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Online EM Algorithm for Hidden Markov Models

Olivier Cappé

LTCI, TELECOM ParisTech & CNRS

Abstract

This paper is about the estimation of fixed model parameters in hidden Markov models us-
ing an online (or recursive) version of the Expectation-Maximization (EM) algorithm. It is first
shown that under suitable mixing assumptions, the large sample behavior of the traditional
(batch) EM algorithm may be analyzed through the notion of a limiting EM recursion, which
is deterministic. This observation generalizes results previously obtained for latent data model
with independent observations. By using the recursive implementation of smoothing compu-
tations associated with sum functionals of the hidden state, it is then possible to propose an
online EM algorithm that generalizes an approach recently proposed in the case of HMMs with
finite-valued observations. The performance of the proposed algorithm is numerically evaluated
through simulations in the case of a noisily observed Markov chain.

Keywords Hidden Markov Models, Expectation Maximization Algorithm, Online Estima-
tion, Recursive Estimation, Stochastic Approximation

1 Introduction

Hidden Markov modelling certainly constitutes one the contributions of statistical time series
analysis which has had the most profound practical impact in the latest forty years. Hidden
Markov models (HMMs) in their simplest form (i.e. when the state variable is finite) are sufficiently
simple to give rise to efficient inference procedures while allowing for useful modelling of a wide
range of situations. Ever since the pioneering contributions of Baum and Eagon (1967), Baum
et al. (1970), the EM (Expectation-Maximization) algorithm has been the method of choice for
parameter inference in HMMs. The EM algorithm is a dedicated numerical optimization routine
which aims at maximizing the (log) likelihood of a batch of observations. It tends to be preferred
to its alternatives due to its robustness and ease of application in various scenarios, especially in
cases where the model parameters are constrained.

This contribution is devoted to online parameter estimation for HMMs, in which the available
observations are only scanned once and never stored, allowing for a continuous adaptation of the
parameters along a potentially infinite data stream. In the case of HMMs, online parameter esti-
mation is a challenging task due to the non-trivial dependence structure between the observations.
The EM-inspired methods proposed so far have been either based on finite-memory approximations
of the required smoothing computations (Krishnamurthy and Moore, 1993) or on finite-memory
approximations of the data log-likelihood itself (Rydén, 1997). An alternative consists in using
gradient-based methods (Le Gland and Mevel, 1997) which do not directly follow the principles of
the EM algorithm. Recently, Mongillo and Denève (2008) proposed an online version of the EM
algorithm for HMMs in the case where both the states and observations take a finite number of
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values. The key ingredient of this algorithm is a recursion which allows for data recursive compu-
tation of smoothing functionals required by the EM algorithm. However, this recursion appears
to be very specific and its potential application to more general types of HMMs is not considered
in Mongillo and Denève (2008).

The purpose of this paper is to build on the idea of Mongillo and Denève (2008) in light of
the framework introduced in Cappé and Moulines (2009) for online EM estimation in the case of
independent observations. The framework of Cappé and Moulines (2009) is first extended to the
case of HMMs by exhibiting a limiting, or population-based, EM algorithm, corresponding to the
case of infinitely many observations. The existence of the limiting EM algorithm does provide
fruitful insights on the behavior of EM for ergodic HMMs when the number of observations gets
large. However, and in contrast to the case of independent observations considered in Cappé and
Moulines (2009), approximating the limiting EM algorithm with an online sample-based stochastic
approximation algorithm turns out to be a difficult task for HMMs. The second contribution of
the paper consists in recognizing the recursion of Mongillo and Denève (2008) as an instance of
the the recursive smoothing schemes for sum functionals described, among others, by Zeitouni and
Dembo (1988), Elliott et al. (1995), Cappé et al. (2005). This observation makes it possible to
propose a generic online EM framework for HMMs with finite state-space.

The paper opens with a brief review of online EM in the case of independent observations. The
main results, that is, the existence of a limiting EM recursion in the case of HMMs (Theorem 1)
and the online procedure (Algorithm 1) which generalizes the algorithm of Mongillo and Denève
(2008) are exposed in Section 3. Finally, Section 4 is about the application of the proposed
procedure in the specific example of a Markov chain observed in Gaussian white noise.

2 Online EM in the Independent Case

2.1 Fisher Relation and the Limiting EM Algorithm

Consider the case of an i.i.d. (independently and identically distributed) missing data model,
where (Yt)t∈Z denote the observation sequence and (Xt)t∈Z are the associated latent (or unob-
servable) variables, hereafter referred to as states. The joint probability density function (pdf)
of Xt and Yt is denoted by pθ(xt, yt) and ℓθ(yt) is the marginal pdf, or likelihood, associated to
the observation, where θ denotes the model parameter. In the following, it is assumed that the
observation sequence is distributed under an actual unknown parameter value θ⋆ (although the
case where this assumption is relaxed has also been analyzed in Cappé and Moulines, 2009).

Under suitable regularity assumptions, it is well known that the normalized maximum-likelihood
criterion 1

n

∑n
t=1 log ℓθ(Yt) tends, Pθ⋆

almost surely, to the limiting contrast −K(ℓθ⋆
‖ℓθ), where

K(q1‖q2) =
∫

log q1

q2
(y)q1(y)dy denotes the Kullback-Leibler divergence between q1 and q2. Sim-

ilarly, the intermediate quantity of EM, 1
n

∑n
t=1 Eθ[log pθ′(Xt, Yt)|Yt] tends to the deterministic

limit Eθ⋆
[Eθ(log pθ′(Xt, Yt)|Yt)]. The limiting EM algorithm thus consists of

E-step compute Eθ⋆
[Eθk

( log pθ(X0, Y0)|Y0)] ;

M-sep set θk+1 = arg max
θ∈Θ

Eθ⋆
[Eθk

( log pθ(X0, Y0)|Y0)] . (1)

It is straightforward to show that, as in the usual EM algorithm, each iteration of the limiting
EM algorithm decreases the target criterion, that is K(ℓθ⋆

‖ℓθk+1
) ≤ K(ℓθ⋆

‖ℓθk
). Convergence of

the limiting EM recursion to the set the stationary points of the limiting contrast K(ℓθ⋆
‖ℓθ) can

be proved using the so-called Fisher identity (see discussion of Dempster et al., 1977):

∇θ log ℓθ(Y0) = Eθ [∇θ log pθ(X0, Y0)|Y0] , (2)
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where ∇ denotes the gradient operator. The Fisher identity implies that Eθ⋆
[Eθ (∇θ log pθ(X0, Y0|Y0)]

and Eθ⋆
[∇θ log ℓθ(Y0)] coincide and, hence, that stationary points of the limiting EM mapping are

also such that ∇K(ℓθ⋆
‖ℓθ) = 0.

2.2 Exponential Families and the Sufficient Statistics Reparameterization

In general, the algorithm in (1) is not very explicit and is mostly useful in case where the joint
pdf pθ belongs to an exponential family:

pθ(x, y) = h(x, y) exp (〈ψ(θ), s(x, y)〉 −A(θ)) ,

where 〈·〉 denotes the scalar product, s(x, y) are the (complete-data) sufficient statistics and A(θ)
is the log-partition function. Furthermore assume that the equation 〈∇θψ(θ), s〉 − ∇θA(θ) = 0
has a unique solution for all achievable values of s, which is denoted by θ = θ̄(s) (for a canonical
exponential family, where ψ(θ) = θ, this requirement is equivalent to assuming that the Fisher
information matrix is positive definite for all values of θ). Then, the limiting EM algorithm in (1)
may be equivalently rewritten as

θk+1 = θ̄ (Eθ⋆
[Eθk

(s(X0, Y0)|Y0)]) . (3)

The algorithm may also be equivalently written in terms of the sequence of associated sufficient
statistics which are such that θk = θ̄(Sk). Under this reparameterization, the limiting EM algo-
rithm obeys the simple recursion

Sk+1 = Eθ⋆

[

Eθ̄(Sk) (s(X0, Y0)|Y0)
]

, (4)

where the stationary points of K(ℓθ⋆
‖ℓθ) are now more explicitly identified as the roots of the

equation S = Eθ⋆

[

Eθ̄(S) (s(X0, Y0)|Y0)
]

.

2.3 Additive Decomposition and the Stochastic Approximation Algorithm

Of course, the limiting EM algorithm discussed above is not a parameter estimation procedure
as it requires the knowledge of θ⋆. To obtain a practical estimation algorithm, one simply needs
to observe that Eθ⋆

[Eθ (s(X0, Y0)|Y0)] may be estimated consistently from the observations as
1
n

∑n
t=1 Eθ [s(Xt, Yt)|Yt]. The online algorithm is then obtained by using the usual stochastic

approximation (or Robbins-Monro) procedure

Ŝn+1 = γn+1Eθ̄(Ŝn) [s(Xn+1, Yn+1)|Yn+1] + (1 − γn+1)Ŝn , (5)

where (γn) is a decreasing sequence of step-sizes. The principle of (5) has been first exposed by Neal
and Hinton (1999), Sato and Ishii (2000) and latter extended by Sato (2000), Cappé and Moulines
(2009). Cappé and Moulines (2009) analyzed the recursion in (5) to show that, under suitable
assumptions: (i) it is indeed consistent, converging to the stationary points of K(ℓθ⋆

‖ℓθ); (ii) by
properly choosing the rate of decrease of the step-sizes γn and using Polyak-Ruppert averaging (see
also Section 4.3 below), θ̂n+1 = θ̄(Ŝn+1) is an asymptotically efficient estimator of θ⋆. Compared
to gradient algorithms, it is quite remarkable that the algorithm in (5) can achieve asymptotic
efficiency without trying to explicitly estimate the Fisher information matrix. Furthermore, it
can be observed that the choice of performing the stochastic approximation in the domain of the
sufficient statistics rather than in the parameter domain, that is, using (4) rather than (3) is also
most natural given that only (4) may be directly estimated by a running average of properly
selected functions of the observations.
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3 Online EM for HMMs

I now discuss the generalization of the ideas presented above to the case of Hidden Markov mod-
els. Quite surprisingly, there are, under suitable mixing assumptions, direct analogs of the ideas
presented in Sections 2.1 and 2.2. The tricky part consists in finding a suitable replacement for
the stochastic approximation procedure of Section 2.3 which does not apply exactly for HMMs
due to the time dependence.

In this section, it is assumed that the state and observation sequences, (Xt, Yt)t∈Z are generated
under a stationary Hidden Markov model with parameter θ⋆; ℓθ⋆

, pθ⋆
, Pθ⋆

and Eθ⋆
refer to,

respectively, the likelihood, the joint density of the states and observations, the probability, and
,the expectation under this model. In practice, one observes the observation sequence (Yt)t≥0

starting from time 0 only and the postulated initial distribution ν will be be arbitrary; ℓν,θ, pν,θ,
Pν,θ and Eν,θ refer to the same quantity as previously but computed under this second model.
Note that ν is not considered as a model parameter as it cannot be estimated consistently from a
single trajectory (see also Chapters 10 and 12 of Cappé et al., 2005 on this point). Finally, it is
assumed that the state variable takes its values in the finite set X and the state transition matrix
and state conditional pdf that characterize the HMM are denoted, respectively, by qθ(x, x

′) and
gθ(x, y).

3.1 The Limiting EM Algorithm

Under suitable assumptions (see below), the normalized HMM log-likelihood 1
n log ℓν,θ(Y0, . . . , Yn)

converges, Pθ⋆
almost surely and in L1, to the limiting contrast

cθ⋆
(θ) = Eθ⋆

[log ℓθ(Y0|Y−∞:−1)] . (6)

The same is true for the normalized score 1
n∇θ log ℓν,θ(Y0, . . . , Yn) which converges to ∇cθ⋆

(θ).
Such consistency results have been established, under various assumptions, by (among others)
Baum and Petrie (1966), Bickel et al. (1998), Douc et al. (2004). Now, thanks to Fisher identity,
for all n,

1

n
∇θ log ℓν,θ(Y0, . . . , Yn) =

1

n
Eν,θ

[

n
∑

t=1

∇θ log pθ(Xt, Yt|Xt−1)

∣

∣

∣

∣

∣

Y0:n

]

+
1

n
Eν,θ [∇θ log pν,θ(X0, Y0)|Y0:n] . (7)

For simplicity, the last term on the right-hand, whose influence is clearly vanishing with increasing
values of n, will not be considered in the following. Hence, the consistency result for the score
function combined with (7) implies that 1

nEν,θ [
∑n

t=1 ∇θ log pθ(Xt, Yt|Xt−1)|Y0:n] also converges
Pθ⋆

almost surely to ∇θcθ⋆
(θ), the gradient of the limiting contrast.

To obtain an alternative representation of this limit, assume that both qθ and gθ belongs to
exponential families such that

qθ(x, x
′) = hq(x, x′) exp

(

〈ψq(θ), sq(x, x′)〉 −Aq(θ)
)

,

gθ(x, y) = hg(x, y) exp (〈ψg(θ), sg(x, y)〉 −Ag(θ)) . (8)

Note that under our assumption that X is finite, the first requirement is always satisfied.
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For the sake of conciseness, I will adopt in the rest of Section 3 a condensed representation
–which is also slightly more general than the HMM case– by assuming that the joint state and
observation conditional density pθ(xt, yt|xt−1) belongs to an exponential family such that

pθ(xt, yt|xt−1) = h(xt, yt) exp (〈ψ(θ), s(xt−1, xt, yt)〉 −A(θ)) , (9)

where h(x, y) = hq(x, x′)hg(x, y), A(θ) = Aq(θ) +Ag(θ) and

ψ(θ) =

(

ψq(θ)
ψg(θ)

)

, s(x, x′, y) =

(

sq(x, x′)
sg(x′, y)

)

.

In this case, the non-vanishing term in the r.h.s. of (7) may rewritten as

1

n
Eν,θ

[

n
∑

t=1

∇θ log pθ(Xt, Yt|Xt−1)

∣

∣

∣

∣

∣

Y0:n

]

=

〈

∇θψ(θ),
1

n
Eν,θ

[

n
∑

t=1

s(Xt−1,Xt, Yt)

∣

∣

∣

∣

∣

Y0:n

]〉

−∇θA(θ) . (10)

The following theorem defines the limiting behavior of the r.h.s. of the above equation, and thus,
the limiting EM algorithm for HMMs (see Appendix A for the corresponding proof).

Theorem 1. Assume that (i) X is a finite set; (ii) the transition matrix is such that qθ(x, x
′) ≥

ǫ > 0 for all θ ∈ Θ; (iii) supθ supy ḡθ(y) < ∞ and Eθ⋆
[|log infθ ḡθ(Y0)|] < ∞, where ḡθ(y) =

∑

x gθ(x, y); (iv) the parameter space Θ is compact and θ⋆ ∈ interior(Θ); (v) ψq, Aq, ψg, Ag

in (8) are continuously differentiable functions on interior(Θ); and, (vi) the equation 〈∇θψ(θ), s〉−
∇θA(θ) = 0 has a unique solution, which is denoted by θ = θ̄(s).

Then,

1

n
Eν,θ

[

n
∑

t=1

s(Xt−1,Xt, Yt)

∣

∣

∣

∣

∣

Y0:n

]

−→ Eθ⋆
(Eθ [s(X−1,X0, Y0)|Y−∞:∞]) , Pθ⋆

a.s.

and the stationary points of the limiting EM algorithm

θk+1 = θ̄ {Eθ⋆
(Eθk

[s(X−1,X0, Y0)|Y−∞:∞])} (11)

are the stationary points of the limiting likelihood contrast cθ⋆
(θ).

3.2 Online EM

Theorem 1 suggests a principle similar to the case of the i.i.d. mixture model of Section 2.
To obtain an online algorithm however, one needs to be able to estimate consistently the limit
Eθ⋆

(Eθ [s(X−1,X0, Y0)|Y−∞:∞]). The normalized sum 1
nEν,θ [

∑n
t=1 s(Xt−1,Xt, Yt)|Y0:n] is not

directly a candidate as it is well known that it cannot be computed recursively when incorporating
new observations. However, following the idea originally proposed by (Zeitouni and Dembo, 1988,
Elliott et al., 1995), define

φn,ν,θ(x) = Pν,θ (Xn = x|Y0:n) , (12)

ρn,ν,θ(x) =
1

n
Eν,θ

[

n
∑

t=1

s(Xt−1,Xt, Yt)

∣

∣

∣

∣

∣

Y0:n,Xn = x

]

, (13)
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which are such that 1
n

∑

x∈X φn,ν,θ(x)ρn,ν,θ(x) = Eν,θ [
∑n

t=1 s(Xt−1,Xt, Yt)|Y0:n]. The appeal of
this new decomposition being that φn,ν,θ and ρn,ν,θ can be updated recursively as shown by the
following Proposition.

Proposition 1. φn,ν,θ and ρn,ν,θ may be computed according to the recursion

Initialization Compute, for x ∈ X ,

φ0,ν,θ(x) =
ν(x)gθ(x, Y0)

∑

x′∈X ν(x
′)gθ(x′, Y0)

ρ0,ν,θ(x) = 0

Recursion For n ≥ 0, compute, for x ∈ X ,

φn+1,ν,θ(x) =

∑

x′∈X φn,ν,θ(x
′)qθ(x

′, x)gθ(x, Yn+1)
∑

x′,x′′∈X 2 φn,ν,θ(x′)qθ(x′, x′′)gθ(x′′, Yn+1)
(14)

ρn+1,ν,θ(x) =
∑

x′∈X

{

1

n+ 1
s(x′, x, Yn+1)

+

(

1 − 1

n+ 1

)

ρn,ν,θ(x
′)

}

φn,ν,θ(x
′)qθ(x

′, x)
∑

x′′∈X φn,ν,θ(x′′)qθ(x′′, x)
(15)

In Proposition 1 above, the rightmost term in (15) corresponds to the backward retrospec-
tive probability Pν,θ(Xn = x′|Xn+1 = x, Y0:n), which does not depend on the newly available
observation Yn+1. The main argument in proving Proposition 1 is to check that

Pν,θ(Xt = xt,Xt+1 = xt+1|Xn+1 = xn+1, Y0:n+1) =
∑

xn∈X

Pν,θ(Xt = xt,Xt+1 = xt+1|Xn = xn, Y0:n)Pν,θ(Xn = xn|Xn+1 = xn+1, Y0:n)

for all indices 0 ≤ t ≤ n − 1 which implies the claimed result by summation (see Chapter 4 of
Cappé et al., 2005 for a complete proof).

Proposition 1, constitutes a recursive rewriting of the computation required to carry out the
E-step in the batch EM algorithm. By analogy with the case of independent observations, the
proposed online EM algorithm for HMMs takes the following form.

Algorithm 1. Chose a decreasing sequence (γn)n≥1 of step-sizes, which satisfy the usual stochas-

tic approximation requirement that
∑

n≥1 γn = ∞ and
∑

n≥1 γ
2
n < ∞. Also select a parameter

initialization θ̂0 and a minimal number of observations nmin required before performing the first

parameter update.

Initialization Compute, for x ∈ X ,

φ̂0(x) =
ν(x)gθ̂0

(x, Y0)
∑

x′∈X ν(x
′)gθ̂0

(x′, Y0)
,

ρ̂0(x) = 0 .
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Recursion For n ≥ 0,

Compute, for x ∈ X ,

φ̂n+1(x) =

∑

x′∈X φ̂n(x′)qθ̂n
(x′, x)gθ̂n

(x, Yn+1)
∑

x′,x′′∈X 2 φ̂n(x′)qθ̂n
(x′, x′′)gθ̂n

(x′′, Yn+1)
, (16)

ρ̂n+1(x) =
∑

x′∈X

{

γn+1s(x
′, x, Yn+1) + (1 − γn+1)ρ̂n(x′)

} φ̂n(x′)qθ̂n
(x′, x)

∑

x′′∈X φ̂n(x′′)qθ̂n
(x′′, x)

. (17)

If n ≥ nmin, update the parameter according to

θ̂n+1 = θ̄

(

∑

x∈X

ρ̂n+1(x)φ̂n+1(x)

)

,

otherwise, set θ̂n+1 = θ̂n.

3.3 Discussion

Mongillo and Denève (2008) considered, the particular case of finite valued HMMs where the
observations (Yt)t≥1 also take their values in a finite set Y. In such a situation, it is easily checked
that whatever the chosen parameterization of the model (Mongillo and Denève (2008) consider only
parameterization by the sets of conditional probabilities), the complete-data sufficient statistics
can be chosen to be s(Xt−1,Xt, Yt) = (1{Xt−1 = i,Xt = j, Yt = k})(i,j,k)∈X 2×Y . The recursion
derived by Mongillo and Denève (2008) for this case is based on recursively updating the product
τn,ν,θ(x) = φn,ν,θ(x)ρn,ν,θ(x) rather than ρn,ν,θ(x). The probabilistic interpretation of the new

term τn,ν,θ(x) is Eν,θ [ (
∑n

t=1 s(Xt−1,Xt, Yt))1{Xn = x}|Y0:n]. By multiplying (17) by φ̂n+1(x)
and using (16) and , one obtains the following online update

τ̂n+1(x) = γn+1

∑

x′∈X

s(x′, x, Yn+1)
φ̂n(x′)qθ̂n

(x′, x)gθ̂n
(x′, Yn+1)

∑

x′,x′′∈X 2 φ̂n(x′)qθ̂n
(x′, x′′)gθ̂n

(x′′, Yn+1)

+ (1 − γn+1)
∑

x′∈X

τ̂n(x′)
qθ̂n

(x′, x)gθ̂n
(x′, Yn+1)

∑

x′,x′′∈X 2 φ̂n(x′)qθ̂n
(x′, x′′)gθ̂n

(x′′, Yn+1)
, (18)

which coincides with Eqs. (15)-(16) of Mongillo and Denève (2008), for the particular choice of
complete-data sufficient statistics discussed above.

Of course, using either (17) or (18) is practically equivalent. The form of (17) is preferable
from a conceptual point of view as it clearly shows that the new observation Yn+1 only plays
a role in the filter update (16). The limiting behavior of ρ̂n(x) is also expected to be simpler:
From corollary 1 and proceeding as in the proof of Theorem 1, it is easily shown that, for any

x ∈ X , ρn,ν,θ(x) indeed converges Pθ⋆
almost surely to the same fixed limit as that exhibited

in Theorem 1, that is, Eθ⋆
(Eθ [s(X−1,X0, Y0)|Y−∞:∞]). Hence, it is conjectured that ρ̂n(x) will

tends, as n increases, to a limit that is independent of x.
Regarding the choice of the step-size, Mongillo and Denève (2008) consider the cases where,

either, the step-size γn is small but non-decreasing, which may be useful for tracking potential
changes but is not sufficient to guarantee the consistency of the approach, or when γn = 1/n,
which is selected, following Neal and Hinton (1999), by analogy with the batch EM algorithm

7



and its recursive rewriting in Proposition 1. In general however, the choice γn = 1/n is not very
recommendable for a stochastic approximation procedure and step-sizes of the form γn = 1/nγ

with γ in the range 05–0.6 combined with Polyak-Ruppert averaging are preferable (see discussion
in Cappé and Moulines, 2009). This point is illustrated in the numerical simulations of Section 4
below. The role of nmin is only to guarantee that the M-step update is numerically well behaved
(Cappé and Moulines, 2009) and for this purpose, a small value of nmin is usually sufficient (for
instance, nmin = 20 is used in the simulations of Section 4.3).

Regarding the numerical complexity of Algorithm 1, observe that in the case considered by
Mongillo and Denève (2008) where s(Xt−1,Xt, Yt) = (1{Xt−1 = i,Xt = j, Yt = k})(i,j,k)∈X 2×Y ,
s(Xt−1,Xt, Yt) is a vector of dimension |X |2 × |Y| (where | · | denotes the cardinal of the set).
Thus, the numerical complexity of (18) is of order |X |4 × |Y| per observation. For this case,
it is indeed possible to bring down the numerical complexity to the order of |X |4 + |X |3 × |Y|
operations by updating separately the terms corresponding to the two statistics (1{Xt−1 = i,Xt =
j})(i,j)∈X 2 and (1{Xt = j, Yt = k})(j,k)∈X×Y (see the example considered in the next section for
more details). Interestingly, the numerical complexity of the batch EM algorithm for this model,
when implemented using traditional forward-backward smoothing Rabiner (1989), is of the order of
(|X |2 + |X |×|Y|) per observation and per iteration of the EM algorithm. Although, the comparison
is not directly meaningful as the batch EM algorithm does necessitate several iterations to converge
(see numerical illustrations in Section 4.3), it is true that the scaling of the numerical complexity
of the online-EM algorithm with |X | may constitute an hindrance in models with a large number
of states. This being said, the complexity of online gradient-based approaches, is equivalent as the
main burden comes from the necessity of updating, via a recursion related to (17), one coordinate
of the gradient for each of the couples (x, x′) ∈ X 2 (see, e.g., Le Gland and Mevel, 1997). Note
that if the transition matrix is structured —i.e., parametered by a low dimensional parameter
rather than by all its individual entries—, the numerical cost associated to the implementation of
the approach will be reduced to an order of the number of parameters times |X |2.

4 Application to Gaussian HMMs

4.1 HMM with Product Parameterization

For the sake of concreteness, I consider in following the case where the state variables {Xt}t≥0

take their values in the set {1, . . . ,m}. In addition, assume that, as is often the case in practise,
the parameter θ may be split into two sub-components that correspond, respectively, to the state
transition matrix qθ and to the state-conditional densities {gθ(i, ·)}1≤i≤m. In the fully discrete case
considered in Mongillo and Denève (2008) for instance, the parameter θ consist of the transition
matrices qθ and gθ parametered by their respective entries, with the constraint that each line of
a transition matrix must sum to one. In the case of Gaussian HMMs used in speech processing
as well as many in other applications, the parameters are the state transition matrix qθ and
the mean vector and covariance matrix associated with each of the m state-conditional densities
{gθ(i, ·)}1≤i≤m (Rabiner, 1989).

In such a model, there are two distinct types of EM complete data sufficient statistics which
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give rise to two separate forms of the auxiliary function ρn,ν,θ:

ρq
n,ν,θ(i, j, k; θ) =

1

n
Eν,θ

[

n
∑

t=1

1{Xt−1 = i,Xt = j}
∣

∣

∣

∣

∣

Y0:n,Xn = k

]

, (19)

ρg
n,ν,θ(i, k; θ) =

1

n
Eν,θ

[

n
∑

t=0

1{Xt = i}s(Yt)

∣

∣

∣

∣

∣

Y0:n,Xn = k

]

, (20)

where the form of s itself depend on the nature of the state-conditional distribution gθ(x, ·) —see
Gaussian example below. There’s a slight difference between (20) and (13), which is that (20) also
incorporates the initial (t = 0) conditional likelihood term, i.e., the contribution corresponding to
the rightmost term on the r.h.s. of (7). As noted earlier, this difference is minor and does not
modify the long-term behavior of the algorithm.

With these notations, Eq. (17) in Algorithm 1 is implemented as

ρ̂q
n+1(i, j, k) = γn+1δ(j − k)r̂n+1(i|j) + (1 − γn+1)

m
∑

k′=1

ρ̂q
n(i, j, k′)r̂n+1(k

′|k) , (21)

ρ̂g
n+1(i, k) = γn+1δ(i− k)s(Yn+1) + (1 − γn+1)

m
∑

k′=1

ρ̂g
n(i, k′)r̂n+1(k

′|k) , (22)

where δ denotes the Kronecker delta (i.e., δ(i) = 0 iff i = 0) and the notation r̂n+1(i|j) refers to
the approximate retrospective conditional probability :

r̂n+1(i|j) =
φ̂n(i)qθ̂n

(i, j)
∑m

i′=1 φ̂n(i′)qθ̂n
(i′, j)

. (23)

A complete iteration of the online algorithm involves the approximate filter update (16) and
the stochastic approximation statistics updates (21) and (22) followed by an application of the M-
step function θ̄ to Ŝq

n+1(i, j) =
∑m

k=1 ρ̂
q
n+1(i, j, k)φ̂n+1(k) and Ŝg

n+1(i) =
∑m

k=1 ρ̂
g
n+1(i, k)φ̂n+1(k).

The form of the M-step depends on the exact nature of qθ and gθ. If the transition matrix qθ is
parametered simply by its entries, the update is generic and is given by

qθ̂n
(i, j) = θ̄

(

Ŝq
n

)

=
Ŝq

n(i, j)
∑m

j=1 Ŝ
q
n(i, j)

. (24)

For the update of the state-dependent parameters, one needs to be more specific and the form of
the equations depend on the choice of the state conditional density gθ(x, ·). In the multivariate
Gaussian case, the function s has to be chosen such that s(y) consists of the three components
{1, y, yyt}. The corresponding components of the approximated EM extended statistics are de-
noted, respectively, by Ŝg

n,0, Ŝ
g
n,1, Ŝ

g
n,2. If the state conditional Gaussian densities are parametered

by their mean vectors, µθ(i), and covariances matrices, Σθ(i), the M-step update is defined as

µθ̂n
(i) = θ̄

(

Ŝg
n,0, Ŝ

g
n,1

)

=
Ŝg

n,1(i)

Ŝg
n,0(i)

, (25)

Σθ̂n
(i) = θ̄

(

Ŝg
n,0, Ŝ

g
n,1, Ŝ

g
n,2

)

=
Ŝg

n,2(i)

Ŝg
n,0(i)

− µθ̂n
(i)µt

θ̂n

(i) . (26)

The derivation of (24) and (25)–(26) is straightforward but some more details are provided in the
next section for a particular case of Gaussian HMM.
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4.2 Markov Chain Observed in Gaussian Noise

In the numerical experiments described below, I consider the simple scalar model

Yt = Xt + Vt ,

where (Vt) is a scalar additive Gaussian noise of variance υ and (Xt) is a Markov chain with
transition matrix q, which takes its values in the set {µ(1), . . . , µ(m)}. Although simple, this
model is already statistically challenging and is of some importance in several applications, in
particular, as a basic model for ion channels data (Chung et al., 1990) —see also, e.g., (Roberts
and Ephraim, 2008) for discussion of the continuous time version of the model as well de Gunst
et al. (2001), for an up to date account of models for ion channels. The parameter θ is comprised
of the transition matrix q, the vector of means µ and the variance υ.

In this case, the intermediate quantity of the batch EM algorithm may be written, up to
constants, as

m
∑

i=1

m
∑

j=1

Sq
n(i, j) log q(i, j) − 1

2υ

m
∑

i=1

(

Sg
n,2(i; θ) − 2µ(i)Sg

n,1(i) + µ2(i)Sg
n,0(i)

)

(27)

where

Sq
n(i, j) =

1

n
Eν,θ

[

n
∑

t=1

1{Xt−1 = i,Xt = j}
∣

∣

∣

∣

∣

Y0:n

]

,

Sg
n,0(i) =

1

n
Eν,θ

[

n
∑

t=0

1{Xt = i}
∣

∣

∣

∣

∣

Y0:n

]

,

Sg
n,1(i) =

1

n
Eν,θ

[

n
∑

t=0

1{Xt = i}Yt

∣

∣

∣

∣

∣

Y0:n

]

,

Sg
n,2(i) =

1

n
Eν,θ

[

n
∑

t=0

1{Xt = i}Y 2
t

∣

∣

∣

∣

∣

Y0:n

]

.

Maximization of (27) with respect to qθ, µθ and vθ directly yields (24) as well as

µ(i) = θ̄
(

Sg
n,0, S

g
n,1

)

=
Sg

n,1(i)

Sg
n,0(i)

, (28)

υ = θ̄
(

Sg
n,0, S

g
n,1, S

g
n,2

)

=

∑m
i=1

(

Sg
n,2(i) − µ2(i)Sg

n,0(i)
)

∑m
i=1 S

g
n,0(i)

. (29)

It is easily checked that, as usual, the M-step equations (24) and (29) do satisfy the constraints that
q be a stochastic matrix and υ be non-negative. Note that for this particular model, the use of the
statistic Sg

n,2 could be avoided as it is only needed in the M-step under the form
∑m

i=1 S
g
n,2(i), which

is equal to 1
n

∑n
t=0 Y

2
t . Algorithm 2 below recaps the complete online EM algorithm pertaining to

this example.

Algorithm 2 (Online EM algorithm for noisily observed m-state Markov chain).
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Initialization Select θ̂0 and compute, for all 1 ≤ i, j, k,≤ m and 0 ≤ d ≤ 2,

φ̂0(k) =
ν(k)gθ̂0

(k, Y0)
∑m

k′=1 gθ̂0
(k, Y0)

,

ρ̂q
0(i, j, k) = 0 ,

ρ̂g
0,d(i, k) = δ(i − k)Y d

0 .

Recursion For n ≥ 0, and 1 ≤ i, j, k,≤ m, 0 ≤ d ≤ 2,

Approx. Filter Update

φ̂n+1(k) =

∑m
k′=1 φ̂n(k′)q̂n(k′, k)gθ̂n

(k, Yn+1)
∑m

k′,k′′=1 φ̂n(k′)q̂n(k′, k′′)gθ̂n
(k′′, Yn+1)

,

where gθ̂n
(k, y) = exp

[

−(y − µ̂n(k))2/2υ̂n

]

.

Stochastic Approximation E-step

ρ̂q
n+1(i, j, k) = γn+1δ(j − k)r̂n+1(i|j) + (1 − γn+1)

m
∑

k′=1

ρ̂q
n(i, j, k′)r̂n+1(k

′|k) ,

ρ̂g
n+1,d(i, k) = γn+1δ(i− k)Y d

n+1 + (1 − γn+1)
m
∑

k′=1

ρ̂g
n,d(i, k

′)r̂n+1(k
′|k) ,

where r̂n+1(i|j) = φ̂n(i)q̂n(i, j)
/
∑m

i′=1 φ̂n(i′)q̂n(i′, j).

M-step If n ≥ nmin,

Ŝq
n+1(i, j) =

m
∑

k′=1

ρ̂q
n+1(i, j, k

′)φ̂n+1(k
′) ,

q̂n+1(i, j) =
Ŝq

n+1(i, j)
∑m

j′=1 Ŝ
q
n+1(i, j

′)
,

Ŝg
n+1,d(i) =

m
∑

k′=1

ρ̂g
n+1,d(i, k

′)φ̂n+1(k
′) ,

µ̂n+1(i) =
Sg

n+1,1(i)

Sg
n+1,0(i)

,

υ̂n+1 =

∑m
i′=1

(

Sg
n+1,2(i

′) − µ̂2
n+1(i

′)Sg
n+1,0(i

′)
)

∑m
i′=1 S

g
n+1,0(i

′)
.

4.3 Numerical Experiments

Algorithm 2 is considered in the case of a two-state (m = 2) model estimated from trajectories
simulated from the model with parameters

q⋆(1, 1) = 0.95 , µ⋆(1) = 0 ,

q⋆(2, 2) = 0.7 , µ⋆(2) = 1 ,

υ⋆ = 0.5 .
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With these parameters, state identification is a difficult task as the separation of the means
corresponding to the two state is only 1.4 times the noise standard deviation. The optimal filter
associated with the actual parameter does for instance misclassify the state (using Bayes’ rule) in
about 10.3% of the cases. As will be seen below, this is reflected in slow convergence of the EM
algorithm.

All estimation algorithms are systematically started from the initial values

q⋆(1, 1) = 0.7 , µ⋆(1) = −0.5 ,

q⋆(2, 2) = 0.5 , µ⋆(2) = 0.5 ,

υ⋆ = 2 ,

and run on 100 independent trajectories simulated from the model.

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

µ(
1)

EM iterations

0 10 20 30 40 50 60 70 80 90 100

0.7

0.8

0.9

1

q(
1,

1)

Figure 1: Estimated values of q(1, 1) (top) and µ(1) (bottom) as a function of the number of batch
EM iterations for n = 500 (dotted lines) and n = 8000 (solid lines) observations. The plot is based
on 100 independent realizations summarized by the median (bold central line) and the upper and
lower quartiles (lighter lines).

Figure 1 illustrates the consequences of Theorem 1 by plotting the estimates of the parameters
q(1, 1) and µ(1) obtained by the batch EM algorithm, as a function of the number of EM iterations,
for two different sample sizes: n = 500 (dotted lines) and n = 8000 iterations. To give an idea
of the variability of the estimates, Figure 1 feature the median estimate (bold line) as well as the
lower and upper quartiles (lighter curves) for both sample sizes. The first striking observation is
the slow convergence of EM in this case, which requires about 50 iterations or so to reach decent
estimates of the parameters. When comparing the curves corresponding to the two samples sizes,
it is also obvious that while the variability is greatly reduced for n = 8000 compared to n = 500,
the median learning curve is very similar in both cases. Furthermore, the plots corresponding to
n = 8000 provide a very clear picture of the deterministic limiting EM trajectory, whose existence
is guaranteed by Theorem 1.

Indeed, the large sample behavior of the batch EM algorithm is rather disappointing as using
a fixed number of iteration of EM does involve a computational cost that grows proportionally
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Figure 2: Estimation results when using 50 batch EM iterations. From left to right, estimated
values of q(1, 1), µ(1) and υ for values of n ranging from 0.5 to 128 thousands of samples. Box
and whiskers plot based on 100 independent realizations.
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Figure 3: Estimation results when using the online EM algorithm with γn = n−0.6. From left to
right, estimated values of q(1, 1), µ(1) and υ for values of n ranging from 0.5 to 128 thousands of
samples. Box and whiskers plot based on 100 independent realizations.
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to n but will converge, as n grows, to a deterministic limit which only depends on the parameter
initialization. This is all the more regrettable that from a statistical perspective, it is known that
the true maximum likelihood estimator does converge, as rate n−1/2 towards the actual value
θ⋆ of the parameter. This behavior of the batch EM algorithm is illustrated on Figure 2 which
displays, from left to right, the estimation results for the parameters associated with the first
component (q(1, 1), µ(1)), as in Figure 1, together with the noise variance υ (rightmost box).
The 100 realizations are here summarized as box and whiskers plots. Figure 2, which should be
compared with Figure 3 below, shows that when using a potentially large (here, 50) but fixed
number of iterations the variability of the batch EM estimates does decrease but the accuracy
does not improve as n grows. Clearly, statistical consistency could only be achieved by using more
batch EM iterations as the number n of observations grows.

In contrast, Figure 3 which corresponds to the online EM algorithm outlined above as Al-
gorithm 2 used with γn = n−0.6 does suggest that online EM estimation is consistent. For the
smallest sample sizes (n = 500 or n = 2000), the estimation variance still is quite large and the
online estimates are not as good as those obtained using 50 batch EM iterations. But for sam-
ple sizes of n = 8000 and larger, the online EM estimates are preferable despite their somewhat
larger variance. In this application, the choice of a slowly decreasing step-size —γn = n−0.6 was
chosen following the recommendations of Cappé and Moulines (2009)— appears to be of utmost
importance. In particular, the choice γn = n−1, despite its strong analogy with the batch EM
case (see Section 3 as well as (Neal and Hinton, 1999)) provides estimates that converge much to
slowly to be usable in any practical application. This observation is certainly a consequence of
the temporal dependence between the observations and, correlatively, of the time taken by the
filtering and smoothing relations to forget their initial state (as in the example under consider-
ation the assumptions of Theorem 1 as satisfied for θ in a neighborhood of θ⋆ with a constant
ǫ = q⋆(1, 2) = 0.05, which is rather small).

Method MATLAB 7.7 OCTAVE 3.0

Online EM 1.57 5.66
Batch EM (one iteration, recursive) 1.24 3.98
Batch EM (one iteration, forward-backward) 0.31 2.94

Table 1: Computing times in seconds for a record of length n = 10000 observations (2.4 GHz
processor).

Note that the comparison between Figure 2 and Figure 3 is not meant to be fair in terms of
computing time, as shown by Table 11. The 50 batch EM iterations used to produce Figure 2
take about 10 to 40, depending on the implementation of batch EM, times longer than for the
corresponding online estimates of Figure 3. Being fair in this respect would have mean using just
five batch EM iterations which, as can be guessed from Figure 1, is not competitive with online
EM, even for the smallest sample sizes. Note that a different option would have been to also
consider running the online EM algorithm several times on the same batch data, following Neal
and Hinton (1999). In the case of hidden Markov models however, this way of using the online
EM algorithm for fixed sample maximum likelihood estimation of the parameters appears to be
less straightforward than in the case of i.i.d. data and has not been considered.

The two batch EM implementations featured in Table 1 correspond, respectively, to the use of

1The MATLAB/OCTAVE code used for the simulations is very simple and will be made available from the web.
It is mostly vectorized, except for a loop through the observations, and hence it is expected that the differences in
running times are indeed representative, despite the use of an interpreted programming language.
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the recursive form of smoothing based on Proposition 1 and to the usual forward-backward form
of smoothing. The former implementation is obviously related to the online EM algorithm, which
explains that both of them lead to rather similar running times. As discussed in Section 3.3, due
to the fact that the whole m×m transition matrix q is here used as a parameter, the numerical
complexity of the online EM algorithm and of the recursive implementation of batch EM scale as
m4, compared to m2 only for the batch EM algorithm when implemented with forward-backward
smoothing. Hence, it is to be expected that the forward-backward implementation of batch EM
would be even more advisable for models with more than m = 2 states. On the other hand, when
m is large it is usually not reasonable to parameterize the transition matrix q by its individual
entries.

In order to provide a more detailed idea of the asymptotic performances of the algorithm,
Figure 4 displays results similar to those of Figure 3 but centered and scaled as follows. Each
parameter estimates, say θ̂n is represented as

√
n(θ̂n − θ⋆) and further scaled by the asymptotic

standard deviation of θ deduced from the inverse of the Fisher information matrix. The Fisher
information matrix has been estimated numerically by applying Fisher’s identity to (27) so as to
obtain

1

n
∇q(i,j) log ℓθ(Y0:n) =

Sq
n(i, j)

q(i, j)
− Sq

n(i,m)

q(i,m)
(for 1 ≤ j < m) ,

1

n
∇µ(i) log ℓθ(Y0:n) =

Sg
n,1 − µ(i)Sg

n,0

υ
,

1

n
∇v log ℓθ(Y0:n) =

m
∑

i=1

1

2v2

(

Sg
n,2(i; θ) − 2µ(i)Sg

n,1(i) + µ2(i)Sg
n,0(i)

)

.

The information matrix has then been obtained by averaging the gradient computed in θ⋆ for 100
independent sequences of length one million simulated under θ⋆.

Additionally, Figure 4 also displays results that have been post-processed using averaging
(Polyak, 1990, Ruppert, 1988). In Figure 4, Polyak-Ruppert averaging is used starting from
navg = 8000. That is, for n > 8000, θ̂n is replaced by 1/(n− 8000)

∑n
i=8001 θ̂n. For time indices n

smaller than 8000, averaging is not performed and the estimates are thus as in Figure 3, except
for the centering and the scaling. Under relatively mild assumptions, averaging has been shown
to improve the asymptotic rate of convergence of stochastic approximation algorithm making it
possible to recover the optimal rate of 1/

√
n (see Cappé and Moulines, 2009, for an illustration

in the case of the online EM for independent observations). At least for µ(1) and υ, Figure 4
suggest that in this example the proposed algorithm does reach asymptotic efficiency, i.e., becomes
asymptotically equivalent to the maximum likelihood estimator. For q(1, 1) the picture is less clear
as the recentered and scaled estimates present a negative bias which disappear quite slowly. This
effect is however typical of the practical trade-off involved in the choice of the index navg where
averaging is started. To allow for a significant variance reduction, navg should not be too large. On
the other hand, if averaging is started too early, forgetting of the initial guess of the parameters
occurs quite slowly. In the present case, the negative bias visible on the left panel of Figure 4 is due
to navg being too small (see corresponding panel in Figure 3). Although, this could be corrected
here by setting navg to twenty thousands or more, it is important to underline that optimally
setting navg is usually not feasible in practice.
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Figure 4: Estimation results when using the online EM algorithm with γn = n−0.6 with Polyak-
Ruppert started after n = 8000. From left to right, estimated values of q(1, 1), µ(1) and υ for
values of n ranging from 0.5 to 128 thousands of samples. The estimated values are centered and
scaled so as to be comparable with a unitary asymptotic standard deviation. Box and whiskers
plot based on 100 independent realizations.

5 Conclusions

The algorithm proposed in this paper for online estimation of HMM parameters is based on
two ideas. The first, which is inspired by Sato (2000), Cappé and Moulines (2009) consists in
reparameterzing the model in the space of sufficient statistics and approximating the limiting
EM recursion using a stochastic approximation procedure. Theorem 1 provides a first argument
demonstrating that this idea is also fruitful in the case of HMMs. The second element is more
specific to HMMs and relies on the recursive implementation of smoothing computations for sum
functionals of the hidden state which is used in Algorithm 1. As discussed in Section 3, this
possibility requires that the auxiliary quantity ρn,ν,θ defined in (13) be approximated during the
course of the algorithm.

Although the performance reported in Section 4 is encouraging, there are several questions
raised by this approach. The first is of course the theoretical analysis of the convergence of
Algorithm 1, which is still missing. Although originally inspired by stochastic approximation
ideas, it seems that Algorithm 1 would be difficult to analyze using currently available stochastic
approximation results due to the kernel convolution involved in (17). As discussed in Sections 3.3
and 4.3, the proposed algorithm may become less attractive, from a computational point of view,
when used in models with many distinct state values. For such cases, it would be of interest to
consider specific versions of the algorithm, using some form of approximation, perhaps based on
Monte Carlo simulations.
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A Proof of Theorem 1

Theorem 1 mainly relies on the use of a two-sided forgetting result which is first proved as Corol-
lary 1 below. This result generalizes the one-sided forgetting bounds of Douc et al. (2004) and
allow conditioning with respect to both past and future observations, which is required for study-
ing the asymptotic behavior of (7) and related quantities. The proof of Theorem 1 then mostly
relies on the results of Douc et al. (2004).

Lemma 1. Given q a transition matrix on the finite set X such that q(x, x′) ≥ ǫ > 0 and α and

β probabilities on X , define

Jα,q,β(x, x′) =
α(x)q(x, x′)β(x′)

∑

x,x′∈X 2 α(x)q(x, x′)β(x′)
.

Then

‖Jα1,q,β1
− Jα2,q,β2

‖1 ≤ 1

ǫ
(‖α1 − α2‖1 + ‖β1 − β2‖1) , (30)

where ‖µ‖1 =
∑

x |µ(x)| denotes the L1 or total variation norm.

Proof. Lemma 1 is obviously related to the application of Bayes’ formula. Hence, one may apply
Lemma 3.6 of Künsch (2001) to obtain ‖Jα1,q,β1

− Jα2,q,β2
‖1 ≤ 1

ǫ‖α1 ⊗ β1 − α2 ⊗ β2‖1. The r.h.s.
of (30) is obtained by noting that |α1(x)β1(x

′) − α2(x)β2(x
′)| ≤ |α1(x)− α2(x)|β1(x

′) + |β1(x
′)−

β2(x
′)|α2(x).

Corollary 1. Under the assumption of Theorem 1, for any function f such that 0 < f < ‖f‖∞
and probabilities µ1 and µ2 on X 2, and any index 1 ≤ t ≤ n,

∣

∣

∣

∣

∑

x,x′∈X 2

Eθ

[

f(Xt−1,Xt)|Y0:n,X0 = x,Xn = x′
]

µ1(x, x
′)

−
∑

x,x′∈X 2

Eθ [f(Xt−1,Xt)|Y0:n,X0 = x,Xn = x]µ2(x, x
′)

∣

∣

∣

∣

≤ ‖f‖∞
ǫ

(

ρt−1 + ρn−t
)

,

where ρ = (1 − ǫ).

Proof. First apply Lemma 1 to the familiar forward-backward decomposition

αi(x) = Pθ(Xt−1 = x|Y0:t−1,X0 = x0,i) ,

βi(x
′) ∝ Pθ(Yt:n,Xn = xn,i|Xt = x′) ,

for i = 1, 2 (where the normalization factor in the second equation is determined by the constraint
∑

x∈X βi(x) = 1) to obtain

∣

∣

∣

∣

Eθ [f(Xt−1,Xt)|Y0:n,X0 = x0,1,Xn = xn,1]

− Eθ [f(Xt−1,Xt)|Y0:n,X0 = x0,2,Xn = xn,2]

∣

∣

∣

∣

≤ ‖f‖∞
ǫ

(‖α1 − α2‖1 + ‖β1 − β2‖1) ,

observing that Pθ(Xt−1 = x,Xt = x′|Y0:t−1,X0 = x0,i,Xn = xn,i) = Jαi,qθ,βi
. Next use, the one-

sided forgetting bounds of Douc et al. (2004) (Corollary 1 and Eq. (20)) to obtain ‖α1−α2‖1 ≤ ρt−1

and ‖β1−β2‖1 ≤ ρn−t. The result of Corollary 1 follow by the general inequality |µ1(g)−µ2(g)| ≤
1
2‖µ1 − µ2‖1 supz1,z2∈Z2 |g(z1) − g(z2)|.
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Note the fact that the backward function βi(x
′) = Pθ(Yt:n,Xn = xn,i|Xt = x′) may be nor-

malized to a pseudo-probability, has been used in the above proof. This is generally not the case
outside of the context where X is finite (Briers et al., 2004, Cappé et al., 2005) but it is easily
checked that Corollary 1 holds in greater generality under the “strong mixing conditions” discussed
in Section 4.3 of Cappé et al. (2005).

Proof of Theorem 1. Corollary 1 implies that

|Eθ [s(X−1,X0, Y0)|Y−n:n] − Eθ [s(X−1,X0, Y0)|Y−m:m]| ≤ 2

ǫ
ρnm(Y0),

for m ≥ n, where m(y) is an upper bound for |s(X−1,X0, Y0)|, which may be chosen as m(y) =
∑

x 1+|sg(x, y)| due to the fact that sq(x, x′) is a vector of indicator functions when X is finite. As,
θ⋆ ∈ interior(Θ), standard results on exponential family imply that m(Y0) admits finite moments
of all orders under Pθ⋆

. Hence, the a.s. limit of Eθ [s(X−1,X0, Y0)|Y−m:m] as m → ∞, which is
denoted by Eθ [s(X−1,X0, Y0)|Y−∞:∞], exists and has finite expectation under Pθ⋆

. Similarly,

1

n

n
∑

t=1

(Eν,θ [s(Xt−1,Xt, Yt)|Y0:n] − Eθ [s(Xt−1,Xt, Yt)|Y−∞:∞]) ≤ 1

nǫ

n
∑

t=1

(

ρt−1 + ρn−t
)

m(Yt) .

As Eθ⋆
[m(Y0)

p] < ∞ for all p, standard applications of Markov inequality and Borel-Cantelli
Lemma imply that the r.h.s. of the above expression tends a.s. to zero. Hence, the quanti-
ties 1

nEν,θ [
∑n

t=1 s(Xt−1,Xt, Yt)|Y0:n] and 1
n

∑n
t=1 Eθ [

∑n
t=1 s(X−1,X0, Y0)|Y−∞:∞] have the same

limit, where the latter expression converges to Eθ⋆
(Eθ [s(X−1,X0, Y0)|Y−∞:∞]) by the ergodic

theorem. This proves the first assertion of Theorem 1.
For the second statement, one can check that the assumptions of Theorem 1 imply (A1)–(A3)

of Douc et al. (2004) as well as a form of (A6)–(A8)2 . Hence, proceeding as in proof of Theorem 3
of Douc et al. (2004), shows that (7) converge a.s. to the gradient ∇θcθ⋆

(θ) of the limiting contrast
defined in (6). Eq. (10) combined with the previous result then shows that parameter values θ for
which ∇θcθ⋆

(θ) vanishes are also such that 〈∇θψ(θ),Eθ⋆
(Eθ [s(X−1,X0, Y0)|Y−∞:∞])〉−∇θA(θ) =

0, that is, θ̄ {Eθ⋆
(Eθ [s(X−1,X0, Y0)|Y−∞:∞])} = θ.
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