

Group sequencing:

- is a scheduling method;
- describes a set of schedules;
- guarantees a minimal quality corresponding to the worst case.
- A best-case evaluation of a group sequence could be interesting.

Group sequencing:

- provides sequential flexibility during the execution of the schedule;
- guarantees a minimal quality corresponding to the worst case.

To manage sequential flexibility, usage of "groups of permutable operations."

Group Sequencing Example: a Job Shop Problem

i: the index of the operations, $\Gamma^{-}(i)$: the set of the predecessors of O_{i} , m_i : the resource needed by O_i , p_i : the processing time needed by O_i .

A	A Job Shop Problem										
	i	1	2	3	4	5	6	7	8	9	
	$\Gamma^{-}(i)$	Ø	{1}	{2}	Ø	{4}	{5}	Ø	{7}	{8}	
	m _i	M_1	M_2	M_3	M_2	M_3	M_1	M_3	M_1	M_2	
	pi	3	3	3	4	3	1	2	2	2	

Lower Bounds

Why is Group Sequencing Interesting?

Why is group sequencing interesting?

- predictive reactive method;
- flexibility on sequences;

Group Sequencing

- widely studied in the last twenty years: [Erschler and Roubellat, 1989, Wu et al., 1999, Artigues et al., 2005]
- no need to model the uncertainties:
- the method is able to absorb some uncertainties: [Wu et al., 1999, Esswein, 2003, Pinot et al., 2007];
- evaluation of the group sequence in the worst case in polynomial time for minmax regular objectives as C_{max} and L_{max}.

The best-case evaluation of a group sequence could be usefull.

Execution of the Example

The Group Sequence

The Best-Case Completion Time Lower Bounds

Algorithms

Intuitive Formulation

$$\begin{cases}
\theta_i = \max\left(r_i, \max_{j \in g^-(i)} \chi_j, \max_{j \in \Gamma^-(i)} \chi_j\right) \\
\chi_i = \theta_i + p_i
\end{cases}$$

Improved Formulation $\theta_i = \max\left(r_i, \gamma_{g^-(i)}, \max_{i \in \Gamma^-(i)} \chi_j\right)$

$$\chi_i = \theta_i + p_i$$

$$\gamma_{g_{\ell,k}} = C_{\max} \text{ of } 1|r_i|C_{\max}, \forall O_i \in g_{\ell,k}, r_i = \theta_i$$

- θ_i Lower bound of the starting time of O_i
- χ_i Lower bound of the completion time of O_i
- $\gamma_{g_{\ell,k}}$ Lower bound of the completion time of $g_{\ell,k}$

The Problem							
	i	$\Gamma^{-}(i)$	mi	pi	g(i)		
	1	Ø	M_1	1	g 1,1		
	2	$\{1\}$	M_2	2	g 2,1		
	3	Ø	M_1	3	g 1,1		
	4	{3}	M_2	2	g 2,1		
	5	Ø	M_1	1	g 1,2		
	6	{5}	M_2	1	g 2,2		

Lower Bounds Makespan Lower Bound

Classical job-shop lower bound: one-machine-problem relaxation [Carlier, 1982] on each machine.

The one-machine-problem relaxation require some tools:

- a head for each operations: θ_i ;
- a tail for each operations: a reversed θ_i .

For group sequencing the relaxation is done on groups instead of machines (more subproblems, but smaller).

Solving the one-machine problems:

- using Jackson Preemptive Schedule: JPS OMP LB;
- using the exact Carlier's algorithm [Carlier, 1982]: Optimal OMP LB.

12/24

It can be used directly to compute a lower bound of the group sequence:

$$LB(L_{\max}) = \max_{\forall O_i} L_i(\chi_i) = \max_{\forall O_i} (\chi_i - d_i)$$
$$LB(C_{\max}) = \max_{\forall g_{\ell,k}} \gamma_{g_{\ell,k}}$$
(Natural LB)

Best-Case Lower Bounds in a Group Sequence Guillaume Pinot, Nasser Mebarki 14/24

Lower Bounds Experiments Gaps

Instances : 1a01 to 1a40 from [Lawrence, 1984]. For each instances, we generate a group sequence with

- a known optimal makespan[Brucker et al., 1994];
- a very high flexibility [Esswein, 2003].

Other results

Computation times:

time(Optimal OMP LB) \simeq time(JPS OMP LB) $\simeq 2 \times$ time(Natural LB)

In an exact method using these lower bounds:

 $10 \times time(exact(Optimal OMP LB)) \simeq time(exact(JPS OMP LB))$

roduction	Group Sequencing	The Best-Case Completion Time	Lower Bounds	Experiments	Conclusion
	_				

Conclusion

We have proposed:

- different lower-bound tools;
- lower bounds.

They can be used directly:

- more complet description of a group sequence in its globality;
- its usage in a decision support system gives additional information to the operator.

These tools can also be usefull in:

- heuristics;
- exact methods.

Thank you for your attention.

 Artigues, C., Billaut, J.-C., and Esswein, C. (2005).
 Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research, 165(2):314–328.

Brucker, P., Jurisch, B., and Sievers, B. (1994).
 A branch and bound algorithm for the job-shop scheduling problem.
 Discrete Applied Mathematics, 49(1-3):107-127.

Carlier, J. (1982).

The one-machine sequencing problem. European Journal of Operational Research, 11(1):42–47.

Introduction Group Sequencing The Best-Case Completion Time Lower Bounds Experiments Conclusion

Bibliography II

 Erschler, J. and Roubellat, F. (1989). An approach for real time scheduling for activities with time and resource constraints. In Slowinski, R. and Weglarz, J., editors, *Advances in project scheduling*. Elsevier.
 Esswein, C. (2003). Un apport de flexibilité séquentielle pour l'ordonnancement robuste. Thèse de doctorat, Université François Rabelais Tours.

Lawrence, S. (1984).

Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques (supplement). Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Guillaume Pinot, Nasser Mebarki Best-Case Lower Bounds in a Group Sequence 23/24

ntroduction Group Sequencing The Best-Case Completion Time Lower Bounds Experiments **Conclusion**

Bibliography III

- Pinot, G., Cardin, O., and Mebarki, N. (2007).
 A study on the group sequencing method in regards with transportation in an industrial FMS.
 In Proceedings of the IEEE SMC 2007 International Conference.
- Wu, S. D., Byeon, E.-S., and Storer, R. H. (1999).
 A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness.
 Operations Research, 47(1):113–124.

Guillaume Pinot, Nasser Mebarki Best-Case Lower Bounds in a Group Sequence 24/24