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Abstract

The impact of environmental variability on population size growth rate in dynamic
models is a recurrent issue in the theoretical ecology literature. In the scalar case,
R. Lande pointed out that results are ambiguous depending on whether the noise is
added at arithmetic or logarithmic scale, while the matrix case has been investigated
by S. Tuljapurkar. Our contribution consists first in introducing another notion of vari-
ability than the widely used variance or coefficient of variation, namely the so-called
convex orders. Second, in population dynamics matrix models, we focus on how matrix
components depend functionaly on uncertain environmental factors. In the log-convex
case, we show that, in a sense, environmental variability increases both mean popu-
lation size and mean log-population size and makes them more variable. Our main
result is that specific analytical dependence coupled with appropriate notion of vari-
ability lead to wide generic results, valid for all times and not only asymptotically, and
requiring no assumptions of stationarity, of normality, of independency, etc. Though
the approach is different, our conclusions are consistent with previous results in the lit-
erature. However, they make it clear that the analytical dependence on environmental
factors cannot be overlooked when trying to tackle the influence of variability.

Key words: environmental variability; matrix population models; growth rate;
stochastic orders; log-convex functions.
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1 Influence of environmental noise on population size

We recall here different observations and results in the theoretical ecology literature which
point out the ambiguous role of environmental noise on population size in matrix population
models, according to whether the noise is added at arithmetic or logarithmic scale.

1.1 Lande’s comments on additive noise at arithmetic or logarith-

mic scale

R. Lande in [1] comments the influence of environmental noise on population size according
to whether the noise is added at arithmetic or logarithmic scale. The evolution of population
size N(t) in absence of density-dependent effect may be described

• either on arithmetic scale with multiplicative growth rate λ(t) and dynamic
N(t + 1) = λ(t)N(t),

• or on logarithmic scale with growth rate on the log scale r(t) = log
(

λ(t)
)

and dynamic
on the log scale log N(t + 1) = r(t) + log N(t).

On the one hand, adding environmental noise to multiplicative growth rate as in λ(t) =
λ + ǫ(t), where the noise is zero-mean (E[ǫ(t)] = 0), gives the following mean of growth rate
on the log scale

r = E[log
(

λ(t)
)

] ≈ log λ − σ2
r .

“Thus, demographic and environmental stochasticity reduce the mean growth rate of a pop-
ulation on the logarithmic scale, compared with that in the (constant) average environment”
[1].
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On the other hand, adding environmental noise to growth rate on the log scale as in
r(t) = r + ǫ(t) gives, in case ǫ(t) follows a Normal distribution N (ǫ, σ2

ǫ ), the following mean
of growth rate on the arithmetic scale

λ = exp
(

r + ǫ +
σ2

ǫ

2

)

.

Thus, Lande concludes that, “with the mean environmental effect equal to zero, ǫ = 0, then
it would be found that environmental stochasticity increases the mean multiplicative growth
rate, λ”.

1.2 Tuljapurkar’s asympotic approximation

S. Tuljapurkar considers a stationary sequence of random matrices A0, A1, . . . yielding pop-
ulation vector n(t) = At−1 · · ·A0n(0) and population size N(t) = ‖At−1 · · ·A0n(0)‖. Under
general conditions (see [2, 3]), there exists a deterministic stochastic growth rate λs defined
by

log λs = lim
t→+∞

1

t
log N(t) = lim

t→+∞

1

t
log ‖At−1 · · ·A0n(0)‖ .

Denoting by λ1 the largest eigenvalue of the average matrix A, Tuljapurkar obtains the
approximation

log λs ≈ log λ1 −
τ 2

2λ2
1

+
θ

λ2
1

where τ 2 is proportional to the variance E[(At − A) ⊗ (At − A)] (and θ is related to auto-
correlation). In this case, environmental stochasticity reduces the mean growth rate of the
population.

1.3 A quest for generic results

The two above cases show that environmental noise has an ambiguous impact on population
size in matrix population models. Our main objective is contributing to clarify this impact
with generic mathematical results. For this, we shall first introduce in Sect. 2 a tool to mea-
sure variability, distinct from the widely used variance or coefficient of variation, and known
as convex partial orders. Then, in Sect. 3, we shall provide generic results on environmental
noise variability in population dynamics matrix models. We conclude in Sect. 4 by pointing
out proximities and differences between our approach and those presented in Sect. 2.

2 Convex orders as tools for measuring variability

To a (square integrable) random variable X, one can attach the variance var(X). This latter
scalar measures “variability”, and any pair of random variables X and Y may be compared,
with X being more variable than Y if var(X) ≥ var(Y ). The variance thus defines a total

order.
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Other orders are interesting for comparing pairs of random variables. However, they are
generally not total: not all pairs may be ranked. Related to this is the fact that no single
scalar, such as variance, may be attached to a random variable to measure its variability. In
this vein, we shall present the so-called increasing convex and convex stochastic orders. Such
orders can only rank random variables for which the primitives of their respective repartition
functions never cross.

We think that these orders and many others referenced in the two main books [4, 5] may
be useful in the ecological modelling scientific community. Of course, for this, practical tests
must be developed to compare empirical data as to their variability. This is not the object
of this paper.

All random variables are defined on a probability space with probability P. To a random
variable X, we shall attach its (right-continuous) repartition function F (x) = P(X ≤ x).
We shall always consider random variables with finite means, with generic notation X and
Y , and F and G for their respective repartition functions.

2.1 Increasing convex order

The increasing convex order compares random variables according both to their “location”
and to their “variability” or “spread” [5]. We say that X is less than Y in increasing convex

order, denoted by
X �icx Y ,

if and only if one of the following equivalent conditions holds true

• the primitive of the repartition function of X is always below that of Y :
∫ c

−∞
F (x)dx ≤

∫ c

−∞
G(x)dx, for all c ∈ R,

• E(ϕ(X)) ≤ E(ϕ(Y )) for all increasing and convex function ϕ.

Roughly speaking, Y is more likely to take on extreme values than X. In a sense, X is
both “smaller” and “less variable” than Y [5]. We have the important property that, when
X �icx Y , the means are ordered too: E(X) ≤ E(Y ). However, nothing can be said of the
variances. To compare variances, we need a stronger (more demanding) order.

2.2 Convex order

The convex order compares random variables according to their “variability” or “spread”
[5]. We say that X is less than Y in convex order, denoted

X �cx Y ,

if and only if one of the following equivalent conditions holds true:

• the means are equal and the primitive of the repartition function of X is always below
that of Y , that is, E(X) = E(Y ) and X �icx Y ,
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Figure 1: Illustration of the convex order: the primitives of the repartition functions do not
cross each other

• E(ϕ(X)) ≤ E(ϕ(Y )) for all convex function ϕ.

Roughly speaking, Y is more likely to take on extreme values than X (see Figure 1). Notice
that the convex order is more demanding than the increasing convex order since the class
of “test functions” is larger: all convex functions and not only the increasing convex ones.
This is why we obtain stronger important properties that, when X �cx Y , the means are
equal E(X) = E(Y ), and the variance are ordered var(X) ≤ var(Y ).

2.3 Some properties

• This icx and cx orders are stricter than the order defined by comparing variances: not
all pairs of random variables may be ranked.

• Consider the class Mµ,σ2 of random variables having same mean µ and variance σ2.
Elements of Mµ,σ2 cannot be compared with respect to cx. Indeed, if X �cx Y and
var(X) = var(Y ), then X and Y have the same distribution [4, p.57].

• Adding zero mean independent noise to a random variable increases variability: if Z
is independent of X and has zero mean, then X is less than Y = X + Z in convex
order. This is a consequence of Strassen’s Theorem [4, p.23]. More generally, without
assuming independence, X is less than Y = X + Z in convex order whenever the
conditional expectation E[Z|X] = 0.

• Consider X following Normal distribution N (µ, σ2) and Y following N (ν, τ 2). Then,
X �icx Y if and only if µ ≤ ν and σ2 ≤ τ 2, and X �cx Y if and only if µ = ν and
σ2 ≤ τ 2 [4, p.62].

• For p > 0, let us introduce CVp(X) := E(Xp)1/p

E(X)
for positive p-integrable random vari-

able X. For p = 2, we have the usual coefficient of variation CV(X) = CV2(X) =
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√

E(X2)/E(X). If X �cx Y , then CV2(X) ≤ CV2(Y ) (in fact CVp(X) ≤ CVp(Y ) for
all p ≥ 1).

2.4 Increasing convex order and convex order for random vectors

We shall need to compare not only random variables but random vectors as in [4, p.98] and
[5, p.323]. For this, we can no longer appeal to repartition functions. Let X = (X1, . . . , Xn)
and Y = (Y1, . . . , Yn) be random vectors with finite mean.

We say that X is less than Y in increasing convex order, written X �icx Y , if and only
if E(ϕ(X1, . . . , Xn)) ≤ E(ϕ(Y1, . . . , Yn)) for any increasing convex function ϕ : R

n → R.
We say that X is less than Y in convex order, written X �cx Y , if and only if E(ϕ(X1, . . . , Xn)) ≤

E(ϕ(Y1, . . . , Yn)) for any convex function ϕ : R
n → R. In this case, X and Y have the same

mean.

Consider X following Normal distribution N (µ, Σ) and X ′ following N (µ′, Σ′). Then,
X �cx X ′ if and only if µ = µ′ and Σ′ − Σ is non-negative definite. The situation is not
as clear cut for the icx order. If µX ≥ µY and ΣX − ΣY > 0 (non-negative definite), then
X �icx Y . If X �icx Y , then µX ≥ µY and aT (ΣX −ΣY )a ≥ 0 for all vector a ≥ 0 [4, p.100].

3 Generic results on environmental noise variability in

population dynamics matrix models

In what follows, we shall consider a population described at discrete times t = 0, . . . , T (where
T is the horizon), either by a scalar n(t) ∈ R or by a vector n(t) =

(

n1(t), . . . , nn(t)
)

∈ R
n

which may be abundances at ages or stages. The population size is N = ‖n‖ = n1 + · · ·+nn.
The dynamical evolution of the population is supposed to be linear in the sense that

n(t + 1) = A
(

ε(t)
)

n(t) , t = 0, . . . , T − 1 , (1)

where the matrix A is independent of n(t) (no density-dependence effect, this is why we label
such model of linear). On the other hand, the components Aij of the matrix A may depend
on the environmental factors, a vector ε(t) =

(

ε1(t), . . . , εp(t)
)

∈ R
p at time t.

For instance, the components of the matrix A may depend linearly on the environmental
factors, as in the expression

A
(

ε
)

=





A11 + ε11 · · · A1n + ε1n

· · · · · · · · ·
An1 + εn1 · · · Ann + εnn



 (2)

or may depend exponentially as in

A
(

ε
)

=





exp
(

A11 + ε11

)

· · · exp
(

A1n + ε1n

)

· · · · · · · · ·
exp

(

An1 + εn1

)

· · · exp
(

Ann + εnn

)



 . (3)
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In this latter case, the components of the matrix A are log-convex function of the environ-
mental factors. Recall that f is a log-convex function if f > 0 and log f is convex. Otherwise
stated, f is the exponential of a convex function (as a consequence, a log-convex function is
also convex).

In [6], different non linear models are recalled. When α = 0, they are matrix models
without density-dependency. Model (2a) exhibits components which are exponential in the
environmental factor, while they are linear in models (2c) and (2d). Calculation shows that
model (2b) has matrix components which are log-convex functions of the environmental
factor.

We shall coin environmental scenario a temporal sequence ε(·) =
(

ε(0), . . . , ε(T − 1)
)

of
environmental factors.

Proposition 1 Consider two environmental scenarii, one being more variable in increasing

convex order than the other:
(

εM(0), . . . , εM(T − 1)
)

�icx

(

εL(0), . . . , εL(T − 1)
)

. Denote by

NM (T ) = ‖A
(

εM(T −1)
)

· · ·A
(

εM(0)
)

n(0)‖ and NL(T ) = ‖A
(

εL(T −1)
)

· · ·A
(

εL(0)
)

n(0)‖
the corresponding populations sizes.

Assume that the components Aij(ε1, . . . , εp) of the matrix A in (1) are nonnegative com-

binations of log-convex functions of the environmental factor (ε1, . . . , εp). Then, the more

variable the scenario, the more variable the population size in the sense that

NM (T ) �icx NL(T ) and log NM(T ) �icx log NL(T ) . (4)

As a consequence, E
(

NM(T )
)

≥ E
(

NL(T )
)

and E
(

log NM(T )
)

≥ E
(

log NL(T )
)

.

In a sense, environmental variability increases both mean population size and mean log-

population size and makes them more variable.

Proof. The components of the vector n(T ) = A
(

ε(T −1)
)

· · ·A
(

ε(0)
)

n(0) are sums of products
of nonnegative combinations of log-convex functions of the environmental scenario. Therefore, by a
property of log-convex functions [7], the components of the vector n(T ) are also log-convex functions
of the environmental scenario, and so is the population size. Thus, the logarithm log N(T ) of the
population size is convex in

(

ε(0), . . . , ε(T − 1)
)

. For any increasing convex function ϕ : R → R,
ϕ
(

log N(T )
)

is convex in
(

ε(0), . . . , ε(T − 1)
)

since convexity is preserved by left-composition
with an increasing convex function. We end up by using the definition of increasing convex order
for random vectors in §2.4: E

[

ϕ
(

log NM (T )
)]

≥ E
[

ϕ
(

log NL(T )
)]

. This precisely means that
log NM (T ) �icx log NL(T ).

Since a log-convex function is also convex, the population size n(T ) is a sum of convex functions
of the environmental scenario. Then, the proof follows as above.

At last, we use the property that X �icx Y ⇒ E(X) ≥ E(Y ) to compare the means.

2

Instead of total population, the result would still hold true with any positive weighted
combination a1n1 + · · ·+ aknk where ai ≥ 0, or with log(a1n1 + · · ·+ aknk) where ai ≥ 0,

As an illustration, consider the following scalar dynamic equation for population size
n(t+1) = exp

(

r+ε(t)
)

n(t) , for which we have n(T ) = exp
(

rT +ε(0)+ · · ·+ε(T −1)
)

n(0) .
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Hence, both n(T ) and log n(T ) are convex functions of the environmental scenario ε(·) =
(ε(0), . . . , ε(T − 1)), so that environmental variability increases mean population size as
may be seen in Figure 2. Indeed, the mean population size generated by a more variable
environment is above the one by a less variable environment, for all times.
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Figure 2: Environmental variability increases mean population size for a population model
where growth rate depends exponentialy on environmental factor

4 Conclusion

We have used another notion of variability than the widely used variance or coefficient of
variation, namely the so-called convex orders. We think that such partial orders may be of
interest in theoretical ecology beyond this specific application.

To compare our approach with the literature, notice that, though we consider matrix pop-
ulation models, we make no ergodic assumption on the stochastic process A0, A1, . . . However,
we make separate assumptions, on the one hand on the environmental factors ε(0), . . . , ε(t)
and, on the other hand, on the functional dependence At = A

(

ε(t)
)

.
With this approach, we obtain generic results which are not asymptotic in time, but valid

at any time t and for a large class of functional dependence on the uncertainties.
Though the approach is different, our conclusions are consistent with the cases presented

in Sect. 2. We extend the observation of Lande that, when adding environmental noise to
growth rate on the log scale, environmental stochasticity increases the mean multiplicative
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growth rate to matrix models. As to Tuljapurkar’s asympotic approximation, we arrive at
a different conclusion because his assumptions correspond to a matrix A depending linearly
on the environmental factors as in (2), and our result does not cover this case.

Our general conclusion is, therefore, that the analytical dependence on environmental
factors cannot be overlooked when trying to tackle the influence of variability. However,
as shown in this paper, specific analytical dependence coupled with appropriate notion of
variability lead to wide generic results, valid for all times and not only asymptotically, and
requiring no assumptions of stationarity, of normality, of independency, etc.
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