

Group sequencing:

- is a scheduling method;
- describes a set of schedules;
- guarantees a minimal quality corresponding to the worst case.
- A best-case evaluation of a group sequence could be interesting.

Group sequencing:

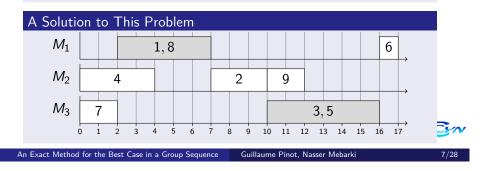
- provides sequential flexibility during the execution of the schedule;
- guarantees a minimal quality corresponding to the worst case.

To manage sequential flexibility, usage of "groups of permutable operations."

4/28

i: the index of the operations, $\Gamma^{-}(i)$: the set of the predecessors of O_{i} , m_i : the resource needed by O_i , p_i : the processing time needed by O_i .

А	A Job Shop Problem										
	i	1	2	3	4	5	6	7	8	9	
	$\Gamma^{-}(i)$	Ø	{1}	{2}	Ø	{4}	{5}	Ø	{7}	{8}	
	mi	M_1	M_2	M_3	M_2	M_3	M_1	M_3	M_1	M_2	
	pi	3	3	3	4	3	1	2	2	2	



Why is Group Sequencing Interesting?

Why is group sequencing interesting?

- predictive reactive method;
- flexibility on sequences;

Group Sequencing

• widely studied in the last twenty years: [Erschler and Roubellat, 1989, Wu et al., 1999, Artigues et al., 2005];

Lower Bounds

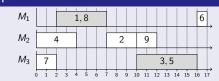
- no need to model the uncertainties:
- the method is able to absorb some uncertainties: [Wu et al., 1999, Esswein, 2003, Pinot et al., 2007];
- evaluation of the group sequence in the worst case in polynomial time for minmax regular objectives as C_{max} and L_{max}.

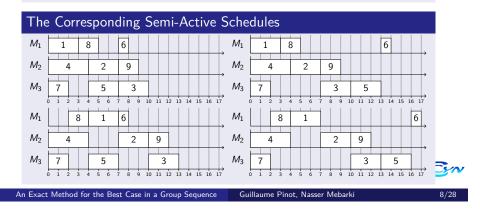
The best-case evaluation of a group sequence could be usefull.

9/28

Execution of the Example

The Group Sequence





Lower Bounds The Best Case Completion time of an Operation

$$\begin{cases} \theta_i = \max\left(r_i, \gamma_{g^-(i)}, \max_{j \in \Gamma^-(i)} \chi_j\right) \\ \chi_i = \theta_i + p_i \\ \gamma_{g_{\ell,k}} = C_{\max} \text{ of } 1|r_i|C_{\max}, \forall O_i \in g_{\ell,k}, r_i = \theta_i \end{cases}$$

- θ_i Best case lower bound for starting time of O_i
- χ_i Best case lower bound for completion time O_i
- $\gamma_{g_{\ell,k}}$ Lower bound for the completion time of $g_{\ell,k}$

It can be used to calculate a lower bound for any objective.

$$LB(L_{\max}) = \max_{\forall O_i} L_i(\chi_i) = \max_{\forall O_i} (\chi_i - d_i)$$

Makespan Lower Bound

Classical job-shop lower bound: one-machine-problem relaxation [Carlier, 1982] on each machine.

The one-machine-problem relaxation require some tools:

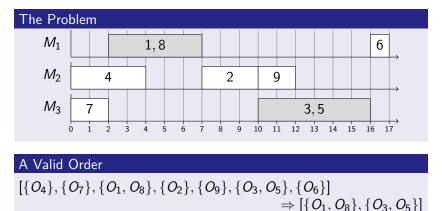
- a head for each operations: θ_i ;
- a tail for each operations: a reversed θ_i .

For group sequencing the relaxation is done on groups instead of machines (more subproblems, but smaller).

Solving the one-machine problems is done using the exact Carlier's algorithm [Carlier, 1982].



Enumerating active schedules group by group (according to the precedence graph):



Group Sequencing	Lower Bounds	The Exact Method	Conclusion

Presentation

An exact method to find the optimal solution for any regular objective.

This method is a branch and bound algorithm:

- the branching procedure is based on active schedules;
- lower bound presented before.

The completion time of an operation interfere with the objective function:

- the completion time, because the objective function is a function of the completion times;
- by interfering with the completion time of the other operations, because of precedence constraints or resource constraints.

A sufficient condition for the sequencing of an entire group without losing the optimal solution is:

- the sequencing does not degrade the objective function;
- the sequencing does not interfere on the earliest starting time of the operations with successor constraints and resource constraints.

Introduction	Group Sequencing	Lower Bounds	The Exact Method	Experiments	Conclusion
Example					

The group sequence: sequencing $\{1, 8\}$								
M ₁ 1	8 6							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
The corresponding one machine problem i r_i p_i \tilde{d}_i 10348227	 The solution [1; 8]: do not modify the starting time of the predecessors; do not modify the <i>makespan</i>. ⇒ this group can be sequenced without losing the optimal solution. 							
An Exact Method for the Best Case in a G	roup Sequence Guillaume Pinot, Nasser Mebarki 17/28							
Introduction Group Sequencing Protocol	Lower Bounds The Exact Method Experiments Conclusion							

Instances : 1a01 to 1a40 from [Lawrence, 1984]. For each instances, we generate a group sequence with

- a known optimal makespan[Brucker et al., 1994];
- a very high flexibility [Esswein, 2003].

Different variants:

- Default :
 - the sufficient condition is used;
 - best-bound search is used until 1000 nodes are stored.
- Deep search: same as Default with deep search;
- No sufficient condition: same as Default without using the sufficient condition.

Introduction	Group Sequencing	Lower Bounds	The Exact Method	Experiments	Conclusion
C 1.	<u> </u>				

Searching Strategies

Exploring the search tree:

- Deep first:
 - Avantage: small amound of memory needed;
 - Drawback: a bad decision can be costy.
- Best bound first:
 - Avantage: no bad decision possible;
 - Drawback: lots of memory needed.

Selected solution: best bound first, then, when a given amound of nodes is stored, deep first.

An Exact Method for the Best Case in a Group Sequence Guillaume Pinot, Nasser Mebarki 18/28 Introduction Group Sequencing Lower Bounds The Exact Method Experiments Conclusion

Results

Results of Default by size:

- Instances with 5 machines : < 1s;
- 10 × 10 et 15 × 10: < 1min (except la24: 14min);
- 30 × 10: < 4s;
- 20 \times 10 and 15 \times 15: 4 not solved in 24h on 10.

Comparison of Default with the other variants:

- Deep search:
 - in average 20 times slower;
 - faster on 4 instances of size 10×10 ;
- No sufficient condition:
 - in average 3 times slower;
 - never better;
 - 28 times slower on la17.

Conclusion

An exact method solving the best-case in a group sequence:

- for every regular objective;
- uses a lower bound based on the one-machine relaxation:
- enunerates active schedules:
- uses a dedicated method to reduce the search space.

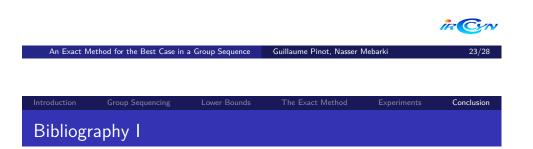
An Exact Method for the Best Case in a Group Sequence: Application to a General Shop Problem

Guillaume Pinot Nasser Mebarki

IRCCvN - UMR CNRS 6597 Nantes, France firstname.lastname@irccyn.ec-nantes.fr

INCOM 2009

Guillaume Pinot, Nasser Mebarki



- Artigues, C., Billaut, J.-C., and Esswein, C. (2005). Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research, 165(2):314-328.
- Brucker, P., Jurisch, B., and Sievers, B. (1994). A branch and bound algorithm for the job-shop scheduling problem.

Discrete Applied Mathematics, 49(1-3):107–127.

Carlier, J. (1982). The one-machine sequencing problem.

European Journal of Operational Research, 11(1):42–47.

An Exact Method for the Best Case in a Group Sequence

An Exact Method for the Best Case in a Group Sequence Guillaume Pinot, Nasser Mebarki 24/28

Conclusion

Conclusion

Bibliography III

Results for the Hard Instances After 24h of Computation

Pinot, G., Cardin, O., and Mebarki, N. (2007).

A study on the group sequencing method in regards with transportation in an industrial FMS. In Proceedings of the IEEE SMC 2007 International

Conference.

Wu, S. D., Byeon, E.-S., and Storer, R. H. (1999). A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness. Operations Research, 47(1):113–124.

Size	Inst.	Opt.	LB	Nodes	UB	Nodes	Tot. Nodes
20 imes 10	la27	1252*	1235	0	1279	5150695	9500000
20 imes 10	la29	1202	1202	3836	1221	10343	10000000
20 imes 10	la30	1355	1355	0	1359	2911199	12500000
15 imes15	la37	1397	1397	2	1412	7623146	9700000

IR CYN

An Exact Method for the Best Case in a Group Sequence Guillaume Pinot, Nasser Mebarki 27/28

An Exact Method for the Best Case in a Group Sequence Guillaume Pinot, Nasser Mebarki

IR CS

28/28