α(Ψ)β(Ψ) sin(t/ε)H2 (26)

+ β2(Ψ) sin2(t/ε)H2 + ω(t)
)

Ψ(t).

The averaged system is given by (see [21] pages 402-410):

i
d

dt
Ψav = (H0 + αH1 + (α2 +

1

2
β2)H2 + ω)Ψav. (27)

We identify the coefficients α and β such that the averaged system is asymptotically

stable. We use a Lyapunov technique to stabilize the averaged system (27) around the

ground state φ. We take again the function V defined by (4), which is nonnegative for

all Ψ ∈ S2n−1 and vanishes when Ψ = φ.

The derivative of V along a trajectory of the averaged system (26) is given by:

d

dt
V (Ψav(t)) = 2αIm(〈H1Ψav(t)|φ〉) + 2α2Im(〈H2Ψav(t)|φ)

+ β2Im(〈H2Ψav(t)|φ〉) + 2(ω + λ)Im(〈Ψav(t)|φ〉).
(28)

We denote: Iav
1 = Im(〈H1Ψav(t)|φ〉) and Iav

2 = Im(〈H2Ψav(t)|φ〉). When, for

instance, we take:

α = −kIav
1 , β = (Iav

2 )−, ω = −λ− cIm(〈Ψav(t)|φ〉), (29)

we obtain:

d

dt
V (Ψav(t)) = −2

(

k(Iav
1 )2(1−kIav

2 )+
((Iav

2 )−)3

2
+ cIm2(〈Ψav(t)|φ〉)

)

(30)

and thus dV/dt ≤ 0, for c > 0 and k < 1
‖H2‖

(cf. Remark 2.1), i.e. V is nonincreasing

along the trajectories of the averaged system. In particular φ is a stable point for the

averaged system, i.e. such that

∀δ > 0, ∃δ′ > 0 such that (|Ψav(0) − φ| < δ′) ⇒ (|Ψav(t) − φ| < δ, ∀ t ∈ [0,+∞)). (31)

We have the following asymptotic stability result:
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Theorem 3.2 Under the hypotheses:

(i) λj 6= λl for j 6= l,

(ii) for any j = 2, .., n : 〈H1φj|φ〉 6= 0 or 〈H2φj|φ〉 6= 0,

the averaged system (27) is globally asymptotically stable on S2n−1 \ {−φ} in the sense

(recall (31)) that every solution Ψav of (27) with an initial state other than −φ tends to

φ as t tends to +∞.

Proof of Theorem 3.2 Up to a shift on ω and H0, we may assume that λ = 0.

LaSalle’s principle (see, e.g., [21, Theorem 3.4, page 115]) says that the trajectories of

the system (27) converge to the largest invariant set contained in dVav/dt = 0. The

equation dV/dt = 0 means that:

Iav
1 = 0, (Iav

2 )− = 0, Im(〈Ψav(t)|φ〉) = 0, (32)

and therefore α = β = 0.

On the Ω-limit set of a trajectory, V is constant. Since the Ω-limit set is invariant

under the flow generated by (27) it follows that it consists in fact of trajectories of the

uncontrolled system:

i
d

dt
Ψav = H0Ψav. (33)

The solutions of (33) have the form:

Ψav =
n
∑

j=1

bje
−iλjtφj, (34)

We substitute (34) in (32) and we obtain:

Im(〈Ψav(t)|φ〉) = Im(b1)〈φ, φ〉 +

n
∑

j=2

Im(bj〈φj, φ〉e−iλjt), (35)

Iav
1 = Im(b1)〈H1φ, φ〉 +

∑

j∈J1

Im(bj〈H1φj, φ〉e−iλjt), (36)

Iav
2 = Im(b1)〈H2φ, φ〉 +

∑

k∈J2

Im(bj〈H2φj, φ〉e−iλjt). (37)

From equation (32) and (35) we obtain that Im(b1) = 0. Since along the trajectories in

Ω, Iav
1 ≡ 0 we obtain bj = 0, j ∈ J1. Using Im(b1) = 0 we have:

Iav
2 =

∑

j∈J2

Im(bj〈H2φj , φ〉e−iλjt) =
∑

j∈J2

Bj sin(λjt+ θj), (38)

where the coefficients Bj = 0 if and only if bj = 0, j ∈ J2. Since Iav
2 ≥ 0 ∀t, it follows

that I2
av ≡ 0. We have thus bj = 0, j 6= 1. We obtain that Ω ⊂ {φ,−φ}. This concludes

the proof of Theorem 3.2.

Our next theorem shows that our time-varying feedback laws lead to some kind of

“practical global asymptotic stability on S2n−1 \ {−φ}” if ε > 0 is small enough and if

the assumptions of Theorem 3.2 hold (see also [11]).
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Theorem 3.3 Let us assume that (i) and (ii) of Theorem 3.2 hold. Let V be a

neighborhood of −φ and let δ ∈ (0,+∞). Then there exist T > 0 and ǫ0 > 0 such that,

for every τ > 0 and for every solution Ψ of (26) with ǫ ∈ (0, ǫ0) and Ψ(τ) ∈ S2n−1 \ V,

|Ψ(t) − φ| < δ for every t > τ + T. (39)

Proof of Theorem 3.3. The key ingredient is the following classical lemma (see, e.g.,

[21, pages 415-417] or [29, Section 3.2]).

Lemma 3.1 Let T > 0. There exists C and ε0 > 0 such that, for every τ ∈ R and for

every ε ∈ (0, ε0), if Ψ : [τ, τ + T ] → S2n−1 is a solution of (26) and Ψav is the solution

of the averaged system (27) such that Ψav(τ) = Ψ(τ), then

|Ψ(t) − Ψav(t)| < Cε, ∀t ∈ [τ, τ + T ] .

Let δ1 > 0 be such that

(|ξ − φ| < δ1) ⇒ (ξ 6∈ V). (40)

By (31), there exists δ2 > 0 such that, for every solution Ψav of the averaged system

(27),

(|Ψav(0) − φ| < 2δ2) ⇒
(

|Ψav(t) − φ| < min{δ, δ1}
2

∀t ∈ [0,+∞)

)

. (41)

By Theorem 3.2, there exists T > 0 such that, for every solution Ψav of the averaged

system (27),

(Ψav(0) ∈ S
2n−1 \ V) ⇒ (|Ψav(t) − φ| < δ2 ∀t ∈ [T,+∞)). (42)

By Lemma 3.1 and (42), there exists ǫ1 > 0 such that, for every ε ∈ (0, ε1), for every

τ ∈ R and for every solution Ψ of (26),

(Ψ(τ) ∈ S
2n−1 \ V) ⇒ (|Ψ(τ + T ) − φ| < 2δ2). (43)

By Lemma 3.1 and (41), there exists ε2 > 0 such that, for every ε ∈ (0, ε2), for every

τ ′ ∈ R and for every solution Ψ of (26),

(|Ψ(τ ′) − φ| < 2δ2) ⇒ (|Ψ(τ ′ + t) − φ| < min{δ, δ1} ∀t ∈ [0, T ]). (44)

Let us check that the conclusion of Theorem 3.3 holds with ε0 = min{ε1, ε2}. Let

ε ∈ (0,min{ε1, ε2}), let τ > 0 and let Ψ be a solution of (26) such that Ψ(τ) ∈ S2n−1 \V.

By (43),

|Ψ(τ + T ) − φ| < 2δ2. (45)

From (44) with τ ′ = τ + T and (45), one gets that

|Ψ(τ + t) − φ| < min{δ, δ1} ≤ δ ∀t ∈ [T, 2T ]. (46)

From (40) and (46) for t = T , one gets that

Ψ(τ + T ) 6∈ V. (47)
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Using (47) and applying (46) with τ + T for the new value of τ , one gets that

|Ψ(T + τ + t) − φ| < min{δ, δ1} ≤ δ ∀t ∈ [T, 2T ].

Keeping going, an easy induction argument on the integer m shows that, more generally,

for every nonnegative integer m,

|Ψ(mT + τ + t) − φ| < min{δ, δ1} ≤ δ ∀t ∈ [T, 2T ],

which implies (39).

3.2.1. Examples for non-degenerate cases. We take the system (11) and apply the

periodic feedback (25) with α et β defined by (29). Simulations of Figure 10 describe

the evolution of the Lyapunov function V (Ψ) for the initial state Ψ(t = 0) =

(0, 1/
√

2, 1/
√

2).

It appears that the periodic feedback is quite efficient for system (11). See Figure

10.

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Time

u

 V

u

0 200 400 600 800 1000
10

−4

10
−3

10
−2

10
−1

10
0

V

Figure 10. Evolution of the Lyapunov function V (Ψ)(blue line) and control u (green

line); initial condition: Ψ(t = 0) = (0, 1/
√

2, 1/
√

2); system defined by (11) with

feedback (25). We take ε = 1.e − 3, k = 0.8, c = 0.5.

We take the system (23) and apply the periodic feedback (25) with α et β defined

by (29). Simulations of Figure 11 describe the evolution of the Lyapunov function V (Ψ)

and control u for the initial state Ψ(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4). Agreement

with the theoretical results presented above is obtained. See Figure 11.
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Figure 11. Evolution of the Lyapunov function V (Ψ)(blue line) and control u (green

line); initial condition: Ψ(t = 0) = (0, 1/
√

3, 1/
√

3, 1/
√

3); system defined by (23) with

feedback (25). We take ε = 1.e − 3, k = 0.8, c = 0.5.

3.2.2. Examples for degenerate cases. We take the system defined by (24) and we

apply the periodic feedback (25) with α et β defined by (29). Simulations of Figure 12

describe the evolution of the Lyapunov function V (Ψ) and control u, system defined by

(24) starting from the initial state Ψ(t = 0) = (0, 1/
√

3, 1/
√

3, 1/
√

3). We present the

evolution of I1 and I2 corresponding to system defined by (24), with feedback (25), in

Figure 13.
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Figure 12. Evolution of the Lyapunov function V (Ψ)(blue line) and control u (green

line); initial condition Ψ(t = 0) = (0, 1/
√

3, 1/
√

3, 1/
√

3); system defined by (24) with

feedback (25). We take ε = 1.e − 3, k = 0.8, c = 0.5.
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Figure 13. Time evolution of I1 and I2; system defined by (24) with feedback (25).

4. Conclusions

We focus in this paper on designing trajectory tracking (feedback) procedures for a

control system with polarizability terms u2(t)H2 present. We find that a straightforward

application of the previous results only work for systems that are controllable without

the polarizability term. To be able to find a control field that exploit the polarizability

coupling we propose two different solutions: the first one is to use a discontinuous

feedback with memory terms, the other is to use time-dependent (periodic) forcing.

In both cases we present related theoretical results and numerically implement these

techniques on prototypical examples. The time-dependent feedback is seen to generally

produce smoother controls.
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