
HAL Id: hal-00410151
https://hal.science/hal-00410151

Submitted on 18 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cancer cell migration on 2D deformable substrates
Valentina Peschetola, Claude Verdier, Alain Duperray, Davide Ambrosi

To cite this version:
Valentina Peschetola, Claude Verdier, Alain Duperray, Davide Ambrosi. Cancer cell migration on 2D
deformable substrates. L. Preziosi and A. Chauvière and C. Verdier. Cell Mechanics: from single
scale-based models to multiscale modeling, Chapman & Hall/CRC, pp.1-24, 2009. �hal-00410151�

https://hal.science/hal-00410151
https://hal.archives-ouvertes.fr


Chapter 9

Cancer cell migration on 2D

deformable substrates

Valentina Peschetola, Claude Verdier, Alain Duperray and Davide Ambrosi

9.1 Introduction

Cell migration is an important feature occurring during many biological processes such as

tissue invasion, the immunologic response, etc. and involves sophisticated mechanisms such

as the development of focal adhesions, possible extra-cellular matrix (ECM) degradation,

and activation of the actin–myosin complex, in order to develop forces necessary for traction.

Depending on their type and the environment, cells can move according to different types

of locomotion, either in 2D or 3D. For example fibroblasts move on a 2D substrate in the

most conventional way, as described by Sheetz [34]: they form a lamellipodium at the front,

and develop adhesion complexes so that they can pull on such anchors in order to detach

the rear part and move forward. On the other hand, fish keratocytes migrating on 2D

substrates take the form of a crescent [6, 22]. In three dimensions, two types of motions

have been observed for cancer cells migrating in 3D collagen, the “amoeboid” type and the
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226CHAPTER 9. CANCER CELL MIGRATION ON 2D DEFORMABLE SUBSTRATES

“mesenchymal” one [15, 16].

2D–migration can depend on cell type and ligand matrix density, as shown in previous

works on substrates covered by different densities of ECM [27]. The migration velocity vs.

ligand density curve usually exhibits a bell–shaped curve with a maximum velocity at an

intermediate ligand density, which is the signature of an optimum affinity between receptor

and ligand molecules. This is the basis for understanding the complex machinery provided

by cells developing focal adhesions at the front while removing them at the back in the con-

ventional five–step motion [34]. To better understand these features, fluorescence (confocal)

microscopy is a very useful tool to show the precise location of adhesion complexes involved

during cell migration. The formation of such focal contacts [4] allows the development of

important forces that the cell uses to move forward. Such forces are usually called “traction

forces” and are difficult to determine by straightforward analysis. Therefore, many attempts

have been made in the past ten years to measure such forces in an indirect way and different

techniques have been developed in this respect:

• the original technique of Harris and co–workers [18] consisting of observing the magni-

tude and shape of wrinkles on a soft elastic film below a cell;

• the most classical one by Dembo and co–authors [9, 10] measures the motion of fluo-

rescent beads embedded in a gel deformed by a cell;

• micro–patterned substrates [4, 12, 35] with thin poles whose deflection directly gives

the forces exerted by the cell.

All these techniques have been tested in vitro and were quite effective for the study of the

motion of cells on 2D–rigid substrates. The first technique [18] was initially rather qual-

itative, but further developments by Burton et al. [6], in particular devoted to the study

of keratocytes locomotion, revealed to be quite quantitative. The last one, introduced by

Balaban et al. [4], has received recently a lot of interest [17] and important results concern-

ing cell migration of 3T3 fibroblasts on rigid substrates have been obtained regarding the

influence of substrate rigidity. Indeed, as earlier understood by Lo et al. [24], cells usually

exert larger traction forces on more rigid substrates, this behavior being correlated with an
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increased contact surface and a reduced migration velocity. The traction force increases for

larger stiffnesses until a critical rigidity is reached (around 80kPa), where the force exhibits a

plateau [17]. Although very elegant, the technique due to Balaban et al. still poses questions

like whether cells behave similarly on micro–patterned substrates as compared to classical

polyacrylamide gels or when migrating in vivo.

In this chapter, we focus on the technique developed by Dembo and Wang [10], and its

further recent developments [2, 3, 25, 30]. The basic idea is to measure the displacements of

fluorescent beads embedded in rigid substrates of polyacrylamide (a mixture of acrylamide

and bis–acrylamide to be more precise). Component concentrations can be tuned to obtain

the desired gel rigidity, usually ranging between 1kPa and 100kPa. As cells are laid onto

the functionalized substrate, they adhere and start to exert tractions which deform the

substrate so that fluorescent beads located in the underlying gel are displaced. Based on the

hypothesis that the gel is isotropic and elastic, and displacements are small enough so that

linear elasticity applies, the gel depth being large enough so that it can be approximated by

a half space, the Boussinesq equations can be solved in the whole gel. Usually a thickness of

100 µm is enough, but a recent work argues about the advantages of using thinner gels [25],

so that one can compute the traction stresses exactly at the gel surface. This is an example

of inverse problem, since the particle displacement vectors u(x, t) are known at certain

locations (with an unavoidable experimental error) and the traction stresses T(x, t) are to

be computed everywhere on the gel surface. The solution of the Boussinesq problem for an

elastic gel with Young modulus E and Poisson coefficient ν reads:

u(r) =

∫

G(r− r′)T(r′) dr′ (9.1)

where the kernel G is a Green’s function tensor [21]:

G(r) =
1 + ν

π E

(

(1− ν)
1

r
+ ν

r⊗ r

r3

)

(9.2)

while r denotes the modulus of r.

In the initial approach of Dembo and Wang [10], beads displacements are first deter-
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mined. Bi–linear shape functions are defined on an unstructured quadrilateral mesh. The

optimal stress field is obtained minimizing the error by an iterative procedure under force

magnitude penalization. Since the method is rather complicated than other methods have

been introduced [7] making use of the particular structure of the equations. Noticing that

Eq.(9.1) is a convolution, one can compute the Fourier transform F̃(k) =
∫

∞

−∞
e−ik.r F(r) dr

on both sides of Eq.(9.1), k being the wave vector:

ũ(k) = G̃(k)T̃(k) (9.3)

Following the approach of [7], the expression of G̃(k) is given by a two–by–two matrix,

assuming that vertical displacements can be neglected. This is usually the case as long as

gels are stiff enough and are not deformed by vertical tractions exerted by cells, which is a

good enough hypothesis in this case. Finally Eq.(9.3) can be inverted to obtain T̃(k) and

then going back into the real space gives the traction stress field T(r):

T(r) = FT−1

2
(G̃−1(k) ũ(k)) (9.4)

where FT−1

2
denotes the two–dimensional inverse Fourier Transform and G̃−1(k) is the

inverse of G̃(k) which can be computed explicitly thanks to simple manipulations [7]. The

main drawback of this method is that despite its simplicity, it requires to have a periodic

displacement field in order to compute the Fast Fourier Transforms.

One further work [33] deals with pointwise traction force reconstruction and the effect of

noise, which are well known to affect the results. Due to the ill–posedness of the problem, it is

necessary to use a regularization algorithm to obtain significant data. Another information

that can be used is the location of focal adhesions. Another possible hypothesis [25] is

to use thin substrates (typically 10µm in thick) which can help get explicit solutions of

the Boussinesq equations. This allows an increased accuracy in the determination of these

traction stresses. To conclude, let us mention the recent work of Sabass et al. [30] who

combined three approaches to determine traction forces, one based on the integral boundary

element method (BEM) [10], one using the Fourier Transform Traction Cytometry (FTTC)
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[7], and the last one mentioned just above using Traction Recovery with Point Forces (TRPF)

[33]. All methods can be improved when proper regularizations are used and can lead to an

increased resolution. The TRPF procedure seems to be the most promising one, as long as

focal adhesions are well developed, but requires of course more sophisticated experiments.

These experiments are needed in any case, as one wants to clearly understand how forces

are connected with focal adhesions, and also how the cell cytoskeleton plays a role in the

different motility regimes.

In this chapter, a different method [2, 3] is used as a promising tool for studying the

migration of cancer cells. It is based on a formulation arising from the minimization of an

energy, combined with the use of a penalty parameter. The method will be presented in

the next section. Then detailed experimental methods will be given. The results showing

displacements and stresses in the case of migration T24 cancer cells will be eventually pre-

sented. The discussions will concern the effect of gel rigidity, as well as comparisons with

other cell types.

9.2 An adjoint method for cell traction

An alternative approach to obtain the pattern of the shear stresses exerted by a cell on a

flat substrate is the adjoint method proposed by Ambrosi [2, 3]. The mathematical model

is based on the classical functional analysis framework due to Lions [23]; the general theory

is applied to the specific problem of small deformation of a homogeneous elastic material

subjected to body forces only.

Let Ω be the whole domain and u(x) the displacement vector field, x ∈ Ω ⊂ R
3. The

displacement is known only in a subset Ω0 ⊂ Ω where beads are located; the related function

u0(x) has support in Ω0. Let Ωc ⊂ Ω be the region covered by the cell and where the shear

stress is applied. As explained before, the traction forces are generated through the actin–

myosin interactions and act on the underlying substrate through focal adhesion sites. These

areas are not localized precisely in our experiments and we do not restrict the force support

to these sites as is done in the algorithm of Schwarz et al. [33].
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Consider the following elastic problem in the whole domain Ω

−µ∆u− (µ + λ)∇ (∇ · u) = f , u|∂Ω = 0 (9.5)

where µ and λ are the Lamé constants that characterize the material. The problem can be

rewritten in the form Au = f , where A is a linear operator which is deduced easily from

the above equation. The aim is to obtain the force field f , that is inferred by a known

displacement (inverse problem). If we try to invert directly the equation, we find that the

problem is ill–posed since the displacement is known only in a subset Ω0 of Ω. It is necessary

to introduce the projector P , P : Ω → Ω0, and a functional J(f), J : L2(Ω) → R, defined as

J(f) =

∫

Ω0

|u− u0|
2 dV + ε

∫

Ω

|f |2dV, (9.6)

where ε is a real positive number. This functional measures the difference between the

displacement field produced by f and the experimental one defined by u0 under penalization

of the square norm of the force field itself. We look for g minimizing J :

J(g) ≤ J(f), ∀f ∈ Vc, (9.7)

where Vc ⊂ L2(Ω) is the space of the finite energy functions with support in Ωc. The

minimization of J accomplishes the minimization of the distance of the solution from the

measured value u0 under penalization of the magnitude of the associated force f per unit

surface. The penalty parameter ε balances the two requirements. An equivalent condition

of (9.7) is given by J ′(g)[f − g] ≥ 0; making the Gateaux derivative explicit suggests the

introduction of the adjoint equations, A∗ : L2(Ω) → Ω0

A∗q = Pu(g)− u0, q|∂Ω = 0 (9.8)

Substituting back in the functional derivative permits to obtain the solution of (9.7) that

represents the optimal body force:

g = −
χc

ε
q,
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χc is the characteristic function of the domain Ωc and q is a volume force.

In short, the set of equations that we need to solve is given by two elliptic partial dif-

ferential equations, one for the displacement u and the adjoint one for the volume force

q.

On the basis of dimensional arguments, it is possible to reduce this three–dimensional

system (in space) into a two-dimensional one. In fact, vertical averaging along an effective

thickness h allows to introduce two parameters µ̂ and λ̂:

µ̂ = h
E

2(1 + ν)
, λ̂ = h

Eν

1− ν2
.

E and ν are the Young modulus and the Poisson ratio respectively. h is the averaging height

fixed by the depth of field of the microscope that is 1.5 microns in our case. Below this

depth, the beads are not in focus and their positions are not measured; the displacement u

should be understood as the average displacement along h, which is nearly the displacement

of the center of the beads. Finally, the two–dimensional system becomes

−µ̂∆u− (µ̂ + λ̂)∇ (∇ · u) = −
χc

ε
p, u|∂Ω = 0,

−µ̂∆p− (µ̂ + λ̂)∇ (∇ · p) = χou− u0, p|∂Ω = 0,
(9.9)

where χc and χ0 are the characteristic functions related to Ωc and Ω0 respectively. Note that

the structure of the two equations is the same because the problem is self–adjoint. p now

represents the traction stresses (N/m2) previously introduced as T and will be determined

once the two equations are solved.

In the ill–posed problem the penalty parameter, ε in our case, plays an important role.

In order to fix ε it is necessary to re–interpret the system (9.9) on the basis of arguments

suggested by modal analysis. Suppose that Ω0 = Ωc = Ω under periodic boundary condi-

tions, the previous system of equations rewrites like a Tikhonov filter. The amplitude of the
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Fourier components of the solution uk, pk satisfy the algebraic relations

hEk2uk ≃−
1

ε
pk,

hEk2pk ≃uk − u0,k,

(9.10)

that is

uk ≃
u0,k

1 + εh2E2k4
. (9.11)

where u0,k represents the amplitude of the k-th Fourier component of u0. According to

equation (9.11), if the data is known all over the domain the system of equations (9.9) is a

filter damping the modes corresponding to wavenumbers k > ε−1/4h−1/2E−1/2. The choice

of ε can be interpreted in terms of filtering modes falling below the experimental accuracy.

Equation (9.11) shows that the key parameter of the inversion procedure is actually εh2 and

the solution does not change for combinations of the averaging layer h and penalty parameter

ε that preserve this quantity.

Figure 9.1: Discrete L-curve with 17 values of ε obtained for our model in the case of the stiff
gel (E = 10kPa). The corner corresponds to the optimal balance between data agreement
and regularization.

A convenient tool for the analysis of discrete ill-posed problems is the L-curve criterion

which is a log-log plot, for all valid regularization parameters, of the norm of the regularized

solution ||p||2 versus the corresponding residual norm ||u − u0||2. In this way, the L-curve

displays the minimization of these two quantities and its corner, which is intrinsic to the

data, corresponds to the optimal balance between data agreement and regularization. Figure

9.1 shows an example of the discrete L-curve obtained for 17 values of the ε parameter for

our model in the case of the stiff gel (E = 10kPa). In our work we take the minimum value
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of ε that does not yield erratic results in the displacement, that is the corner of the L-curve.

The system of equations (9.9) has been discretized by a finite element method using linear

basis functions on an unstructured mesh. In order to avoid any iterative coupling between the

two equations in (9.9), a global conjugate method has been used to solve the resulting system

of linear equations numerically. Figure 9.2 shows an example of the computational setting:

the computational mesh, the beads displacement and the cell contour. The triangular mesh

satisfies two constraints: it has a node in every point where displacements are known (beads

location) and a sequence of element sides coincides with the cell contour. In particular,

the boundary Ωc of the cell, is described as a piecewise linear curve following the shape of

the cell and represents the boundary between the between the intracellular domain over the

substrate and the rest of the domain where the forces are not applied.

Figure 9.2: Graphical representation of the numerical set-up: the computational mesh, made
of triangles, is represented in light grey. The mesh satisfies two constraints: it has one node
at every point where the displacement is known and a sequence of element sides coincides
with the boundary of the cell. The arrows indicate the experimental beads displacement.
The scale bar at the bottom left corner is 0.5 micron long.
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9.3 Experimental methods

In this work, we characterize cell migration on gels with different rigidities. T24 epithelial

cells from a bladder cancer line are used. This type of cancer cells is known to be rather

invasive. Regarding gel preparation, the following experimental procedure is used:

• Gel preparation and stiffness. In order to prepare gels with different stiffnesses,

we change the ratio between polyacrylamide and bis–acrylamide components. Three

different gels have been prepared containing 5 − 7.5 − 10% of polyacrylamide and the

bis–acrylamide percentage is 0.03%. The mechanical properties have been measured

using conventional dynamic shear rheometry tests on a Malvern rheometer (Gemini 150,

stress–controlled). Sinusoidal oscillations at a known shear deformation γ = γ0 sin(ωt)

are applied within the linear regime (small enough deformation γ0 ∼ 0.01) at different

angular frequencies ω. The stress response σ = σ0 sin(ωt + φ) (where σ0 is a constant

stress and φ is the phase angle) is measured and the elastic (G′) and viscous moduli

(G′′) are deduced. These gels are quite elastic, as long as the acrylamide concentration

is large enough, which is the case. Indeed, experiments show a constant elastic modulus

G′ when the frequency f (related to ω by ω = 2πf) ranges from 0.1 to 10Hz. The

loss modulus G′′ is usually lower by two orders of magnitude. Therefore we can assume

that ν = 0.5, for an incompressible gel, thus E = 3G′. Note that the hypothesis that

E = 3G′ is relevant here in comparison to the work of Boudou et al. [5] showing that

ν ∼ 0.48 in such polyacrylamide gels, as determined using micropipettes. This leads

to the typical gel Young’s moduli 2kPa, 6.3kPa and 10kPa for respectively the soft,

medium and hard gels which are used in this study. An example of the influence of the

polyacrylamide content (for the three gels) is shown in Fig.9.3. The typical slope of

∼ 2 is current in such biological networks as observed for example in actin and fibrin

gels [20]. Comparisons have been made previously [3] with other authors [5, 13, 14, 37]

and revealed good qualitative agreement.

• Methodology. Gels were prepared on a silanated square coverglass 22mm x 22mm,

covered with a circular coverglass (35mm diameter) and treated with NaOH (0.1M),

(3-Aminopropyl)trimethoxysilane (APTMS, 10mn), and 0.5% glutaraldehyde (30mn).
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Figure 9.3: Elastic moduli E (Pa) as a function of the acrylamide concentration. Bis–
acrylamide concentration is fixed at 0.03%.

Fluorescent beads (Molecular Probes, 0.2 micrometer in diameter) were seeded before

addition of the cross–linker. Gels were laid onto the square coverglass, and the circular

coverglass was brought carefully to capture the gel by capillarity, this avoiding to flip

the preparation. Indeed beads need to sediment fast so that there are located closer

to the gel upper surface where measurements are made. The gel volume was chosen so

that gels have a thickness of about 70µm, as described in other works [28]. The gel was

left to polymerize for nearly 90 minutes.

• Gel functionalization. After polymerization, the square coverglass was gently re-

moved and sulfo–Sanpah 1mM mixed with DiMethylSulfOxide (DMSO) and Phosphate

Buffered Saline(PBS) was added to functionalize the gel (15 minutes under UV). This

procedure was repeated twice, then the surface was rinsed with PBS. Finally a 20µg/ml

fibronectin solution was used overnight to bind the above surface.

• Cell seeding. Cancer cells of epithelial bladder type (T24) were then seeded at a

low density. They usually adhered rapidly and spred. The coverglass was attached

at the bottom of a 35mm–culture dish (containing culture medium) in order to carry

out microscopic observations. Two types of images were made: a phase contrast one

to observe the cell and its contour, and a fluorescent one focused on the beads (at a
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slightly different vertical position). The depth of field of the images was around 1.5

micrometers. Everything was carried out automatically in order to take one set of

images at regular time steps (2mn, for example).

• Microscopy. Images were then collected and treated using the ImageJ software [19],

to determine trajectories and/or displacements with respect to the initial position, as

explained in the following part. The initial beads position was determined at the end

of the experiment by adding distilled water in order to detach the cells allowing a few

minutes for the gel to go back to its initial position.

The basic idea in this work is to follow cells as they move in order to obtain dis-

placements, traction stresses, and velocities of migration during a significant duration

(usually around one hour or more). This feature is indeed important since most other

studies focus on stresses at a given time, but it will be shown here that stresses can

vary significantly as cell migration proceeds. Then displacements and tractions will be

studied as a function of gel rigidity.

9.4 Determination of displacements

The basic step for the calculation of the traction field is the determination of the beads

displacements. Essential data for the computation was the cell boundary, the initial beads

position and the in-plane displacement of the markers. The displacement field was extracted

from a stack of images: the first one showed the beads in the undeformed position and the

other images showed the gel deformed under cell traction. Usually a stack of 30 images was

used and the times between frames were chosen to be two or three minutes. This enabled to

capture sufficient changes in the beads positions but not too much so that beads could be

followed along their trajectories.

The processing of these images began with the correction of the images for relative trans-

lational shifts. Here we used the ImageJ software and in particular the “Align Slice” plug–in

in order to perform a recursive alignment of a stack of images. The alignment proceeded by

propagation: each image was used as a template with respect to which the next slice was
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aligned.

From the corrected images sequences, we localized cells and divided images into small

areas typically 100µm x 100µm, each containing one isolated cell. Beads detection was made

using “Particle Tracker”, another ImageJ plug–in. The plug–in implemented point detection

and a tracking algorithm as described in [32]; it performed two different steps: first the

detection of the beads positions in each image and then the beads link into trajectories. The

estimation of the bead center location was done by finding the maximum local intensity in the

image. The point locations were refined under the assumption that the beads local intensity

maxima were near the true geometric centers of the beads and finally spurious detections

such as dust or particle aggregates were rejected. The linking algorithm identified centers

corresponding to the same physical particle in subsequent frames, using a graph technique

theory, and linked these positions into trajectories.

An example of the image processing technique is provided in Fig.9.4; in particular, Figure

9.4(a) represents the fluorescent beads as recorded with the microscope, this configuration

being related to the undisturbed position of the markers. Figure 9.4(b) shows the trajectories

of these fluorescent markers under cell traction after 70 minutes. They are obtained after

treatment of a stack containing 30 images.

(a) (b)

Figure 9.4: (a) Image of undisturbed positions of the fluorescent beads as recorded with
the microscope. The scale bar is 10µm. (b) Beads trajectories detected with ImageJ after
processing a stack containing 30 images. The scale bar is 2µm. (b) is a zoom of the square
area evidenced in (a).
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9.5 Determination of traction stresses

To investigate the traction field generated by T24 cancer cells, we observed cells on different

substrates, with a Young’s modulus (E) ranging from 2kPa to 10kPa. After extracting

the beads displacements as described in the previous section, the traction stress field was

obtained by solving the system (9.9).

Figure 9.5: (a) T24 cell adhering on a soft polyacrylamide substrate (E = 2kPa). The cell is
elongated on the surface. (b) The beads displacements under and around the cell are detected
with ImageJ. (c) The traction stresses are shown as a grey–level map for the magnitude. The
maximum value is around 50 PicoNewton/µm2. The scale bar for displacements is 0.5 µm
long. The greyscale map is in pN/µm2.

Figure 9.6: (a) T24 cell adhering on a medium stiffness polyacrylamide substrate (E =
6.3kPa). The cell looks quite elongated however with small shape protusion compare to
Fig.9.5(a). (b) The displacement field has roughly the same magnitude as Fig.9.5. (c) The
traction field has a maximum magnitude of about 80pN/µm2. The scale bar for displace-
ments is 0.5 µm long. The greyscale map is in PicoNewton/µm2.

Fig.9.5(a) shows a T24 cancer cell on the soft gel, E = 2kPa. The cell was observed for
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Figure 9.7: (a) T24 cell adhering on a stiff polyacrylamide substrate (E = 10kPa). The cell
has a less symmetric shape. (b) The displacement field is of the same magnitude as in Figs
9.5-9.6. (c) The traction field has a maximum magnitude around 145pN/µm2. The reference
vector for displacements is 0.5 µm long. The greyscale map is in PicoNewton/µm2.

2 hours and the image was recorded 30 minutes after the beginning of the experiment. The

tumor cell is moving on the surface towards the bottom right part of the figure; it is quite

elongated on such a surface. There are many beads whose displacements are significant,

usually around 0.5µm; they occur essentially at the cell edges, as seen in Fig.9.5(b). In this

same region, the maximum value of the traction stress is obtained, i.e. around 50pN/µm2

as seen in the grey–scale map of figure 9.5(c), representing the traction stress levels.

A T24 cell is shown next on the medium stiff gel, E = 6.3kPa in Fig.9.6(a). After 46

minutes, the cancer cell is quite elongated and exhibits a less symmetric shape than in the

previous case. The beads have moved by about 0.5µm maximum (Fig.9.6(b)). The stresses

exerted by the tumor cell are shown in Fig.9.6(c): the traction stresses are small along the cell

edges with peaks at the front and tail where the maximum magnitude is around 80pN/µm2.

Finally, Fig.9.7(a) shows a T24 cancer cell moving on the stiffer gel, E = 10kPa, as

well as the related numerical traction field in Fig.9.7(c). The picture has been taken 10

minutes after the beginning of the experiment; at this time the cell exhibits a shape with

protrusions and it is anchored by the tail at the bottom right side where the shear stress

reaches its maximum value, around 145pN/µm2. In this case, the beads are located close to

the cell contour and the beads maximum displacements are still around 0.5µm, as shown in
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Fig.9.7(b).

From the above, the maximum displacements in these three experiments seem to be in

the same range (around 0.5µm), independently of the rigidity of the substrate.

Figure 9.8: Evolution of the maximum value of the traction stresses during T24 cell migration
on the rigid substrate E = 10kPa.

It is important to study the maximum value of the traction stresses at each time step.

For the T24 cancer cell adhering on the rigid substrate, values of the traction stresses were

recorded and vary between 90pN/µm2 and 190pN/µm2 as presented in Fig.9.8. Cells do

not move in a simple way, but their motion requires the development of protrusions until

corresponding stable focal adhesions can be formed. After this is achieved, cells can retract

their uropod by pulling on focal adhesions, thus they move in a non continuous way [34].

This is precisely the significance of Fig.9.8 where an unsteady regime of traction stress is

observed changing abruptly from one value to another due to rapid pulling on focal adhesion

sites. Clearly such mechanisms involved during migration require tight spatial and temporal

regulation; we can study this process more accurately in term of traction stresses maps, as

proposed in Fig.9.9 on the rigid gel.
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Figure 9.9: Migration of a T24 cell on a stiff gel (E = 10kPa), at time t =
2, 14, 22, 26, 34, 38, 44, 50 mn. The cell first adheres strongly (dark region) at its lower right
part (a), then starts to exhibit protrusions (b-c-d-e) until it eventually forms new adhesion
sites on the upper left of the picture (e-f). At this precise time, it is able to pull on these ad-
hesion sites, contract and detach its rear (f-g); then it starts to move back towards the right
direction (h). Note that the greyscale is reset to a range between minimum and maximum
values in each frame.

The cell first adheres and binds to the lower right part (a), then it develops protrusions

(b-e), as explained above, with the formation of stable adhesion sites (d-f). This corresponds

to the dark regions (large stresses). The T24 starts to pull on these new adhesion sites until

it moves (f-g). The disassembly of adhesions at the rear of the cell and the retraction of

the tail complete the migration picture and enable cell translocation. This mechanism of

locomotion for the T24 cancer cell is comparable with the four or five–step picture [1, 34]

which describes motion of many cell types and is summarized as follows:

• formation of a lamellipodium at the front by actin polymerization;

• development of new focal adhesions coupled with the actin cytoskeleton;

• force traction - cell contraction;

• release of bonds at the rear - Actin and proteins recycling.
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In the next section the observed features are discussed and compared with previous works.

9.6 Discussion

The study presented here demonstrates some advantages of the adjoint method [2] when

combined with relevant experiments [3]. The major interest is that, instead of solving the

CPU–consuming integral equation [10], it directly forces the 2D–averaged problem of partial

differential equations to be solved by finite element method. In this respect, the resolution

becomes easier, and can be done on a personal computer in a few seconds. The longest

part is the data processing of images for the determination of the displacements whatever

the method [7, 10, 33]. The results strongly depend on the quality of the images. Further

refinements have been made recently as compared to our initial work [3]: pictures are now

taken at different heights separated by 0.2µm, stacks of about 8–10 pictures are taken at

each time step and the best focused images are selected. Thus beads are localized more

easily and less beads are lost during the collection of trajectories. Then a good resolution is

obtained, as shown by the squared error in Fig.9.1, which is around 10−5. More precisely, we

obtain an error ||u − u0||2 ∼ 3.0 10−3µm, which is small compared to displacements in the

range [0.05− 0.5µm]. This clearly indicates a good resolution as compared to experimental

data.

Nevertheless, improvements can still be made: in particular recent works by two groups

[25, 30] suggest how the resolution can still be enhanced. Merkel et al. [25] use thinner

substrates allowing an analytical resolution of the problem. Sabass et al. [30] illustrate the

advantage of a combination of complementary fluorescent microscopy in order to capture

the location and evolution of focal adhesions, in relation with traction forces, a method also

proposed earlier in [4]. This enables to show an increased accuracy of all techniques, in all

cases (Boundary Element Method [10], Fourier Transform Traction Cytometry [7], Traction

Recovery with Point Forces [33]). In our case, we limit ourselves to the usual traction stress

determination but it is possible to combine fluorescence and observe focal adhesions as well as

the actin cytoskeleton development. As an example, Fig.9.10 shows the actin cytoskeleton
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organized in stress fibers, in the case of T24 cells adhering on substrates with different

rigidities (respectively the ones used before, E = 10− 6.3− 2kPa). It is known that stress

fibers are colocalized with focal adhesions [1]. In Fig.9.10, most of the stress fibers come close

to the cell edges where focal adhesion complexes are usually localized. These photographs

clearly indicate that T24 cells form many stress fibers on rigid substrates (E = 10kPa) but

less on soft ones (E = 2kPa). The intermediate case also shows stress fibers but they are

less numerous as compared to the case of the rigid substrate.

Figure 9.10: T24 cells adhering on substrates with various stiffness E = 10 − 6.3 − 2kPa
(decreasing from left to right). The actin cytoskeleton has been marked with GFP. Note the
formation of stress fibers and a large cell area on the more rigid substrate. In the case of
the very soft gel, on the contrary, the actin structure is less developed and the cell barely
adheres to the substrate, showing a very small contact area. The scale bar represents 20µm.

To continue on the effect of substrate rigidity further, let us concentrate on the stresses

exerted by cells on such substrates, a subject already discussed by other authors [3, 11, 17, 24].

This current work emphasizes the ability of cells to adapt to a different environment. T24

cancer cells also obey this principle; they develop similar strains when adhering to various

rigid substrates. Indeed, the level of deformation does not seem to be affected by substrate

rigidity in the relevant range: this comes out from Figs 9.5-9.6-9.7 where it was mentioned

that the displacements are very similar (of the order 0.5µm). Additionally the ratio between

maximum stress and Young modulus is almost a constant (strain) of the order 0.02 [3]. This is

in agreement with previous works [11, 31]. It is likely that, as the substrate rigidity increases,

such a (stress–rigidity) linear behavior will fail and that there should be a saturation [17]

since one expects that cells cannot reinforce their integrin–cytoskeleton links indefinitely [8].

Note that such behaviors can be related to the cell micro–rheological properties [36], in

particular their ability to modulate the growth of stress fibers.

It has been also shown that migration of cancer cells on 2D–rigid substrates follows a
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rather classical picture divided into 4–5 steps. Indeed, Fig.9.8 and Figs 9.9 provide direct

evidence of the motion which can be decomposed into these different steps. First, the cancer

cell adheres and is not very active in Fig.9.9(a), thus stresses are low. Then it searches for

new adhesion sites until it reaches some places that will allow it to establish larger traction

stresses. This is precisely where the tractions maxima are obtained in Fig.9.8, at locations

(e)-(f). Thanks to these forces, the rear (uropod) can be detached. The cell relaxes again its

stresses in Fig.9.9(g) until it will start again to try and move in another direction (Fig.9.9(h)).

Therefore, a clear connection has been made between the stress diagram in Fig.9.8 and the

migration patterns containing stresses maps in Figs 9.9.

Finally, our study also shows that cell contact area with the substrate increases with

substrate rigidity in close correspondance with the development of stress fibers (see Fig.9.10).

This fact was only observed previously regarding cell area before [24]. The velocity of

migration also varies in the usual way [3]: cells with more stable focal adhesions on rigid

substrates definitely move less rapidly as compared to soft substrates, where they move faster

because of the difficulties to develop stable adhesions [11].

The order of magnitude of tractions can finally be discussed. T24 cells seem to develop

smaller stresses (typically 0.05 − 0.2kPa here) in the range of the ones found for Human

Airway Smooth Muscle (HASM) cells [7]. Such stresses are still much lower than the ones

found usually with fibroblasts [10] or endothelial cells [29]. This may be a possible explana-

tion of the reason why cancer cells move rapidly to form metastases and therefore use small

traction stresses in order to migrate faster. Still this hypothesis needs to be confirmed in

more realistic situations like in vitro three–dimensional migration for example.

9.7 Conclusions

The study developed here has revealed some interesting features of cancer cell migration on

rigid substrates. It is important to note, that although many studies have already focused

on the determination of
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traction forces, the current method is very efficient and shows interesting time dependent

features. This method is promising and should allow to investigate new problems related to

cancer cells. The ability to distinguish between cell types is of course one first perspective.

Secondly, attempts should be made to differentiate invasive from non invasive cancer cells

[26]. This could lead to possible diagnosis. Finally, substrate specificity may also be used

to compare cell migration characteristics such as their migration velocity or exerted traction

stresses. But the most promising follow–up of this work will probably rely in the ability to

correlate precisely the cytoskeleton and focal adhesion dynamics with the development of

forces exerted by cancer cells.
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