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This paper presents a simple method of approximation for calculating the scattering cross section for a random orientated convex particle illuminated by a non polarized electromagnetic wave. This method is proved efficient for sphere and spheroids as the scattering efficiency is smaller than one and as the material is optically either soft or hard.

Introduction

Since the nineteenth century, physicists have tried to calculate the optical properties of macroscopic bodies, particularly their scattering cross sections. This has led to several theories, known as approximations of the exact theory [START_REF] Van De Hulst | Light scattering by small particles[END_REF]: d and m are respectively the object size (for instance, the sphere diameter) and the ratio of the refractive indices for object and suspending medium. The exact theory is due to Mie [START_REF] Mie | Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[END_REF], who has solved the Maxwell's equations for the propagation of an electromagnetic wave around an object. Solution needs appropriate boundary conditions at the interface particle-medium. Since the Mie's ground-breaking paper, numerous works have been achieved in order to extend the method to bodies with more complex shape than the sphere one. Among these, one may emphasize investigations about the optical properties of sphere clusters. The latter require the use of sophisticated algorithms and the corresponding programming on computers. However, computations have been performed as the spheres, i.e the primary particles in the sphere cluster, are Rayleigh [START_REF] Berry | Optics of fractal clusters such as smoke[END_REF], Rayleigh-Debye-Gans [START_REF] Khlebtsov | Spectroturbidimetry of fractal clusters: test of density correlation function cutoff[END_REF] or Mie [START_REF] Xu | Electromagnetic scattering by an aggregate of spheres[END_REF] scatterers. As an obvious fact, the optical properties of a particle are related to its geometrical shape or its morphology. Several morphological functions have been proposed or appear in the calculations: the surface function for a convex particle, as dealt by Mie for a sphere the local pair (inter-particle distance) distribution density function for a fractal cluster consisting in RDG scatterers Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(3), 240-246 doi:10.1016/j.jqsrt.2008.10.003 2 the chord length distribution density for particle studied in the framework of AD approximation [START_REF] Yang | A new look at anomalous diffraction theory (ADT): Algorithm in cumulative projected area distribution domain and modified[END_REF] The different morphological functions are studied by means of integral geometry, which searches the relations between them [START_REF] Santalo | Integral geometry and geometric probability[END_REF]. The purpose of this paper is to search an approximate expression relating the light scattering cross section to a morphological function for a convex particle. Thus, one aims to calculate the light scattering cross section of simply shaped bodies by proposing a new approximation involving more recent results obtained for sphere clusters. The section 2 reviews the main results concerning the sphere clusters. The section 3 develops the new approximation. The section 4 shows the results of the comparison of the new approximation and exact theories when the body is a sphere or a spheroid.

Scattering cross section for sphere clusters

Let us consider a sphere cluster, consisting in N spherical primary particles with the same radius a. Its scattering cross section is denoted C N . One will begin by treating the case of a cluster of RDG scatterers, itself being a RDG scatterer. R Ra ay yl le ei ig gh h--D De eb by ye e--G Ga an ns s a ap pp pr ro ox xi im ma at ti io on n
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The volume element is the primary particle. Each volume element gives RDG scattering and does so independently of the other volume elements. The waves scattered in a given direction by all these elements interfere because of the different positions of the volume elements in space.

The scattering cross section (averaged over all the possible orientations) of the cluster obeys the relation
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). The function ( ) 1 F ϑ corresponds to the primary particle. The structure factor depends on the morphology of the cluster [START_REF] Khlebtsov | Spectroturbidimetry of fractal clusters: test of density correlation function cutoff[END_REF]:
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jl R is the distance between the centres of primary particles j and l. jl represents the average over all the pairs (j,l). The structure factor is written within a continuous formulation: 
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Then, the scattering cross section of the cluster can be written:
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The mean value in equation 3 corresponds to:
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where X is a given function of R.

The function ( RDG ) F kR will not be expressed in this text, as it is not useful for the statement of the approximation.
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Generally, the object (primary particle, cluster ...) can be divided into smaller identical parts (elements, primary particle). Each element is polarisable. In the presence of a variable electric field, the element becomes an oscillating dipole, which itself creates an electromagnetic field. When an object is illuminated by an electromagnetic wave, each element receives the incident electric field and the one coming from the other elements. As a result, one may associate an oscillating dipole moment to each element. Thus, the object emits an electromagnetic wave (scattered wave), which includes the contribution of each oscillating dipole. Berry and Percival [START_REF] Berry | Optics of fractal clusters such as smoke[END_REF] calculated the scattering cross section of a cluster as the primary particle is a Rayleigh scatterer:
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k k e are respectively the incident wave number vector, scattered wave number vector and the incident polarization unit vector. Equation 4 also contains the pair distribution density for primary particles set. However, equation 4 includes a term (denominator) that is an estimate of the multiple scattering inside the cluster. The corresponding contribution is established from a mean field approximation (MFA). We take into account the multiple scattering because the condition 1 m -1 is not fulfilled. Nelson [8] performed a test of the MFA for the optics of fractal clusters. It was shown that multiple scattering should be considered and that MFA was suitable for aggregates consisting in several hundred soot particles. However, MFA was not tested for more general cases, as compact aggregates with a very large number of small primary particles. Most often, the incident wave is randomly polarised and the object can randomly orientate. Thus, the optical properties are obtained after calculating an average over all the wave polarisation states and object orientations.

Multi-sphere approximation for macroscopic body

Let us consider a macroscopic body. It can be divided into identical parts small enough to behave as Rayleigh scatterers. Each scattering element will be considered as spherical. The scattering cross section of the body will be calculated in the framework of the Berry and Percival theory. Several averages, translated as summation or integration, can be performed on equation 4, as already done on expression 3: over solid angle (or scattering angle) over the inter-particle (element) distances jl R : jl over the incident polarization direction (non polarized wave)

1 e over all the space orientations of the cluster
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The first one is applied to the numerator of equation 4, the second one independently to numerator and denominator. By contrast, the two last ones should be applied to the whole expression. The application of average operators needs to get over mathematical difficulties. In order to simplify the mathematical treatment, one adopts the following approximation:
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This leads to the expression (see also [START_REF] Khlebtsov | Spectroturbidimetry of fractal clusters: test of density correlation function cutoff[END_REF]): ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 1 1 1 s in R i j l jl N i R R r j l i j l jl jl N F kR C NC N e F kR i F kR δ δ + - = - - + (9) 
1 3 2 4 2 3 cos 2 2 6 sin 2 1 5 3 / 4 R r F x x x x x x x - - - - = - + - + ⎡ ⎣ x ⎤ ⎦ (11) ( ) ( )( ) ( )( ) ( ) 2 4 1 3 2 4 3 cos 2 1 5 3 sin 2 2 6 1 3 / 4 R i 2 F x x x x x x x x x - - - - - - = -+ - + - + + + ⎡ ⎣ x ⎤ ⎦ (12)
Moreover, let us consider the body consisting in a great number of Rayleigh scatterers, each one having a very small volume. The body volume is maintained constant: 
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One deduces from equation 13 the scattering efficiency factor for a sphere: ( 
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One states that: is a strongly increasing function of α for small α values. Then, depending on m value, reaches a plateau (m<2) or a maximum followed by a plateau (m>2). The value at the plateau is not depending on m value: 3.58. Hence, the global change of with α is similar, but not exactly the same compared to the one deduced from Mie's theory. However, this is better than Rayleigh-Debye-Gans approximation for optically soft material at small and large size parameter.
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Deviation between equation 16 and exact theory is small as much as for any m value. 

Figures 2a and 2b

show that there is a small deviation (<15% for λ=2; <30% for λ=20 in the case of α s <12) between scattering efficiency factor values coming from this work and these calculated with T-matrix method. The larger the size parameter is, the larger the deviation is. However, the main features of T-matrix results are retrieved: for instance, the curves for prolate spheroids are located above the curves for oblate spheroids. The deviation corresponding to spheroids behaves as the deviation for sphere. Thus, the relation 

Conclusion

Equation 13 enables an estimate of the mean scattering cross section for a random orientated body illuminated by a non polarized electromagnetic wave. It was proved efficient for a sphere as a body in the case of low and medium scattering efficiency and for any relative refractive index. This approximation was tried on other convex bodies as spheroids and was found suitable in this case. The shape of the body was taken into account by means of its pair distribution density, which is just a morphological function. For concave bodies, pair distribution density does not only characterize the content in material and consequently the body, but the mixture of material and medium of the convex shell. In this case, another density function would be probably more relevant and the previous approximation should be modified.
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  It appears in the expression of the pair distribution density ( ) S q ( ) P D R . Generally, R is the distance between two points inside the body. The distribution density function is normalized: Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(3), 240-246 doi:10.1016/j.jqsrt.2008.10.003 3 As far as a cluster of point scatterers is concerned:
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The pair distribution density for an oblate (semi-axis b,λb,λb with λ>1) spheroid obeys the expression [START_REF] Garcia-Pelayo | Distribution of distance in a spheroid[END_REF]:

with and

Following the method of Garcia-Pelayo [START_REF] Garcia-Pelayo | Distribution of distance in a spheroid[END_REF], the pair distribution density for a prolate (semiaxis b,b,λb with λ>1) spheroid obeys the expression:

,

Then, the scattering cross section is deduced from equations 13-14. The result is presented as a scattering efficiency factor versus a surface-equivalent-sphere size parameter α s following Mishchenko [START_REF] Mishchenko | Scattering, absorption and emission of light by small particles[END_REF]. The scattering efficiency factor is defined as:

is the average area of the particle geometric projection. Expressions for p O S can be found in [START_REF] Min | [END_REF].

As an illustration, figures 2a and 2b present a comparison between the results of this work and numerical calculations obtained by the T-matrix method. The relative refractive index is fixed at m=1.311. Results of the T-matrix method are presented as Figure 10.28 in [START_REF] Mishchenko | Scattering, absorption and emission of light by small particles[END_REF].