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Abstract

Online (also called “recursive” or “adaptive”) estimation of fixed model parameters in hid-
den Markov models is a topic of much interest in times series modelling. In this work, we
propose an online parameter estimation algorithm that combines two key ideas. The first
one, which is deeply rooted in the Expectation-Maximization (EM) methodology consists in
reparameterizing the problem using complete-data sufficient statistics. The second ingredient
consists in exploiting a purely recursive form of smoothing in HMMs based on an auxiliary
recursion. Although the proposed online EM algorithm resembles a classical stochastic ap-
proximation (or Robbins-Monro) algorithm, it is sufficiently different to resist conventional
analysis of convergence. We thus provide limited results which identify the potential limiting
points of the recursion as well as the large-sample behavior of the quantities involved in the
algorithm. The performance of the proposed algorithm is numerically evaluated through sim-
ulations in the case of a noisily observed Markov chain. In this case, the algorithm reaches
estimation results that are comparable to that of the maximum likelihood estimator for large
sample sizes.

Keywords Hidden Markov Models, Expectation-Maximization Algorithm, Online Estima-
tion, Recursive Estimation, Stochastic Approximation, Smoothing

1 Introduction

Hidden Markov modelling is a key concept of statistical time series analysis, which has had a
wide-ranging practical impact over the latest forty years. Hidden Markov models (HMMs) in their
classical form (i.e., when the state variable is finite-valued) are sufficiently simple to give rise to
efficient inference procedures while allowing for useful modelling of various practical situations.
Ever since the pioneering contributions of Baum and Eagon (1967), Baum et al. (1970), the EM
(Expectation-Maximization) algorithm has been the method of choice for parameter inference in
HMMs. The EM algorithm is a dedicated numerical optimization routine which aims at maximiz-
ing the (log) likelihood of a batch of observations. It tends to be preferred to its alternatives due
to its robustness and ease of implementation.

This contribution is devoted to online parameter estimation for HMMs, in which the available
observations are only scanned once and never stored, allowing for a continuous adaptation of
the parameters along a potentially infinite data stream. In the case of HMMs, online parameter
estimation is a challenging task due to the non-trivial dependence between the observations. The
EM-inspired methods proposed so far have been either based on finite-memory approximations
of the required smoothing computations (Krishnamurthy and Moore, 1993) or on finite-memory
approximations of the data log-likelihood itself (Rydén, 1997). An alternative consists in using
gradient-based methods (Le Gland and Mevel, 1997) which do not directly follow the principles of
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the EM algorithm. Kantas et al. (2009) provide a comprehensive recent review of these methods,
including more advanced aspects for models that require the use of simulation-based methods.
Recently, Mongillo and Denève (2008) proposed an online version of the EM algorithm for HMMs
in the case where both the states and observations take a finite number of values. The key
ingredient of this algorithm is a recursion which allows for recursive computation of smoothing
functionals required by the EM algorithm. However, this recursion appears to be very specific and
its potential application to more general types of HMMs is not addressed by Mongillo and Denève
(2008).

The purpose of this paper is to build on the idea of Mongillo and Denève (2008) in light of
the framework introduced by Cappé and Moulines (2009) for online EM estimation in the case
of independent observations. The first contribution of the paper is an algorithm that extends
the proposal of Mongillo and Denève (2008) to general HMMs, with possibly continuous obser-
vations. This algorithm is based on the key observation that the recursion used in Mongillo and
Denève (2008) is an instance of the recursive smoothing scheme for sum functionals introduced
by Zeitouni and Dembo (1988), Elliott et al. (1995). Although a complete analysis of the proposed
algorithm is currently lacking, we provide a first result that identifies the possible limiting points
of the algorithm. These coincide with the stationary points of a limiting EM mapping that may
be interpreted as the limit of the EM recursion under an infinite number of observations. This
interpretation which generalizes the argument of Cappé and Moulines (2009) for the case of in-
dependent observations also provides some interesting insight regarding the behavior of the batch
EM algorithm when used with a large number of observations.

The remaining of the paper is organized as follows. Section 2 opens with a brief review of
our modelling assumptions and of smoothing computations in HMMs. The proposed online EM
algorithm is then introduced in Section 2.3. Section 3 is devoted to a discussion of the online
EM algorithm and, in particular, of its connections with previous works and of its numerical
complexity. Section 4 contains preliminary results pertaining to the convergence of the method,
with corresponding proofs to be found in the appendix. Finally, in Section 5 we apply the online
EM algorithm to the estimation of the parameters of a Markov chain observed in Gaussian noise
and illustrate its performance through numerical simulations.

2 Online EM Algorithm for HMMs

2.1 Model and Notations

It is assumed that the state and observation sequences, (Xt, Yt)t∈Z are generated under a stationary
Hidden Markov model with unknown parameter θ⋆, where (Xt) takes its values in some finite set
X . The notations ℓθ⋆ , pθ⋆ , Pθ⋆ and Eθ⋆ refer to, respectively, the likelihood, the joint density of
the states and observations, the probability, and, the expectation under the model parameterized
by θ⋆. In practice θ⋆ is unknown and one only has access to the observation sub-sequence (Yt)t≥0,
where, by convention, the initial observation time is taken to be 0. In this context, the initial pdf
ν of X0 is arbitrary and ℓν,θ, pν,θ, Pν,θ and Eν,θ are used to denote, respectively, the likelihood,
the joint density of the states and observations, the probability, and, the expectation under the
non-stationary model that has initial pdf ν and θ as parameter. Hence, Pθ refers to the probability
under θ of the stationary HMM process (Xt, Yt)t∈Z while Pν,θ denotes the probability of the non-
stationary process (Xt, Yt)t∈N which is started with initial distribution ν for X0. Note that ν
itself is not considered as a model parameter as it cannot be estimated consistently from a single
trajectory (see Chapters 10 and 12 of Cappé et al., 2005 for further discussion of this issue). The
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state transition matrix and state conditional pdf (probability density function of Yt given Xt) that
characterize the HMM are denoted, respectively, by qθ(x, x

′) and gθ(x, y).
To make the EM recursion explicit, a key requirement is that the model belongs to an expo-

nential family. In the following, we will thus make the following assumptions.

Assumption 1.

(i) Exponential Family

pθ(xt, yt|xt−1) = h(xt, yt) exp (〈ψ(θ), s(xt−1, xt, yt)〉 −A(θ)) , (1)

where 〈·〉 denotes the scalar product, s : (x′, x, y) ∈ X 2 × Y 7→ s(x′, x, y) ∈ S is the vector of
complete-data sufficient statistics, ψ(·) is the (non-necessarily invertible) function that maps
θ to the natural parameterization and A(·) is the log-partition function.

(ii) Explicit M-Step For all S ∈ S, the complete-data maximum likelihood equation

∇θψ(θ)S −∇θA(θ) = 0 ,

where ∇θ denotes the gradient, has a unique solution denoted by θ̄(S).

Assumption 1–(ii) states that the function θ̄ : S ∈ S 7→ θ̄(S) ∈ Θ that returns the complete-
data maximum likelihood estimator corresponding to any feasible value of the sufficient statistics
is available in closed-form. Note that the form used in (1) is in fact slightly more general than the
HMM case. Indeed, if both qθ and gθ belong to exponential families:

qθ(x
′, x) = hq(x′, x) exp

(

〈ψq(θ), sq(x′, x)〉 −Aq(θ)
)

,

gθ(x, y) = hg(x, y) exp (〈ψg(θ), sg(x, y)〉 −Ag(θ)) , (2)

we then have A(θ) = Aq(θ) +Ag(θ),

ψ(θ) =

(

ψq(θ)
ψg(θ)

)

and s(x′, x, y) =

(

sq(x′, x)
sg(x, y)

)

.

We will not make use of this specific structure when describing the algorithm and we thus stick
to the concise representation of (1). Sections and 3.2 and 5 provide more details on the nature of
the function s in specific examples of HMMs.

Under Assumption 1, the k-th iteration of the usual EM algorithm applied to observations
Y0:n = (Y0, . . . , Yn) takes the following familiar form:

E-Step Compute

Sk+1 =
1

n
Eν,θk

[

n
∑

t=1

s(Xt−1,Xt, Yt)

∣

∣

∣

∣

∣

Y0:n

]

. (3)

M-Step Update the parameter estimate to θk+1 = θ̄(Sk+1).

To avoid unnecessary notational complexity, we have omitted in (3) the initial term 1
n log pν,θ(x0, y0)

from the normalized complete-data log-likelihood. The influence of this term is vanishing with n
and it is not necessary to take it into account for online estimation.
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2.2 Recursive Form of Smoothing

We briefly recall here a key ingredient of the proposed algorithm which makes it possible to
compute recursively the normalized sum 1

nEν,θ [
∑n

t=1 s(Xt−1,Xt, Yt)|Y0:n] by use of an auxiliary
recursion. Curiously, this idea which dates back to, at least, Zeitouni and Dembo (1988) and has
been extensively studied by Elliott et al. (1995) remains largely under-exploited (see discussion in
Chapter 4 of Cappé et al., 2005).

In addition to the usual filter,

φn,ν,θ(x) = Pν,θ (Xn = x|Y0:n) , (4)

define the following intermediate quantity

ρn,ν,θ(x) =
1

n
Eν,θ

[

n
∑

t=1

s(Xt−1,Xt, Yt)

∣

∣

∣

∣

∣

Y0:n,Xn = x

]

. (5)

Obviously, these two quantities allow the computation of the sum of interest as

∑

x∈X

φn,ν,θ(x)ρn,ν,θ(x) =
1

n
Eν,θ

[

n
∑

t=1

s(Xt−1,Xt, Yt)

∣

∣

∣

∣

∣

Y0:n

]

.

The appeal of this decomposition is that φn,ν,θ and ρn,ν,θ can be updated recursively according to
the following proposition.

Proposition 1. Initialization For x ∈ X , set

φ0,ν,θ(x) =
ν(x)gθ(x, Y0)

∑

x′∈X ν(x
′)gθ(x′, Y0)

,

ρ0,ν,θ(x) = 0 .

Recursion For n ≥ 0 and x ∈ X , it holds that

φn+1,ν,θ(x) =

∑

x′∈X φn,ν,θ(x
′)qθ(x

′, x)gθ(x, Yn+1)
∑

x′,x′′∈X 2 φn,ν,θ(x′)qθ(x′, x′′)gθ(x′′, Yn+1)
(6)

ρn+1,ν,θ(x) =
∑

x′∈X

{

1

n+ 1
s(x′, x, Yn+1)

+

(

1− 1

n+ 1

)

ρn,ν,θ(x
′)

}

φn,ν,θ(x
′)qθ(x

′, x)
∑

x′′∈X φn,ν,θ(x
′′)qθ(x′′, x)

. (7)

In Proposition 1 above, the rightmost term in (7),

rn+1,ν,θ(x
′|x) = φn,ν,θ(x

′)qθ(x
′, x)

∑

x′′∈X φn,ν,θ(x
′′)qθ(x′′, x)

,

corresponds to the backward retrospective probability Pν,θ(Xn = x′|Xn+1 = x, Y0:n), which does
not depend on the newly available observation Yn+1. The main argument in proving Proposition 1
is to check that

Pν,θ(Xt = xt,Xt+1 = xt+1|Xn+1 = xn+1, Y0:n+1) =
∑

xn∈X

Pν,θ(Xt = xt,Xt+1 = xt+1|Xn = xn, Y0:n)Pν,θ(Xn = xn|Xn+1 = xn+1, Y0:n) ,

for all indices 0 ≤ t ≤ n− 1 which implies the claimed result by summation on t.
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2.3 Online EM Algorithm

Proposition 1 constitutes a recursive rewriting of the computation required to carry out the E-
step in the batch EM algorithm. By analogy with the case of independent observations studied
in Cappé and Moulines (2009), the proposed online EM algorithm for HMMs takes the following
form.

Algorithm 1. Chose a decreasing sequence (γn)n≥1 of step-sizes, which satisfy the usual stochas-
tic approximation requirement that

∑

n≥1 γn = ∞ and
∑

n≥1 γ
2
n < ∞. Also select a parameter

initialization θ̂0 and a minimal number of observations nmin required before performing the first
parameter update.

Initialization Compute, for x ∈ X ,

φ̂0(x) =
ν(x)gθ̂0(x, Y0)

∑

x′∈X ν(x
′)gθ̂0(x

′, Y0)
,

ρ̂0(x) = 0 .

Recursion For n ≥ 0,

Compute, for x ∈ X ,

φ̂n+1(x) =

∑

x′∈X φ̂n(x
′)qθ̂n(x

′, x)gθ̂n(x, Yn+1)
∑

x′,x′′∈X 2 φ̂n(x′)qθ̂n(x
′, x′′)gθ̂n(x

′′, Yn+1)
, (8)

ρ̂n+1(x) =
∑

x′∈X

{

γn+1s(x
′, x, Yn+1) + (1− γn+1)ρ̂n(x

′)
} φ̂n(x

′)qθ̂n(x
′, x)

∑

x′′∈X φ̂n(x
′′)qθ̂n(x

′′, x)
. (9)

If n ≥ nmin, update the parameter according to

θ̂n+1 = θ̄

(

∑

x∈X

ρ̂n+1(x)φ̂n+1(x)

)

, (10)

otherwise, set θ̂n+1 = θ̂n.

In Algorithm 1, the role of nmin is only to guarantee that the M-step update is numerically well-
behaved as it is well-known that in most models the maximum likelihood estimation equation is
degenerate for very small numbers of observations and, hence, the function θ̄ may not be properly
defined. For this purpose, a very small value of nmin is usually sufficient (for instance, nmin = 20
is used in the simulations of Section 5.3).

3 Discussion

We first discuss connections of the proposed algorithm with earlier works before discussing its
numerical complexity in more details.

Quite obviously, Algorithm 1 is intended to generalize the online EM algorithm of Cappé and
Moulines (2009) to the case of dependent observations. In the case of independent observations,
(8) and (9) reduces to a simpler recursion of the form:

Ŝn+1 = γn+1Eθ̄(Ŝn)
[s(Xn+1, Yn+1)|Yn+1] + (1− γn+1)Ŝn , (11)
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which can be analyzed using the arguments developed for the analysis of stochastic approximation
(or Robbins-Monro) schemes under Markovian random perturbations. The HMM framework how-
ever implies several key differences. First, in HMMs it is necessary to maintain an approximate
filter φ̂n through (8) which, hopefully, becomes an acceptable proxy for φn,ν,θ̂n when approaching
convergence. More importantly, as it is no more possible to compute the conditional expectation
of the complete-data sufficient statistics online, we require the auxiliary recursion of (9). Although
directly inspired by the exact recursive smoothing formula of (7), this auxiliary update cannot be
put in the usual stochastic approximation form. And thus, in contrast to the online EM algorithm
of Cappé and Moulines (2009), Algorithm 1 cannot be analyzed using off-the-shelf mathematical
arguments. Both the need to maintain an estimate of the filter and the presence of the backward
retrospective probability in (9) constitute significant departures from the usual stochastic approx-
imation framework. Thus a complete analysis of the convergence of Algorithm 1 is a challenging
mathematical problem and we provide in Section 4 below important —though limited— arguments
in that direction.

Algorithm 1 is related to the EM-based approach suggested in Eq. (51) of Kantas et al. (2009)
which however lacks the idea of a recursive implementation of smoothing (in this work, the authors
propose to use a particle filtering method to approximate the smoothing functional). Chapters 4
and 5 of Ford (1998) and Elliott et al. (2002) consider the use of Proposition 1 for online estimation
of the parameter of a Markov chain observed in additive noise —an example that we will discuss in
more detail in Section 5— and for a linear state-space model with known noise characteristics. Ford
(1998) however does not acknowledge the generality of the approach and the role of complete-data
sufficient statistics and is constrained to the choice of γn = n−1, which in simulations gives poor
performances compared to alternative choices of step-sizes (see Section 5 below). To the best of our
knowledge, the first instance of a particular case of Algorithm 1 appears in the work of Mongillo
and Denève (2008) who considered the specific case of finite-valued observations. Mongillo and
Denève (2008) however entirely rediscovered Proposition 1 under an equivalent form discussed
below and thus failed to identify some of the general principles underpinning Algorithm 1.

3.1 Comparison with the Algorithm of Mongillo and Denève (2008)

This section is devoted to a more detailed analysis of the difference between Algorithm 1 applied to
the case of finite-valued observations and the actual proposal of Mongillo and Denève (2008). This
difference is not significant from a practical point of view but is important for the understanding
of the behavior of the algorithm.

Mongillo and Denève (2008) considered the particular case of finite valued HMMs in which
the observations (Yt)t≥1 also take their values in a finite set Y. In such a situation, it is easily
checked that for any parameterization of the model, the complete-data sufficient statistics may be
chosen as s(Xt−1,Xt, Yt) = (1{Xt−1 = i,Xt = j, Yt = k})(i,j,k)∈X 2×Y . The recursion derived by
Mongillo and Denève (2008) for this case is based on recursively updating the product τn,ν,θ(x) =
φn,ν,θ(x)ρn,ν,θ(x) rather than ρn,ν,θ(x). The probabilistic interpretation of the new term τn,ν,θ(x)

is Eν,θ [ (
∑n

t=1 s(Xt−1,Xt, Yt))1{Xn = x}|Y0:n]. By multiplying (9) by φ̂n+1(x) and using (8), one
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obtains the following online update

τ̂n+1(x) = γn+1

∑

x′∈X

s(x′, x, Yn+1)
φ̂n(x

′)qθ̂n(x
′, x)gθ̂n(x

′, Yn+1)
∑

x′,x′′∈X 2 φ̂n(x′)qθ̂n(x
′, x′′)gθ̂n(x

′′, Yn+1)

+ (1 − γn+1)
∑

x′∈X

τ̂n(x
′)

qθ̂n(x
′, x)gθ̂n(x

′, Yn+1)
∑

x′,x′′∈X 2 φ̂n(x′)qθ̂n(x
′, x′′)gθ̂n(x

′′, Yn+1)
, (12)

which coincides with Eqs. (15)-(16) of Mongillo and Denève (2008), for the particular choice of
complete-data sufficient statistics discussed above.

Of course, using either (8) and (9) or (12) is practically equivalent. But the results of Section 4
indicate that φ̂n and ρ̂n have very different limiting behaviors: the auxiliary recursion (9) should
converge to a fixed deterministic limit while the same is not true for the approximate filtering
recursion (8). Hence the use of decreasing step-sizes for (9) only is justifiable while its use in (12)
is less natural (and/or potentially misleading) as τ̂n should not be expected to converge to a
deterministic limit.

Regarding the choice of the step-size, Mongillo and Denève (2008) consider the cases where,
either, the step-size γn is small but non-decreasing, which may be useful for tracking potential
changes but is not sufficient to guarantee the consistency of the approach. The other option
mentioned by Mongillo and Denève (2008) is to use γn = n−1 by analogy with the work of Neal
and Hinton (1999) and the case of the batch EM algorithm. The range of step-sizes mentioned in
Algorithm 1 is chosen in reference to the theory of stochastic approximation and by analogy with
Cappé and Moulines (2009). As will be illustrated below, in the numerical simulations of Section 5,
the choice of γn = n−1 should definitely be avoided for HMMs and we instead recommend using
step-sizes of the form γn = n−α with α in the interval (0.5,0.8), possibly combined with Polyak-
Ruppert averaging (see Section 5.3 below).

3.2 Implementation and Numerical Complexity

Regarding the numerical complexity of Algorithm 1, observe that in the case considered by
Mongillo and Denève (2008) where s(Xt−1,Xt, Yt) = (1{Xt−1 = i,Xt = j, Yt = k})(i,j,k)∈X 2×Y ,
s(Xt−1,Xt, Yt) is a vector of dimension |X |2×|Y| (where | · | denotes the cardinal of the set). Thus,
the numerical complexity of (12) is of order |X |4 × |Y| per observation. For this case, it is indeed
possible to bring down the numerical complexity to the order of |X |4 + |X |3 × |Y| operations by
updating separately the terms corresponding to the two statistics (1{Xt−1 = i,Xt = j})(i,j)∈X 2

and (1{Xt = j, Yt = k})(j,k)∈X×Y (see the example considered in Section 5 for more details). Inter-
estingly, the numerical complexity of the batch EM algorithm for this model, when implemented
using traditional forward-backward smoothing (Rabiner, 1989), is of the order of (|X |2 + |X |×|Y|)
per observation and per iteration of the EM algorithm. The comparison is not directly meaningful
as the batch EM algorithm does necessitate several iterations to converge (see numerical illustra-
tions in Section 5.3). The scaling of the numerical complexity of the online-EM algorithm with
respect to |X | can constitute an hindrance in models with a large number of states. This being
said, the complexity of online gradient-based approaches, is equivalent as the main burden comes
from the necessity of updating, via a recursion related to (9), one coordinate of the gradient for
each of the pairs (x, x′) ∈ X 2 of state values (see, e.g., Le Gland and Mevel, 1997). When the
transition matrix is structured —i.e., parametered by a low dimensional parameter rather than by
all its individual entries—, the numerical cost of implementing the online EM approach is reduced
to an order of the number of parameters times |X |2.
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4 Some Results on Convergence

In this section, we provide two important elements regarding Algorithm 1. The first is a gen-
eralization of the argument of Cappé and Moulines (2009) that makes it possible to identify a
deterministic limit for the EM update as the number of observations tends to infinity. Interest-
ingly, the form of this limit is non trivial and substantially different from the case of independent
observations. The second result pertains to the limiting behavior of the auxiliary quantity ρ̂n(x)
of (10) that is instrumental in Algorithm 1. As discussed in the previous section, a complete
analysis of the convergence of Algorithm 1 is still lacking but it is possible to show that when
the parameter is frozen (i.e. when the M-step update of (10) is inhibited), ρ̂n converges to a
deterministic quantity. This limit does not depend on x (or, in other words, |ρ̂n(x)− ρ̂n(x

′)| → 0)
and is related to the limiting EM mapping. This result, although limited, is very important to
understand the nature of the asymptotic attractors of Algorithm 1. In this section, we will work
under the assumptions of Douc et al. (2004) which guarantee the asymptotic normality of the
MLE, adapted to the (simplest) case of a finite state space X .

We start by a closer inspection of the limiting behavior of the normalized score function
(gradient of the log-likelihood). Under suitable assumptions (see below), the normalized HMM
log-likelihood 1

n log ℓν,θ(Y0, . . . , Yn) converges, Pθ⋆ almost surely and in L1, to the limiting contrast

cθ⋆(θ) = Eθ⋆ [log ℓθ(Y0|Y−∞:−1)] . (13)

The same is true for the normalized score 1
n∇θ log ℓν,θ(Y0, . . . , Yn) which converges to ∇θcθ⋆(θ).

Such consistency results have been established, under various assumptions, by (among others)
Baum and Petrie (1966), Bickel et al. (1998), Douc et al. (2004). Now, thanks to Fisher identity,
for all n,

1

n
∇θ log ℓν,θ(Y0, . . . , Yn) =

1

n
Eν,θ

[

n
∑

t=1

∇θ log pθ(Xt, Yt|Xt−1)

∣

∣

∣

∣

∣

Y0:n

]

+
1

n
Eν,θ [∇θ log pν,θ(X0, Y0)|Y0:n] . (14)

As already discussed, the last term on the r.h.s., whose influence is vanishing with increasing
values of n, can be ignored. Hence, the consistency result for the score function combined with
(14) implies that 1

nEν,θ [
∑n

t=1 ∇θ log pθ(Xt, Yt|Xt−1)|Y0:n] converges Pθ⋆ almost surely to ∇θcθ⋆(θ),
the gradient of the limiting contrast. Now using the exponential family representation in (1), the
non-vanishing term in the r.h.s. of (14) may rewritten as

1

n
Eν,θ

[

n
∑

t=1

∇θ log pθ(Xt, Yt|Xt−1)

∣

∣

∣

∣

∣

Y0:n

]

=

∇θψ(θ)

{

1

n
Eν,θ

[

n
∑

t=1

s(Xt−1,Xt, Yt)

∣

∣

∣

∣

∣

Y0:n

]}

−∇θA(θ) . (15)

The following theorem defines the limiting behavior of the r.h.s. of the above equation, and thus,
the limiting behavior of the EM update for HMMs (see Appendix A for the corresponding proofs).

Theorem 1. In addition to Assumption 1, assume that (i) X is a finite set; (ii) the parameter
space Θ is compact and θ⋆ lies in the interior of Θ; (iii) the transition matrix is such that qθ(x, x

′) ≥
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ǫ > 0 for all θ ∈ Θ; (iv) supθ supy ḡθ(y) < ∞ and Eθ⋆ [|log infθ ḡθ(Y0)|] < ∞, where ḡθ(y) =
∑

x gθ(x, y); and, (v) ψq, Aq, ψg, Ag in (2) are continuously differentiable functions on the interior
of Θ. Then the following properties hold.

(i)

1

n
Eν,θ

[

n
∑

t=1

s(Xt−1,Xt, Yt)

∣

∣

∣

∣

∣

Y0:n

]

−→ Eθ⋆ (Eθ [s(X−1,X0, Y0)|Y−∞:∞]) , Pθ⋆ a.s. (16)

(ii) The fixed points of the limiting EM algorithm

θk+1 = θ̄ {Eθ⋆ (Eθk [s(X−1,X0, Y0)|Y−∞:∞])} (17)

are the stationary points of the limiting likelihood contrast cθ⋆(θ).

Theorem 1 provides an interpretation of the limiting form of the classical EM algorithm when
used on very long sequences of observations. In the case of HMMs, this form is quite complicated
and it is interesting to compare it to the case of independent observations investigated by Cappé
and Moulines (2009). If the observations are assumed to be independent, the law of large number
implies the convergence of the normalized log-likelihood to cθ⋆(θ) = Eθ⋆ [log ℓθ(Y0)]. In this case,
it is obvious that maximizing cθ⋆(θ) is equivalent to minimizing the Kullback-Leibler divergence

D(ℓθ⋆ |ℓθ) =
∫

log
ℓθ⋆ (y)
ℓθ(y)

ℓθ⋆(y)dy. In the HMM case, D(ℓθ⋆ |ℓθ) needs to be replaced by the expression

of cθ⋆(θ) given in (13), which is a consequence of the tower property of conditional expectation
and of the forgetting property of the filter (Douc et al., 2004). However, in contrast to the case of
independent observations, it is no more straightforward to provide an explicit expression for the
gradient of cθ⋆(θ). The key idea here is the use of Fisher identity in (14) which yields the limiting
term found in the r.h.s. of (16). The use of Fisher identity also explains the particular form of
conditioning found in (16), which involves both the infinite future and past of the trajectory. This
expression also suggests that being able to compute or approximate smoothed functionals of the
state recursively is indeed a key requirement for online estimation in HMMs.

The next result shows that under parameter freeze, the online EM update equation (8) con-
verges to a deterministic constant function, equal to the r.h.s. of (16).

Corollary 1. Under the assumptions of Theorem 1, Algorithm 1 used without (10) —that is, with
θ̂n equal to a fixed value θ— satisfies

ρ̂n(x) −→ Eθ⋆ (Eθ [s(X−1,X0, Y0)|Y−∞:∞]) , Pθ⋆ a.s., for all x ∈ X .

Corollary 1 shows that under parameter freeze the auxiliary quantity ρ̂n(x) converges to
a constant limit that does not depend on x and that is equal to the limit obtained in (16).
Note that since φ̂n(x) is a probability on X , this implies that θ̄(

∑

x∈X ρ̂n+1(x)φ̂n+1(x)) tends to
θ̄ {Eθ⋆ (Eθ [s(X−1,X0, Y0)|Y−∞:∞])}. This result together with Theorem 1–(ii) suggests that Al-
gorithm 1 can only be stable at the stationary points of the limiting contrast cθ⋆(θ). The argument
is only heuristic at this stage as Corollary 1 is obtained under the artificial assumption that the
evolution of the parameter is frozen. Corollary 1 however highlights an essential characteristic of
Algorithm 1: in contrast to φ̂n(x) which does approximate the infinite past filter and hence varies
with each observation, ρ̂n(x) converges to a deterministic limit that is independent of x. This
property, which can be verified in simulations, justifies the form of Algorithm 1 and in particular
the use of a stochastic approximation type of update for ρ̂n(x) only.
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5 Application to Gaussian HMMs

5.1 HMM with Product Parameterization

For the sake of concreteness, we consider in following the case where the state variables (Xt)
take their values in the set {1, . . . ,m}. In addition, assume that, as is often the case in practise,
the parameter θ may be split into two sub-components that correspond, respectively, to the state
transition matrix qθ and to the state-conditional densities {gθ(i, ·)}1≤i≤m. In the fully discrete case
considered in Mongillo and Denève (2008) for instance, the parameter θ consist of the transition
matrices qθ and gθ parametered by their respective entries, with the constraint that each line of
a transition matrix must sum to one. In the case of Gaussian HMMs used in speech processing
as well as many in other applications, the parameters are the state transition matrix qθ and
the mean vector and covariance matrix associated with each of the m state-conditional densities
{gθ(i, ·)}1≤i≤m (Rabiner, 1989).

In such a model, there are two distinct types of EM complete-data sufficient statistics which
give rise to two separate forms of the auxiliary function ρn,ν,θ:

ρqn,ν,θ(i, j, k; θ) =
1

n
Eν,θ

[

n
∑

t=1

1{Xt−1 = i,Xt = j}
∣

∣

∣

∣

∣

Y0:n,Xn = k

]

, (18)

ρgn,ν,θ(i, k; θ) =
1

n
Eν,θ

[

n
∑

t=0

1{Xt = i}s(Yt)
∣

∣

∣

∣

∣

Y0:n,Xn = k

]

, (19)

where the form of s itself depend on the nature of the state-conditional distribution gθ(x, ·) —see
Gaussian example below. There’s a slight difference between (19) and (5), which is that (19) also
incorporates the initial (t = 0) conditional likelihood term, i.e., the contribution corresponding to
the rightmost term on the r.h.s. of (14). As noted earlier, this difference is minor and does not
modify the long-term behavior of the algorithm.

With these notations, Eq. (9) in Algorithm 1 is implemented as

ρ̂qn+1(i, j, k) = γn+1δ(j − k)r̂n+1(i|j) + (1− γn+1)

m
∑

k′=1

ρ̂qn(i, j, k
′)r̂n+1(k

′|k) , (20)

ρ̂gn+1(i, k) = γn+1δ(i− k)s(Yn+1) + (1− γn+1)
m
∑

k′=1

ρ̂gn(i, k
′)r̂n+1(k

′|k) , (21)

where δ denotes the Kronecker delta (i.e., δ(i) = 0 iff i = 0) and the notation r̂n+1(i|j) refers to
the approximate retrospective conditional probability :

r̂n+1(i|j) =
φ̂n(i)qθ̂n(i, j)

∑m
i′=1 φ̂n(i

′)qθ̂n(i
′, j)

. (22)

A complete iteration of the online algorithm involves the approximate filter update (8) and the
statistics updates (20) and (21) followed by an application of the M-step function θ̄ to Ŝq

n+1(i, j) =
∑m

k=1 ρ̂
q
n+1(i, j, k)φ̂n+1(k) and Ŝ

g
n+1(i) =

∑m
k=1 ρ̂

g
n+1(i, k)φ̂n+1(k). The form of the M-step depends

on the exact nature of qθ and gθ. If the transition matrix qθ is parametered simply by its entries,
the update is generic and is given by

qθ̂n(i, j) = θ̄
(

Ŝq
n

)

=
Ŝq
n(i, j)

∑m
j=1 Ŝ

q
n(i, j)

. (23)
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For the update of the state-dependent parameters, one needs to be more specific and the form of
the equations depend on the choice of the state conditional density gθ(x, ·). In the multivariate
Gaussian case, the function s has to be chosen such that s(y) consists of the three components
{1, y, yyt}. The corresponding components of the approximated EM extended statistics are de-
noted, respectively, by Ŝg

n,0, Ŝ
g
n,1, Ŝ

g
n,2. If the state conditional Gaussian densities are parametered

by their mean vectors, µθ(i), and covariances matrices, Σθ(i), the M-step update is defined as

µθ̂n(i) = θ̄
(

Ŝg
n,0, Ŝ

g
n,1

)

=
Ŝg
n,1(i)

Ŝg
n,0(i)

, (24)

Σθ̂n
(i) = θ̄

(

Ŝg
n,0, Ŝ

g
n,1, Ŝ

g
n,2

)

=
Ŝg
n,2(i)

Ŝg
n,0(i)

− µθ̂n(i)µ
t
θ̂n
(i) . (25)

The derivation of (23) and (24)–(25) is straightforward but some more details are provided in the
next section for a particular case of Gaussian HMM.

5.2 Markov Chain Observed in Gaussian Noise

In the numerical experiments described below, we consider the simple scalar model

Yt = Xt + Vt ,

where (Vt) is a scalar additive Gaussian noise of variance υ and (Xt) is a Markov chain with
transition matrix q, which takes its values in the set {µ(1), . . . , µ(m)}. Although simple, this
model is already statistically challenging and is of some importance in several applications, in
particular, as a basic model for ion channels data (Chung et al., 1990) —see also, e.g., (Roberts
and Ephraim, 2008) for discussion of the continuous time version of the model as well de Gunst
et al. (2001), for an up-to-date account of models for ion channels. The parameter θ is comprised
of the transition matrix q, the vector of means µ and the variance υ.

In this case, the intermediate quantity of the batch EM algorithm may be written —with
constant terms omitted, as

m
∑

i=1

m
∑

j=1

Sq
n(i, j) log q(i, j) −

1

2υ

m
∑

i=1

(

Sg
n,2(i; θ)− 2µ(i)Sg

n,1(i) + µ2(i)Sg
n,0(i)

)

, (26)

where

Sq
n(i, j) =

1

n
Eν,θ

[

n
∑

t=1

1{Xt−1 = i,Xt = j}
∣

∣

∣

∣

∣

Y0:n

]

,

Sg
n,0(i) =

1

n
Eν,θ

[

n
∑

t=0

1{Xt = i}
∣

∣

∣

∣

∣

Y0:n

]

,

Sg
n,1(i) =

1

n
Eν,θ

[

n
∑

t=0

1{Xt = i}Yt

∣

∣

∣

∣

∣

Y0:n

]

,

Sg
n,2(i) =

1

n
Eν,θ

[

n
∑

t=0

1{Xt = i}Y 2
t

∣

∣

∣

∣

∣

Y0:n

]

.
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Maximization of (26) with respect to qθ, µθ and vθ directly yields (23) as well as

µ(i) = θ̄
(

Sg
n,0, S

g
n,1

)

=
Sg
n,1(i)

Sg
n,0(i)

, (27)

υ = θ̄
(

Sg
n,0, S

g
n,1, S

g
n,2

)

=

∑m
i=1

(

Sg
n,2(i) − µ2(i)Sg

n,0(i)
)

∑m
i=1 S

g
n,0(i)

. (28)

It is easily checked that, as usual, the M-step equations (23) and (28) satisfy the constraints that
q be a stochastic matrix and υ be non-negative. Note that for this particular model, the use of the
statistic Sg

n,2 could be avoided as it is only needed in the M-step under the form
∑m

i=1 S
g
n,2(i), which

is equal to 1
n

∑n
t=0 Y

2
t . Algorithm 2 below recaps the complete online EM algorithm pertaining to

this example.

Algorithm 2 (Online EM algorithm for noisily observed m-state Markov chain).

Initialization Select θ̂0 and compute, for all 1 ≤ i, j, k,≤ m and 0 ≤ d ≤ 2,

φ̂0(k) =
ν(k)gθ̂0(k, Y0)
∑m

k′=1 gθ̂0(k, Y0)
,

ρ̂q0(i, j, k) = 0 ,

ρ̂g0,d(i, k) = δ(i − k)Y d
0 .

Recursion For n ≥ 0, and 1 ≤ i, j, k,≤ m, 0 ≤ d ≤ 2,

Approx. Filter Update

φ̂n+1(k) =

∑m
k′=1 φ̂n(k

′)q̂n(k
′, k)gθ̂n(k, Yn+1)

∑m
k′,k′′=1 φ̂n(k

′)q̂n(k′, k′′)gθ̂n(k
′′, Yn+1)

,

where gθ̂n(k, y) = exp
[

−(y − µ̂n(k))
2/2υ̂n

]

.

Stochastic Approximation E-step

ρ̂qn+1(i, j, k) = γn+1δ(j − k)r̂n+1(i|j) + (1− γn+1)
m
∑

k′=1

ρ̂qn(i, j, k
′)r̂n+1(k

′|k) ,

ρ̂gn+1,d(i, k) = γn+1δ(i− k)Y d
n+1 + (1− γn+1)

m
∑

k′=1

ρ̂gn,d(i, k
′)r̂n+1(k

′|k) ,

where r̂n+1(i|j) = φ̂n(i)q̂n(i, j)
/
∑m

i′=1 φ̂n(i
′)q̂n(i

′, j).

12



M-step If n ≥ nmin,

Ŝq
n+1(i, j) =

m
∑

k′=1

ρ̂qn+1(i, j, k
′)φ̂n+1(k

′) ,

q̂n+1(i, j) =
Ŝq
n+1(i, j)

∑m
j′=1 Ŝ

q
n+1(i, j

′)
,

Ŝg
n+1,d(i) =

m
∑

k′=1

ρ̂gn+1,d(i, k
′)φ̂n+1(k

′) ,

µ̂n+1(i) =
Sg
n+1,1(i)

Sg
n+1,0(i)

,

υ̂n+1 =

∑m
i′=1

(

Sg
n+1,2(i

′)− µ̂2n+1(i
′)Sg

n+1,0(i
′)
)

∑m
i′=1 S

g
n+1,0(i

′)
.

5.3 Numerical Experiments

Algorithm 2 is considered in the case of a two-state (m = 2) model estimated from trajectories
simulated from the model with parameters

q⋆(1, 1) = 0.95 , µ⋆(1) = 0 ,

q⋆(2, 2) = 0.7 , µ⋆(2) = 1 ,

υ⋆ = 0.5 .

With these parameters, state identification is a difficult task as the separation of the means
corresponding to the two states is only 1.4 times the noise standard deviation. The optimal filter
associated with the actual parameter does for instance misclassify the state (using Bayes’ rule) in
about 10.3% of the cases. As will be seen below, this is reflected in slow convergence of the EM
algorithm.

All estimation algorithms are systematically started from the initial values

q⋆(1, 1) = 0.7 , µ⋆(1) = −0.5 ,

q⋆(2, 2) = 0.5 , µ⋆(2) = 0.5 ,

υ⋆ = 2 ,

and run on 100 independent trajectories simulated from the model.
Figure 1 illustrates the consequences of Theorem 1 by plotting the estimates of the parameters

q(1, 1) and µ(1) obtained by the batch EM algorithm, as a function of the number of EM iterations,
for two different sample sizes: n = 500 (dotted lines) and n = 8000 iterations. To give an idea
of the variability of the estimates, Figure 1 feature the median estimate (bold line) as well as the
lower and upper quartiles (lighter curves) for both sample sizes. The first striking observation is
the slow convergence of EM in this case, which requires about 50 iterations or so to reach decent
estimates of the parameters. When comparing the curves corresponding to the two samples sizes,
it is also obvious that while the variability is greatly reduced for n = 8000 compared to n = 500,
the median learning curve is very similar in both cases. Furthermore, the plots corresponding to
n = 8000 provide a very clear picture of the deterministic limiting EM trajectory, whose existence
is guaranteed by Theorem 1.
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Figure 1: Estimated values of q(1, 1) (top) and µ(1) (bottom) as a function of the number of batch
EM iterations for n = 500 (dotted lines) and n = 8000 (solid lines) observations. The plot is based
on 100 independent runs summarized by the median (bold central line) and the upper and lower
quartiles (lighter lines).

Indeed, the large sample behavior of the batch EM algorithm is rather disappointing as using
a fixed number of iteration of EM does involve a computational cost that grows proportionally
to n but will converge, as n grows, to a deterministic limit which only depends on the parameter
initialization. This is all the more regrettable that from a statistical perspective, it is expected
that the true maximum likelihood estimator converges, at rate n−1/2 towards the actual value θ⋆ of
the parameter. This behavior of the batch EM algorithm is illustrated on Figure 2 which displays,
from left to right, the estimation results for the parameters associated with the first component
(q(1, 1), µ(1)), as in Figure 1, together with the noise variance υ (rightmost display). The results
obtained on the 100 independent runs are here summarized as box and whiskers plots. Figure 2,
which should be compared with Figure 3 below, shows that when using a potentially large (here,
50) but fixed number of iterations the variability of the batch EM estimates does decrease but the
accuracy does not improve as n grows. Clearly, statistical consistency could only be achieved by
using more batch EM iterations as the number n of observations grows.

In contrast, Figure 3 which corresponds to the online EM algorithm (Algorithm 2) used with
γn = n−0.6 does suggest that online EM estimation is consistent. For the smallest sample sizes
(n = 500 or n = 2000), the estimation variance is still quite large and the online estimates are
not as good as those obtained using 50 batch EM iterations. But for sample sizes of n = 8000
and larger, the online EM estimates are preferable despite their somewhat larger variance. In this
application, the choice of a slowly decreasing step-size appears to be of utmost importance. In
particular, the choice γn = n−1, despite its strong analogy with the batch EM case (see Section 2
as well as Neal and Hinton, 1999) provides estimates that are not robust enough with respect to
the choice of the initial parameter guess. Simple step-size schemes of the form γn = n−α perform
very poorly in this example when α is set to values higher than 0.8. Figure 4 features a more
complex choice of step-sizes which was hand-tuned based on pilot runs. Even with this preliminary
phase of step-size tuning —which would hardly be feasible in real-life applications of the method—
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Figure 2: Estimation results when using 50 batch EM iterations. From left to right, estimated
values of q(1, 1), µ(1) and υ for values of n ranging from 0.5 to 128 thousands of samples. Box
and whiskers plot based on 100 independent runs.
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Figure 3: Estimation results when using the online EM algorithm with γn = n−0.6. From left to
right, estimated values of q(1, 1), µ(1) and υ for values of n ranging from 0.5 to 128 thousands of
samples. Box and whiskers plot based on 100 independent runs.
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Figure 4: Estimation results when using the online EM algorithm with γn = 0.01 for n ≤ n0 and
γn = 0.5(n − n0)

−1 for values of n > n0, with n0 = 10000. From left to right, estimated values of
q(1, 1), µ(1) and υ for values of n ranging from 0.5 to 128 thousands of samples. Box and whiskers
plot based on 100 independent runs.

it is observed on Figure 4 that the results are not significantly improved compared to the simple
choice of γn = n−0.6 as in Figure 3. The comparatively higher variability observed for the largest
sample sizes (32 and 128 thousands) on Figure 4 is caused by a very slow reduction of the bias
of the parameter estimates when γn = n−1. In contrast, parameter trajectories corresponding
to the choice of γn = n−0.6 look much less smooth but provide more reliable estimates, without
requiring model-specific tuning of the step-sizes. This observation —which is also true, but to a
lesser extent, in the case of independent observations— is certainly a consequence of the temporal
dependence between the observations and, correlatively, of the time needed for the filtering and
smoothing relations to forget their initial state.

Method MATLAB 7.7 OCTAVE 3.0

Online EM 1.57 5.66
Batch EM (one iteration, recursive) 1.24 3.98
Batch EM (one iteration, forward-backward) 0.31 2.94

Table 1: Computing times in seconds for a record of length n = 10000 observations (Intel Core 2
E6600 2.4 GHz processor).

The comparison between Figures 2 and 3 is not meant to be fair in terms of computing time,
as shown by Table 11. The 50 batch EM iterations used to produce Figure 2 take about 10
to 40, depending on the implementation of batch EM, times longer than for the corresponding
online estimates of Figure 3. Being fair in this respect would have mean using just five batch EM

1The MATLAB/OCTAVE code used for the simulations is very simple and is available as supplementary material.
It is mostly vectorized, except for a loop through the observations, and hence it is expected that the differences in
running times are indeed representative, despite the use of an interpreted programming language.
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iterations which, as can be guessed from Figure 1, is not competitive with online EM, even for
the smallest sample sizes. Note that a different option would have been to also consider running
the online EM algorithm several times on the same batch data, following Neal and Hinton (1999).
In the case of hidden Markov models however, this way of using the online EM algorithm for
fixed-sample maximum likelihood estimation of the parameters appears to be less straightforward
than in the case of i.i.d. data and has not been considered.

The two batch EM implementations featured in Table 1 correspond, respectively, to the use of
the recursive form of smoothing based on Proposition 1 and to the usual forward-backward form
of smoothing. The former implementation is obviously related to the online EM algorithm, which
explains that both of them lead to rather similar running times. As discussed in Section 3, due
to the fact that the whole m×m transition matrix q is here used as a parameter, the numerical
complexity of the online EM algorithm and of the recursive implementation of batch EM scale as
m4, compared to m2 only for the batch EM algorithm when implemented with forward-backward
smoothing. Hence, it is to be expected that the forward-backward implementation of batch EM
would be even more advisable for models with more than m = 2 states. On the other hand, when
m is large it is usually not reasonable to parameterize the transition matrix q by its individual
entries.

In order to provide a more detailed idea of the asymptotic performance of the algorithm,
Figure 5 displays results similar to those of Figure 3 but centered and scaled as follows. Each
parameter estimates, say θ̂n is represented as

√
n(θ̂n − θ⋆) and further scaled by the asymptotic

standard deviation of θ deduced from the inverse of the Fisher information matrix. The Fisher
information matrix has been estimated numerically by applying Fisher’s identity to (26) so as to
obtain

1

n
∇q(i,j) log ℓθ(Y0:n) =

Sq
n(i, j)

q(i, j)
− Sq

n(i,m)

q(i,m)
(for 1 ≤ j < m) ,

1

n
∇µ(i) log ℓθ(Y0:n) =

Sg
n,1 − µ(i)Sg

n,0

υ
,

1

n
∇v log ℓθ(Y0:n) =

m
∑

i=1

1

2v2

(

Sg
n,2(i; θ)− 2µ(i)Sg

n,1(i) + µ2(i)Sg
n,0(i)

)

.

The information matrix has then been estimated by averaging the gradient computed in θ⋆ for
100 independent sequences of length one million simulated under θ⋆.

Additionally, Figure 5 also displays results that have been post-processed using Polyak-Ruppert
averaging (Polyak, 1990, Ruppert, 1988). In Figure 5, Polyak-Ruppert averaging is used starting
from navg = 8000. That is, for n > 8000, θ̂n is replaced by 1/(n−8000)

∑n
i=8001 θ̂n. For time indices

n smaller than 8000, averaging is not performed and the estimates are thus as in Figure 3, except
for the centering and the scaling. Under relatively mild assumptions, averaging has been shown
to improve the asymptotic rate of convergence of stochastic approximation algorithm making it
possible to recover the optimal rate of convergence of n−1/2. At least for µ(1) and υ, Figure 5
suggests that in this example the proposed algorithm does reach asymptotic efficiency, i.e., becomes
asymptotically equivalent to the maximum likelihood estimator. For q(1, 1) the picture is less clear
as the recentered and scaled estimates present a negative bias which disappears quite slowly. This
effect is however typical of the practical trade-off involved in the choice of the index navg where
averaging is started. To allow for a significant variance reduction, navg should not be too large. On
the other hand, if averaging is started too early, forgetting of the initial guess of the parameters
occurs quite slowly. In the present case, the negative bias visible on the left panel of Figure 5 is due
to navg being too small (see corresponding panel in Figure 3). Although, this could be corrected
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Figure 5: Estimation results when using the online EM algorithm with γn = n−0.6 with Polyak-
Ruppert averaging started after n = 8000. From left to right, estimated values of q(1, 1), µ(1)
and υ for values of n ranging from 0.5 to 128 thousands of samples. The estimated values are
centered and scaled so as to be comparable with a unitary asymptotic standard deviation. Box
and whiskers plot based on 100 independent runs.

here by setting navg to twenty thousands or more, it is important to underline that optimally
setting navg is usually not feasible in practice.

6 Conclusions

The algorithm proposed in this paper for online estimation of HMM parameters is based on two
ideas. The first, which is inspired by Sato (2000) and Cappé and Moulines (2009), consists in
reparameterizing the model in the space of sufficient statistics and approximating the limiting EM
recursion by a procedure resembling stochastic approximation. Theorem 1 provides a first argu-
ment demonstrating that this idea can also be fruitful in the case of HMMs. The second element is
more specific to HMMs and relies on the recursive implementation of smoothing computations for
sum functionals of the hidden state which is provided by Proposition 1. As discussed in Section 2,
this possibility requires that the auxiliary quantity ρn,ν,θ defined in (5) be approximated during
the course of the algorithm.

Although the performance reported in Section 5 is encouraging, there are several questions
raised by this approach. The first is of course the theoretical analysis of the convergence of
Algorithm 1, which is still missing. Although originally inspired by stochastic approximation
ideas, it seems that Algorithm 1 would be difficult to analyze using currently available stochastic
approximation results due to the backward kernel operator r̂n+1(x

′|x) involved in (9). As discussed
in Sections 3 and 5.3, the proposed algorithm may become less attractive, from a computational
point of view, when used in models with many distinct state values. In such cases and, more
generally, in cases where the state-space X of the hidden chain is no longer finite, a promising
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approach consists in using some form of Monte Carlo computation to approximate (8) and (9).
Cappé (2009) and Del Moral et al. (2009) report encouraging first results in that direction.

A Proofs

Theorem 1 mainly relies on the use of a two-sided forgetting result which is first proved in Corol-
lary 2 below. This result generalizes the one-sided forgetting bounds of Douc et al. (2004) and
allows conditioning with respect to both past and future observations, which is required for study-
ing the asymptotic behavior of (14) and related quantities. The proof of Theorem 1 then mostly
relies on the results of Douc et al. (2004).

Lemma 1. Given q a transition matrix on the finite set X such that q(x, x′) ≥ ǫ > 0 and α and
β probabilities on X , define

Jα,q,β(x, x
′) =

α(x)q(x, x′)β(x′)
∑

x,x′∈X 2 α(x)q(x, x′)β(x′)
.

Then

‖Jα1,q,β1
− Jα2,q,β2

‖1 ≤ 1

ǫ
(‖α1 − α2‖1 + ‖β1 − β2‖1) , (29)

where ‖µ‖1 =
∑

x |µ(x)| denotes the L1 or total variation norm.

Proof. Lemma 1 is obviously related to the application of Bayes’ formula. Hence, one may apply
Lemma 3.6 of Künsch (2001) to obtain ‖Jα1,q,β1

− Jα2,q,β2
‖1 ≤ 1

ǫ‖α1 ⊗ β1 − α2 ⊗ β2‖1. The r.h.s.
of (29) is obtained by noting that |α1(x)β1(x

′)− α2(x)β2(x
′)| ≤ |α1(x)− α2(x)|β1(x′) + |β1(x′)−

β2(x
′)|α2(x).

Corollary 2. Under the assumptions of Theorem 1, for any function f such that 0 < f < ‖f‖∞
and probabilities µ1 and µ2 on X 2, and any index 1 ≤ t ≤ n,

∣

∣

∣

∣

∑

x,x′∈X 2

Eθ

[

f(Xt−1,Xt)|Y0:n,X0 = x,Xn = x′
]

µ1(x, x
′)

−
∑

x,x′∈X 2

Eθ [f(Xt−1,Xt)|Y0:n,X0 = x,Xn = x]µ2(x, x
′)

∣

∣

∣

∣

≤ ‖f‖∞
ǫ

(

ρt−1 + ρn−t
)

,

where ρ = (1− ǫ).

Proof. First apply Lemma 1 to the familiar forward-backward decomposition

αi(x) = Pθ(Xt−1 = x|Y0:t−1,X0 = x0,i) ,

βi(x
′) ∝ Pθ(Yt:n,Xn = xn,i|Xt = x′) ,

for i = 1, 2 (where the normalization factor in the second equation is determined by the constraint
∑

x∈X βi(x) = 1) to obtain

∣

∣

∣

∣

Eθ [f(Xt−1,Xt)|Y0:n,X0 = x0,1,Xn = xn,1]

− Eθ [f(Xt−1,Xt)|Y0:n,X0 = x0,2,Xn = xn,2]

∣

∣

∣

∣

≤ ‖f‖∞
ǫ

(‖α1 − α2‖1 + ‖β1 − β2‖1) ,
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observing that Pθ(Xt−1 = x,Xt = x′|Y0:t−1,X0 = x0,i,Xn = xn,i) = Jαi,qθ,βi
. Next use, the one-

sided forgetting bounds of Douc et al. (2004) (Corollary 1 and Eq. (20)) to obtain ‖α1−α2‖1 ≤ ρt−1

and ‖β1−β2‖1 ≤ ρn−t. The result of Corollary 2 follow by the general inequality |µ1(g)−µ2(g)| ≤
1
2‖µ1 − µ2‖1 supz1,z2∈Z2 |g(z1)− g(z2)|.

Note that the fact that the backward function βi(x
′) = Pθ(Yt:n,Xn = xn,i|Xt = x′) may be

normalized to a pseudo-probability, has been used in the above proof. This is generally not the
case outside of the context where X is finite (Cappé et al., 2005, Briers et al., 2010) but it is
easily checked that Corollary 2 holds in greater generality under the “strong mixing conditions”
discussed in Section 4.3 of Cappé et al. (2005).

Proof of Theorem 1. Corollary 2 implies that

|Eθ [s(X−1,X0, Y0)|Y−n:n]− Eθ [s(X−1,X0, Y0)|Y−m:m]| ≤ 2

ǫ
ρnM(Y0),

for m ≥ n, where M(y) ≥ supx,x′ |s(x, x′, y)|. M(y) may be chosen as M(y) =
∑

x 1 + |sg(x, y)|
due to the fact that sq(x, x′) is a vector of indicator functions when X is finite. As, θ⋆ lies in the
interior of Θ, standard results on exponential family imply that M(Y0) has finite first and second
order moments under Pθ⋆ . Hence, the a.s. limit of Eθ [s(X−1,X0, Y0)|Y−m:m] as m → ∞, which
is denoted by Eθ [s(X−1,X0, Y0)|Y−∞:∞], exists and has finite expectation under Pθ⋆ . Similarly,

1

n

n
∑

t=1

(Eν,θ [s(Xt−1,Xt, Yt)|Y0:n]− Eθ [s(Xt−1,Xt, Yt)|Y−∞:∞]) ≤ 1

nǫ

n
∑

t=1

(

ρt−1 + ρn−t
)

M(Yt) .

As Eθ⋆ [M(Y0)
2] < ∞, standard applications of Markov inequality and Borel-Cantelli Lemma

imply that the r.h.s. of the above expression tends Pθ⋆–a.s. to zero. Hence, the quantities
1
nEν,θ [

∑n
t=1 s(Xt−1,Xt, Yt)|Y0:n] and 1

n

∑n
t=1 Eθ [

∑n
t=1 s(X−1,X0, Y0)|Y−∞:∞] have the same limit,

where the latter expression converges to Eθ⋆ (Eθ [s(X−1,X0, Y0)|Y−∞:∞]) by the ergodic theorem.
This proves the first assertion of Theorem 1.

For the second statement, one can check that the assumptions of Theorem 1 imply (A1)–(A3)
of Douc et al. (2004) as well as a form of (A6)–(A8)2 . Hence, proceeding as in proof of Theorem 3
of Douc et al. (2004), shows that (14) converge a.s. to the gradient ∇θcθ⋆(θ) of the limiting contrast
defined in (13). Eq. (15) combined with the previous result then shows that parameter values θ for
which ∇θcθ⋆(θ) vanishes are also such that ∇θψ(θ) {Eθ⋆ (Eθ [s(X−1,X0, Y0)|Y−∞:∞])}−∇θA(θ) =
0, that is, θ̄ {Eθ⋆ (Eθ [s(X−1,X0, Y0)|Y−∞:∞])} = θ.

In order to prove Corollary 1, one first needs the following simple lemma.

Lemma 2. Let (ek)k≥0 denote a deterministic sequence and (γk)k≥1 a sequence of step-sizes such
that γk ∈ [0, 1],

∑

k≥1 γk = ∞, and,
∑

k≥1 γ
2
k < ∞; define rk = (1 − γk)rk−1 + γkek for k ≥ 1.

Then

(i) rn =
∑n

k=1 ω
n
k ek + ωn

0 r0, where ω
n
k = γk

∏n
j=1(1− γj).

(ii) rn and 1
n

∑n
k=1 ek have the same limit.

2Theorem 3 of Douc et al. (2004) deals with the Hessian of the normalized log-likelihood. As we are only
concerned with the gradient here, one can drop the second order conditions in (A6)–(A7). Furthermore, as the
assumption of Theorem 1 are supposed to hold uniformly on Θ, the set G can be dropped in (A6)–(A7), which
provides a law of large number for the score that holds for all values of θ ∈ Θ.
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Lemma 2-(ii) can be proved using Abel transformation noticing that
∑n

k=1 ω
n
k is by definition

equal to one and that for the range of step-sizes considered here, (ωn
k )1≤k≤n is a non-decreasing se-

quence (it is equal to n−1 when γk = k−1 and strictly increasing for sequences of step-sizes that de-
crease more slowly). Lemma 2 shows that we may concentrate on the case where γk = k−1 to prove
Corollary 1. Applying Proposition 1, ρ̂n is then equal under parameter freeze to ρn,ν,θ defined in (5).
In light of Corollary 2, ρn,ν,θ has the same behavior as the term 1

n

∑n
t=1 Eν,θ [s(Xt−1,Xt, Yt)|Y0:n]

that was analyzed above when proving Theorem 1.
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