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1 Introduction

Combinatorics has a long history which can be traced badiettitnes when Greek, Chinese and Persian
mathematicians (to name but a few) began with this particaial fruitful blend of configuration and
counting.

More recently, due to the great masters of the past (Eulemd®&li etc ...), this “art of counting”
avoided the fate of becoming a “collections of recipes” amdger the impetus of the modern fields
of Algorithms and Computer Sciences, acquiredLigtters Patentand so pervaded many domains of
Classical Sciences, such as Mathematics and Physics.

In return, the sciences which interact with Combinatoras tansmit to the latter some of their art.
This is the case of the emerging field of “Combinatorial Pbg5ivhich has the potential of revitalizing
mathematical features that have been familiar to physidtstover a century, such as tensor calculus,
structure constants, operator calculus, infinite matriaed so on.

In this paper we describe one aspect of this interaction;etgrhow well-known concepts in quan-
tum physics such as creation and annihilation operatots|ater operators, translate to combinatorial
"counting” ideas as exemplified by Stirling numbers, whicaynfind their expression in terms of infinite
matrices. Such an infinite matrix is more generally to be tfindwf as a (linear) transformation from a
linear space to itself, that is, a linear endomorphism. #héso a rigorous context in which to describe
the traditionaladder operatorof physics.

The paper is organized as follows: We start by introduciegtkll-known Heisenberg-Weyl associative
algebra generated by the creation and annihilation oprafsecond-quantized physics; this is a graded
algebra. Consideration of exponentials of elements ofafysbra leads one to a generalization of the
classical combinatorial Stirling numbers, as well as oammeter groups - crucial in quantum physics.
Arrays of such numbers lead us to the algebra of row-finitamitefimatrices. We then consider linear
endomorphisms as a natural sequel to these matrices, ainddpeesentations. We relate these to a
generalization of the idea of ladder operators, and cordhydyiving some results concerning the relation
between endomorphisms and ladder operators.
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2 The Heisenberg-Weyl algebra

2.1 Formal definition

In Quantum Physics [9, 10, 23] and more recently in Combimegd22, 32] and Combinatorial Physics
[5], one often encounters pairs of operatods B) such that

AB—-BA=1 (1)

wherel stands for the identity in some associative algebra. Theaance of this relation in 1925 at
once forced Born, Heisenberg and Jordan to the considerafiinfinite matrices. Indeed, it can be
shown that relation (1) cannot be represented by (finitejioest with elements in a field of characteristic
zero (simply take the trace of each side). The first choicaitiful representation for (1) is with (densely
defined) unbounded operators in a Hilbert space (traditidoek space) or with continuous operators in
a Fréchet space [13, 19, 34].

One can formally define the Heisenberg-Weyl algebra by

HWe = C(b, b Tuw 2

whereC(b,b*) = C [{b, b }*] is the algebra of the free mono{d, b*}* [3, 4, 27]i. e. the algebra of
non-commutative polynomials; an@;y is the two-sided ideal generated p+ — b*b — 1). Note that
this definition, together with the arrow

5:C(b,bT) — HW¢ 3)

clears up all the ambiguities concerning normal forms (Narardering [31] and the so-called “double
dot” operation) which are traditional in Quantum Physianrf now on, we set = s(b) anda™ = s(b™).

In general, by thewormal ordering[6] of a general expressioR(af, a) we meanF (™ (af, a) which is
obtained by moving all the annihilation operatart® the rightusingthe commutation relation of Eq.(1).
This procedure yields an operator whose action is equivatethe original onej.e. F((af a) =
F(a',a) as operators, although the form (which livesGri(b, ")) or C(b,b*) ) of the expressions in
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terms ofe anda™ may be completely different. From (3), it is an easy exeriggove that((a+)iaj)
i,jeN

is a basis off W (basis of the normal order).

On the other hand theouble dotoperation F(a', a) : consists of applying the same ordering procedure

butwithouttaking into account the commutation relation of Eq.{3, moving all annihilation operators

a to the right as if they commuted with the creation operatdrsThe structure constants are given in [5]

and can be obtained from the following form{la
(a+)i1 alt (a+)i2aj2 — Z k! (]kl > <jk2> (a+)i1+i2*kaj1+j2*k . (4)
k>0

2.2 Grading of the Heisenberg-Weyl algebra
Setting, fore € Z

HW = spanc((a*)'a?)izj- (5)
one has
HWe = @@ HW andHWS™Y HWE ¢ HW ) (6)
eEZ

for all e1,e5 € Z. This natural grading makesd W aZ-graded algebra. One often uses the following
(faithful) representatiops » by operators of€[[x]].

ppr(a) = i
(7)
ppr(a®) = (S xS).

This representation, known as the Bargmann-Fock repratsemis graded for the preceding grading as,
when restricted t&€[x], ppr(a) is of degree-1 andppr(a™) of degreel.

In general, and more concretely, we may associate many tantayperators of quantum physics with
elements ofH W¢. In particular, an elemerfe € HW¢ being given, one would like to consider the
evolution group [15]

() .
AER

For example, such one-parameter groups are important imtupnedynamics, where the parameleis
the timet; or in quantum statistical mechanics, wharis the negative inverse temperature.
Some questions which arise are

Q1) Is this group well defined ? through which representa®iovhat is the domain ?
Q2) Which combinatorial methods may be extracted from kedge of this group ?

Ouir first task is to get the normal order of the pow@fs

O This formula can also easily be derived from the “rook” eqiént of Wick’s theorem [35]. Note that the summation index
ranges in the intervdD..min(j1, i2)].
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3 Combinatorics of infinite matrices
3.1 Homogeneous operators and generalized Stirling numbers

Before defining representations (or realizations) of the-parameter grouéem) . one can consider
eR
the problem of normal ordering the powers(of

N@Y) =" a(ni,j)(a)a’ . (8)

i,JEN

In general this is a three-parameter problem but, takinguaihge of the preceding gradation, one can
start with a homogeneous operator of degree (or exeess)

Q=Y alij)a)e (©)

1—j=e

and remark that

(a™)me 322 Sa(n, k) (aT)ra” ;if e > 0
N@") = (10)
(Z;OZO Sa(n, k)(a*‘)ka’“)a”‘€| jife<0

which was used as the definition of “Generalized Stirling Nvens” as introduced in [7, 8] for strings
and generalized to homogeneous operators in [19] (see283p [These numbers recently attracted the
attention of Combinatorialists [20] who found it a nontalgeneralization of numbers known for some
200 years [2].
The reason for the nantgtirling Numberdies in the first example below, following which we give two
more examples.

ForQ = a*a, one gets the usual matrix of Stirling numbers of the secand. k

10 0 0 0 00
01 0 0 0 00
01 1 0 0 00
01 3 1 0 00
01 7 6 1 00 (11)
01 15 25 10 1 0
0 1 31 90 65 15 1




6 Gérard H. E. Duchamp, Laurent Poinsot, Allan I. Solomon , K&dPenson , Pawel Blasiak, Andrzej Horzela .

ForQ = ataa™, we have

1 0 0 0 0
1 1 0 0 0
2 4 1 0 0
6 18 9 1 0

D= O OO OO
O OO oo o

24 96 72 16 1 (12)
120 600 600 200 25
720 4320 5400 2400 450 3
ForQ = aTaaa™a™, one gets
1 0 0 0 0 0 0 0 0
2 4 1 0 0 0 0 0 0
12 60 54 14 1 0 0 0 0
144 1296 2232 1296 306 30 1 00 (13)
6 52 1

2880 40320 109440 105120 45000 9504 101

In any case, the matri¢S(n, k))n. ken has all its rowgS(n, k))ren finitely supported. We call these
matrices “row-finite” [19, 29].

We will see in the next paragraph that the “row-finite” matgdorm a very important algebra which
we denote byRF(N; C) in the sequel.

3.2 An excursion to topology: transformation of sequences

Letd = (d,,)nen be a set of non-zero complex denominators. To each row-fiméteix (M [n, k]),, ken.

one can associate an operaday; € End(C[[x]]) such that the image of = >_, _ akg € C[x]] is
defined by

Qu(f) =) bng; with b, = >~ M[n, kay, . (14)

neN keN

Note that if we endowC|[[x]] with the Fréchet topology of simple convergence of the fidefts (this
structure is sometimes called the “Treves topology”, sdd) [i., defined by the seminorms

pr(f) = |an|; with f = Zakxk (15)
keN

with each®,, continuous; then the following proposition states thatehe no other case:

Proposition 1 The correspondenck® — ®,, from RF(N; C) to £L(C[[x]]) (continuous endomorphisms)
is one-to-one and linear. Moreové@ry;y = ®; 0 Py
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Proof: The proof of this proposition is not difficult and left to theader. O

As an application of the preceding, one can remark thatutiinaghe Bargmann-Fock representation
pBF, the one parameter grom_;_?)Q always makes sense for homogeneous operators (as defingd(@)E
since the matrixy~! (ppr(Q))™ is

e strictly upper-triangular whea < 0
e diagonal where = 0

o strictly lower-triangular wher > 0 .
Thene** is meaningful as (a group of) operators on appropriate space

3.3 One-parameter groups and Stirling matrices

In this paragraph we focus on the combinatorics of operaionsaining at most one annihilator (in this
contextd/dx) so thatpp () is of the form

o)+ o(z) (16)

(sum of a scalar field and a true vector field). One-parametens generated by these operators can, of
course, be integrated using PDE [15] but, here we give a “egagy trick” which aims at proving that an
operator of the type (16) is conjugated to the vector figld %.

So, to compute*(@(®) = +v(@)[ ], one can use the following proceduregndv are supposed to be at
least continuous). We first take= 0 (vector field case)

e if ¢ =0 (andv = 0) thene*?5r ([ f] = f (trivial action) ;
o if ¢ # 0 then choose an open internviat () in which ¢ never vanishes and, € I ;

Todt
F(I)—/zom a7

and set/ = F'(I) (openinterval). Thed : I — J is one-to-one (a' is strictly monotonic) ;

o forx ¢ I set

o for suitable(z, \), set
sa(x) = FH(F(x) 4+ \). (18)

sy is a deformation of the identity singe, \) — s, (z) is continuous (and even of cla€8) on its
domain andtsy(z) = = ;

o for small values of\ , e*(4(®)d:) coincides with the substitutiofi — f o sy. To see this, it is
sufficient to remark that the exponential of a derivatiorct‘sas/\(q(x)d%)) is an automorphism,
which means a substitution in the (test) function spacesucahsideration.

() These matrices are different from the “Generalized Sgrfimatrices” defined by Eq. (10). Their non-zro elements appsiied
by a line parallel to the diagonal.
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Now, one can indicate how to integrate the one-parametepgr?(@) @z +v(@) for generab. (I, F, s\
are as above).

e Onl, set

z v(t)
u(x) = e’lwo a® d (19)
e one checks easily that

1 d

pr(©) = (4(a) 2 + (@) = ~(a(r) 1) (20)

in the sense that, on each function in its domain- () operates as the composition of
— multiplication of f by u
— action of the vector fieldg(z) ) (now onuf)
— division byu ;

¢ then, using the fact that exponentiation commutes withuganjy, the exponential reads

AMa@) 5 +0(@) — g~ TMa@) )y, | (21)

Using the preceding definitions, the action now takes theafor

Uslf](x) = A&+ 1](2) = %ﬂw)) | (22)

One can check posteriorithe validity of this procedure, using a tangent vector tégia as follows

e check that, for small values of 8, one has

UxoUp = Uxye; (23)
e check that p ]
an )\ZOU/\[f](f) = (Q(UC)% +o(x))f(x) . (24)
Remark 1 Transformations of type
f—g.(fos) (25)

are calledsubstitutions with prefunctionsr combinatorial physics[19]. It can be shown that underenic
conditions ¢, s analytic in a neighbourhood of the origig(0) = 1,s = x + ---) these transforma-
tions form a (compositional) Lie group (infinite dimensiba&Fréchet type, see [19]). The infinitesimal
generators of these transformations are precisely of th@ fg(z) -1 + v(x).

We now give an example of integration of the one-parametarge*»5+ (2 for

Q= (aM)?aa™ +atala™)?. (26)
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Example 1 One has the conjugated form

d d 3 d. s
_ .2 2 _ —3(9.3 3
pr(Q) =z _dxx+x_da:x x72 (22 —dI):m . (27)

Using the procedure described above, one obtains the orempeter group of transformatiorigy

Uxlf](z) = \4/(1_4#2)3 Xf(\/%)- (28)

The reader is invited to check that, for suitably small valoéthe parameters
(i.e. |\ 4 0] < 22 < +00), Ux 0 Uy = U by direct computation.

Once integrated, the one-parameter groypreveals the Generalized Stirling matrix as expressed by
the following result.

Proposition 2 With the definitions introduced ard> 0, the two following conditions are equivalent
(wheref — U,[f] is the one-parameter grougxp(A\ppr(€2)).

)
3" Sa(n,k) Syt = ga)er?@ (29)
n,k>0 n.
ii)
Uxlf](x) = g(Az®) f (z(1 + p(Az%))) (30)
Proof: One first has the following equality between continuous afes
Ux= Y San k)A—"xnexk(i)k (31)
A= Q\’e, n! dz .

n,k>0

Assuming (i), let us check (i) fof a monomial (i. e. choose the test functighs- 7, forj = 0,1, --)

U,\(:vj) — ZZSQ(n’k)M J! 'x-jz

=i n! (j—k)!

N A L N
z ;([y’“]g(m Jer D) L =

= g(hx®)a’ 27: (’;) p(xe)F = g()\xe)(:v(l + (b(/\:ve)))j : (32)

k=0

Now as the two members of (30) are continuous and linegrand the set of monomials is total [13] in
the space of formal power series endowed with the Treveddgp® , we have (ii).
Conversely, if one assumes (i), one has

Us(e¥®) = g(Az®)evr(1+o(Az%)) (33)

(i) The usual - ultrametric - topology would not be enoughdet 0.
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and, from (32), one gets

Z SQ(TL, k) (/\I') (:Cy)k _ g()\xe)eyﬂb()\me). (34)
n,k>0 n.
A legitimate change of variables£{® — = ; zy — y) gives (i). a

Example 1 continued
WithQ = (a*)?aat + ata(a™)?, one has the one-parameter group

Uxlf](z) = \4/(1_4#2)3 Xf(\/%)- (35)

Then, applying the preceding correspondence, one gets

i kE_ 4 1 y(\/(l,—lu)—l) a4 1 Yy, >1 cnz™)
n;() Sa(n, k) Y= / A=y e “\a—wpe e >1 (36)

wherec,, = <2:> are the central binomial coefficients.

4 Representation of endomorphisms in more general spaces

4.1 Notation

ConsiderK a (commutative) field an&|[x] the K-vector space of polynomials in the indeterminate
Denote byEnd(V') the algebra of linear endomorphisms of dfyector spacéd’. If ¢ andy are both
elements oEnd(V), then with¢y denoting the usual compositiog ‘6 ¢” of linear mappings, we have
for any integem

|dV if TL:O,

"= ¢po--ro0p if n>0 (37)

——
n times

whereldy is the identity mapping oV. Lete := (e;);cr be a basis of (V' which we assume does not
reduce ta0)). We denote the decomposition of any veaias V' with respect te by

Z(v, e;)e; (38)
el

wherdV) (v, ¢;) is the coefficient of the projection af onto the subspacKe; generated by; in V.
Obviously, all but a finite number of the coefficients e;) are equal to zero. IfI,<) is a linearly
ordered (nonempty) set bounded from below (Viths its minimun®), and, ifv 0, then thedegreeof
v (with respect tae) is defined by

dege(v) :=max{i €I : (v,e;) # 0} (39)

™ The notation {v, w)” is commonly referred to as a “Dirac bracket”. It was suctesused (for the same reason of duality) by
Schitzenberger to develop his theory of automata [3, 4, 21]
) We follow the notation of [33] for the lowest element.
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and
deg,(0) := —c0 (40)

where—co ¢ I, and the relation-co < i for eachi € I extends the order afto I := I U {—oo}. If
v # 0, then the nonempty finite st € I : (v,¢;) # 0} admits a greatest element, sinkés totally
ordered, so thateg, (v) is well-defined. Thus, the following equality holds (for amy- 0)

v = Z (v, ei)e; (41)

G_igdege (v)

With (v, eqeg_(v)) 7 0. In particular, takings := (x"),>o as a basis oK [x], any nonzero polynomia?
may be written as the sum
deg(P)
P = Z (P,x™)x" (42)

n=0

wheredeg(P) is the usual degree d?.

4.2 Review of the classical result

It has been known since the paper of Pincherle and Amalditfgg] for a fieldK of characteristic zero,
any linear endomorphism € End(K[x]) may be expressed as the sum of a converging series in the
operatorX of multiplication by the variable and in the (formal) derivative (of polynomialg). In [26]

(see also [16] for some generalizations) Kurbanov and Madgigive an explicit formula - recalled below

- for this sum.

Theorem 1 ([26]) Suppose thakK is a field of characteristic zero. Let € End(K[x]). Theng is the
sum of the summable series (in the topology of simple coemeegonEnd(K|x]) with K[x] discrete)

+oo
Z P.(X)D* where (P (x))ren is a sequence of polynomials which satisfies the followigrsion
k=0

equation:

Py(x) = ¢(1),
Xn+1

B 3 - xnHi—k (43)
Prn() = oG gpk(x)(n+1—k)!'

In what follows, we generalize this result to ayvector space with a countable basis using a pair of
rather general ladder operators instead of the usual oae®lgX andD. The basic idea is to use only
those operator properties which make possible an expassiular to the classical case.

4.3 Endomorphism expansion in terms of ladder operators

From now on, except for Example 2, the fiéddds not assumed to be of characteristic zero. Let us consider
aK-vector spacd” of countable dimension. Let := (e, ),en be an algebraic basis for this space. We
can define two kinds dadder operatorswith respect tae, namely, dowering operatorL, € End(V),

by
{ Le€0 = 0 5 (44)

Leen+1 = €én
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and, araising operatorR. € End(V), by
Reen = eny1 - (45)

Such operators were discussed by Katriel and Duchamp [2&kdsas Dubin, Hennings and Solomon
[17, 18] in a more general context, and are similar to thetmeand annihilation operators acting on an
interacting Fock space of Accardi and Bozejko [1]. The apansL, and R, may also be regarded as the
operatorsD andU described by Fomin in [22], associated with the orientedigdagraphey <« e; «—

€ — - and€0—>€1—>€2—>"-.

Definition 1 Let P € K[x] andu := (u,)nen be a sequence of elementdafWe defineP(u) € V by

deg(P)
P(u):=> (Px")up= Y (Px"uy,. (46)
n>0 n=0

Lemmal Lete = (e, )nen be a basis o/, The mapping

Pe: Kx] — V (47)

is a linear isomorphism.
Proof: Straightforward. |

Lemma 2 Lete = (e,)nen be a basis of” and R, be the raising operator associated with For any
polynomialP € K|x] we can define the operatdt(R.) := Z(P, x™YRy. Then we have

n>0
P(Re)eo = P(e), (48)

thus
Rleo =en . (49)
Proof: Omitted. O

Now suppose that is discrete (as i&) andEnd(V'), as a subspace &f", is endowed with the topol-
ogy of compact convergence; that is, in this case, the tqyadd simple convergence (since the compact
subsets of discref€ are its finite subsets). As a resiihd(V') becomes a complete topologid&lvector
space (and even a complete topologi€adlgebra). Using this topology we may consider summable fam
ilies of operators ofv.

We recall here some basics about summability in a genetaigetet G be a Hausdorff commutative
group,(g;)icr a family of elements of7. An elemeny € G is thesumof (g;);¢; if, and only if, for each
neighbourhoodV of ¢ there exists a finite subsét, of I such that

Y g ew (50)

jeJ
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for every finite subsef C I containingJy . The sumy of a summable familyg; );cr of elements of7
is usually denoted by
> i (51)

icl
It is well-known that if (g;);cr is @ summable family with surg, then for any permutation of I, g
is also the sum ofg,(;))icr. WhenG is complete, the following condition (Cauchy) is equivdlém
summability. A family(g;);c; of G satisfiesCauchy’s conditiornf, and only if, for every neighbourhood
W of zero there is a finite subsét, of I such that

S gew (52)

keK
for every finite subsek of A disjoint from Jy,. Many other properties and results about summable fam-
ilies may be found in [11].

For instance, le¢ = (e, )nen be a basis of7. Then for any sequend®,, )2, € End(K[x])" of ele-
ments ofEnd(V), the family (¢, L2 )nen is easily shown to be summable. Due to the choice of topology,
the fact thak is a basis o/, and by general properties of summaubility, it is sufficienptove that, for
eachk € N, the family ((¢,,LZ)(ex))nen is summable ir/. SinceV is discrete and therefore complete,
it is sufficient to check that Cauchy’s condition is satisfiéée may takdV := {0} as a neighborhood of
zero inV. LetJw := {0,--- ,k}. Because for every > k, L7 (ex) = 0, thenz (pnLg)(ex)) =0

neJ
whenevel/ is a finite subset of such that/ N Jy = 0. In what follows, the sum of a familgp,, L2),en

is the element oEnd(V") denoted byz ¢n Ly where for every nonzeroe V,

neN
deg, (v)
<Z¢nL2> W)= > alLi(v)). (53)
neN n=0

We are now in a position to establish the main result conogrtiiie expansion of any operator Bnin
terms of ladder operators.

Theorem 2 (Endomorphism expansion in ladder operators)Leta = (a,)neny @andb = (b,)nen be
two bases oV such thab, € Kay; thatis, there exists a nonzero scalar= (bg, ag) such that\ay = bg.
Then eachp € End(V) is the sum of the summable famil§, (Ra) L} )nen Where(P, ) nen € K[x]|V is a
sequence of polynomials that satisfies the following recarsquation

AB(a) = ¢(bo),

APusi(a) = 0(buri) =Y Pe(Ra)busioi - (54)
k=0

(Note that due to Lemma 1 , for eaghe N, P,(a) uniquely define®,, € K[x].)

Proof: Sinceb is a basis, it is sufficient to prove that for eacks N,

(bn) = <Z &(Ra)L{i) (bn) - (55)

keN
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1. Casen = 0:

<ZP1¢(Ra)LI§> (bo) = Po(Ra)(bo)

keN
= APy(Ra)(ao) (56)
= AFy(a) (according to Lemma)2
= ¢(bo) (by assumptioh.

2. Casev+1,n€N:

n+1
<ZPk(Ra)L’g> (bnt1) = > Pe(Ra)bni1 s

keN k=0

= PnJrl(Ra)(bO) + Z Pk(Ra)anrlfk
k=0

n 57
= AP,41(Ra)(ao0) + Z Py(Ra)bpt1—k &7
k=0
= APyii(a) + Z Py (Ra)bny1-r
k=0
= ¢(bn+1) .
O

Example 2 Suppose thaK is a field of characteristic zefd. ConsiderV := K[x], a,, := x" and

by = }:TT: ThereforeR, = X, the operator of multiplication by; and, L, = D, the formal derivative of
polynomials, which are the data of the classical result tiechin subsect. 4.2. In Example 2, we consider
the functionat: K[x] — K C K|[x] that maps a polynomial to the sum of its coefficients. Fronofiém 2,
we know that = Z P,(X)D™ and that

n>0

1 n Xn+1—k

Poa(x) = CESN kzzopk(x)m : (58)

. . . . 1
We can show by induction th&t, (x) = -5 (1 — x)™, and then easily verify that= E —(1- x)"D"
. n.
n>0
on the basi{x"},. Alternatively, we see that this operatoreis= €77 |;_1_x: x™ — (x + y)"|y=1_x.

Leta = (ay)neny @andb = (b,,)nen be two bases of . Let us consider the following operators

0 if n=0,

Lp,pbn = { Bby i n>0. (59)

M) The assumption on the characteristidkofs needed here because we consider denominators of thexform
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and
Ra,aan = QpQan+1 (60)

where3 := (B.)nen, With Gy := 1, anda := (a,)nen are sequences of nonzero scalars. These
operators, which we may call respectivélyrelative lowering operator with coefficient sequertand
a-relative raising operator with coefficient sequenregseem to be straightforward generalizations of the
ladder operators as previously introduced; however, $himt entirely the case. Actualliy, g andRa «
are respectively equal to some “usual” ladder operatgys: ;, and Rq.a where@™ ! - b = (V) nen

n -1 n—1

with b/, = <H ﬁi> bn (resp.c - a = (a},)nen Wherea], = (][ es)an for n > 0, andaj = ay).
1=0 =0

If b, € Kay (or, equivalently, ifby € Kao, becausé| = % = by andag, = ag), then we can apply

Theorem 2 with the operators, 3 and R, «, just by replacinga by o - a, b by B! b. Whena = b,
we say thatl, g and R, . area-relative ladder operatorsvith coefficientsd anda respectively. Such a
pair of operators - used in the following subsection - sgtilsé rather general commutation rule

Da.ﬂ,a = [La,ﬁv Ra,a] - La,ﬁRa,a - Ra,aLa,ﬁ (61)
whereD, g.« is the operator defined by

D . (Oéoﬁl)ao If n=>0 5
a,Baln = (anﬁn-ﬁ-l - O‘n—lﬁn)an If n >0 9

which we call thediagonal operatorassociated witll, g and Ry « -

Note 1 It is possible to define a similaby, » € End(V') associated with any ladder operatofs, and

R, by Dy, o := [Lp, Ra], Which defines the commutation relation betwégnand R,. (In particular,

Dapga = Dg-1.44.a-) Furthermore, when the two basasand b are related byb, € Kag as in

Theorem 2, then, as an operator & Dy, » is the sum of a summable family,, (Ra)L})nen, and
therefore the commutation relation is given by

LuRa = RaLp + Y Pu(Ra)Li, - (63)
neN

4.4 Extension to formal infinite linear combinations

4.4.1 Preliminaries: topology and duality

Let K be a field (of any characteristic). L&t be a countable-dimensionglvector space, and :=

(en)nen be a basis oV. The vector spac® can be considered as tiegraded vector spack, :=

@ Ke,. There exists a natural decreasing filtration associatéll tis grading which is defined by

neN

V="V, = U F, (V) whereF,, (V,) := @Kek. This filtration is separatedle., ﬂ F,(Ve) = (0).
neN k>n neN

Now suppose thaK has the discrete topology. The subsglgV.) define a fundamental system of

neighbourhoods of zero of a Hausdoifvector topology onl” = V. (see [12]). This (metrizable)

topology may be equivalently described in terms of an ordecfion. Defineve : Ve — N U {+o0} by

| min{n e N: (v,e,) #0} if v#0,
we(v) = { +0o0 if v=0 (64)

(62)
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forv e V. The completiorf/e of V for this topology is canonically identified with tHg-vector space

H Ke,, - that is, the set of all familiegv, ).en With v,, € Ke,, for each integer. - equipped with the

neN

product topology of discrete topologies on each faiiey,. Each elemen$ of Ve may be uniquely seen

as a formal infinite linear combinatio$ = Z(S, en)en, Where(S, e, )e, = v, andS = (v, )nen (itis
neN

not difficult to prove that the family(S, e,,)e, )nen is actually summable). The topology inducedﬁy

onV, is the same as the topology defined by the filtration. The drdwtion is extended td, by

i = { RS20

for $ € Ve, and may be used to describe the topology of the completian. irfStance, a sequence
(Sn)nen of formal infinite linear combinations converges to zeraifid only if, lim we(S,) = +o0;in

other terms, for every. € N there are only finitely man¥ € N such that{S, e,,) # 0. This topology
is sometimes referred to s tf@mal topology(see [14, 24]), and/; is then theformal completiorof the
N-graded vector spadé, := @ Ke,,.

neN

Note 2 If a := (an)nen andb := (b,,),cn are two bases o, then the isomorphisr® of V' that maps
an t0 b, for eachn € N is also a homeomorphism frol}, to V3, considered as spaces equipped with
their respective filtrations. It turns out thd@ may be extended to a homeomorphidrfrom V, to V4.
Although the two spaces are homeomorphic, we cannot caalbnidentify them. Indeed, let us consider

the sequenchk := (b, ),en defined by, := Z ax, wherea := (ay)nen IS another basis. Theh is a
k=0

basis of/’: suppose that for some € N, we havez a;b; = 0witha; € K. Thenz a; <Z a;g) =0

1=0 1=0 k=0
n n
which is equivalent tcﬁz a;)by + ZO‘Z Vo1 + -+ + (ap—1 + ap)an—1 + ana, = 0. Thena; = 0
=1

1=0
for everyi = 0,---,n, and{b; : i = 0,--- ,n} is linearly independent. Using the classicabMus
inversion, we obtain

o bo if TL:O,
““‘{ bp —bp_y if n>0 (66)

which proves thal” is generated by. Now we havelim b,, = 0 in the topology ol4, , but lim b, =

Z an in V (Note however thatim a,, = 0 also in14, becausew, (a,,) = n—1 for everyn € N\ {0},

n—oo

and then lim wy(a,) = 4+00.) The problem is due to the fact that the order function dejgeon the
choice of the basis.
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dege (P)
We now introduce thé&duality) pairing(.|.) : Ve x Ve — K defined by(P|S) := Z (P,en) (S, en),
n=0

for P € V, andS € V,. This pairing, also considered in [32], satisfies in patticu

le) = (e ey =g =4 O T iF],
(el = enes) =0, ={ | § 127 67)
for eachi, j € N, and more generallyPle;) = (P, e;), (e;|S) = (S, e;) foreveryP € Vg, S € Ve.

The algebraic dual spad&* of V, is isomorphictd79. Indeed let € V and defines, := Z Len)en €

neN

Ve. Thenl(P) = (P|S¢). The linear mappind — S, is clearly one-to-one. It is also onto because for
eachS € Ve, P — (P, S) is easily seen as a linear form oviér.

The topological dual spacg! of 1, is isomorphic tol,. Indeed let us consider a linear continuous
form ¢ of V. Since/ is continous, for everg € Vs, /(5) = Z(S, en)(e,,) and the sum is convergent

n>0
in K discrete. Therefore there is an integéisuch that for every, > N, (S, e,,)¢(e,,) = 0. If we choose
S = Z en, then it means that for large enough{(e,,) = 0. ThenP, = Zé(en)en is actually an
n>0 n>0

element ofi, which satisfieg P|S) = ¢(S) for every formal infinite linear combinatia$l. Now suppose
thatP, = 0 for £ € V. Then for everyh € N, {(e,,) = (Pylen) = (P, en) = 0. The linear formis null
on the dense subskg of Ve, and, by continuity/ is also equal to zero on the closure. i€ V.. Then
£:= S — (P|S)is alinear form ori/, such that?, = P. Moreover/ is clearly continuous. In summary,
the pairing performs the following isomorphisms.

/ARE=TN
Ae e 68
vV = V.. (68)
The respective isomorphisms are given by
.V — ‘79 (69)
and R
UV =V, (70)
such that for every? € V,, S € ‘A/e, if £ € VJ, then
(P|®(£)) = €(P) (71)
while
7H(S)(P) = (P|S) (72)
andif/ € V/, then
(W(O)]S) = £(9) (73)

and
UH(P)(S) = (P|S) . (74)
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We may use these isomorphisms to define the natural notitamgposein this setting. Theranspose
of ¢ € End(Ve) is ¢' € End(V") such that for every? € V, and everyS € Ve, (¢P|S) = (P|¢'S).
Actually, ¢! is defined as

o

Ve = Ve
S = D@ LS) o 0) (75)
Indeed, for evenP € Vj, the following holds.
(Plg'(S)) = (P|®(21(S5)0¢)
= (271(9)(¢(P)) (76)

o
= (o(P)]S5) .

By duality, it is also possnble to define a transposedor End( =) but continuity has to be taken into
account. Indeed, let € End(Ve) be a continuous endomorphism. We can define End(Vs) by

'p(P) := V(U (P)o¢) (77)

for everyP € V,. Note that since is continuous (and lineary ~*(P)o ¢ € ‘A/e’. Then, for everyP € V,,
andS € V,, we have

(Plo(S)) = (‘6(P)|S) - (78)
Indeed,
(fo(P)[S) = (W~ '(P)o¢)|S)
= (¥H(P))(e(5)) (79)

(Plo(S)) -

Lemma 3 For each¢ € End(Va), ¢! is a continous endomorphism Bf. Moreovers = *(¢*). Dually,
for every continuous endomorphignof V5, ¢ = (t¢)*.

Proof: Let ¢ € End(Ve) and{S,}, be a sequence of infinite linear combinations that convetges
zero. Letk € N. By definition ot the transposég’(S,,), ex) = Z<¢(ek),ei><5n,ei>. SincesS,, — 0,
>0

for everyi, there isN; such that for alln. > N;, (S,,e;) = 0. Therefore we can find&v,, such that
n > Ny implies (S,,,e;) = 0 for everyi < deg,(¢(ex)), and then for such, (¢'(S,,),ex) = 0, so
#*(S,) — 0, and¢’ is continuous. Now let us prove that= (¢'). For everyP, S, we have(¢(P)|S) =
(Plgt(9)) = (t(¢")(P)|S) (the second equality is valid singé is continuous). Therefore for evetyy,
(dei), ej) = (p(er)lej) = (H(@")(ei)lej) = (*(o')(ei), e;) which is sufficient to prove the expected
equality. Finally, let¢ be a continuous endomorphism Bf. For everyP, S, one has(P|¢(S)) =
('o(P)]S) = (P|(*¢)"(5)), and in particular for every, (¢(S5),e;) = (ei|¢(S5)) = (esl(*0)"(5)) =
((*$)1(S), e;), which proves that(S) = (*¢)*(S) (by definition of V). O

Let a andb be two bases oV. Let Ly g (resp. Ra o) be ab-relative lowering operator (respa-
relative raising operator) with coefficient sequerite= (5,,)neny With Gy = 1 (resp. @ = (ap)nen)-
These operators are clearly continuousgn(resp. onV,), and therefore extend uniquely as continuous
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endomorphisms of the completioﬁg andVa. Their respective extensioﬁs),ﬁ andfza,a are precisely
defined by

Zb,ﬁ(S) = Z<S’ bn>Lb,,3bn = Z<S7 bn>ﬁnbn—l = Z<S7 bn+1>ﬁn+1bn (80)
n>0 n>1 n>0
and R
Rao(S) = Z(S, an)Ra,qtn = Z(S, an) Q1 = Z(S, Ap—1)Clp—10p, - (81)
n>0 n>0 n>1

They correspond to the operatdpsandU of [32] associated with the graded (locally finite) podgts—
by — ﬁ%bg — %bg — --- andag — apa; — agaias — agaiieaz — - - -
We may use the duality pairing in order to find the transposegimgs of bothLy, 3 andRa .

Lemma 4 Let R, . be thea-relative raising operator with coefficient sequenee= (o, )nen. The

transpose ofR, ., is the extensimia_q to the completioﬁA/a of thea-relative lowering operatoiL, «
with coefficient sequenee |:= (v, )nen Where

1 if n=0,
n '_{ Op_1 If n>0. (82)

Proof: Letn € NandS e ‘A/a. According to Equation (60 Ra,atn|S) = an{ant1]|S) = an(S,ant1) =

<an| Z(S, ak+1>akak> = (anIZa,a1> (the last equality comes from Equation 80). Multiplying ot
k>0
(leftmost and rightmost) sides witP|a,,) (for someP € V,) and summing over gives the result. O

Lemma5 Let Ly, g be theb-relative lowering operator with coefficient sequeng@e= (5, )nen. The

transposely, 5 of Ly, g is the extensiorﬂA%b,gT to V4, of theb-relative raising operator?y, g with coeffi-
cient sequencg 1:= (vn)nen, Where for eactn € N, v, 1= 5,,41.

Proof: This proofis so similar to the proof of Lemma 4, that it can betted. O

__Itis also possible to determine the transpose of the exierfithe ladder operators to the completion
Ve. Several lemmas are given below to answer this questionfifdt@ne does not need a proof.

Lemma 6 Let3 = (5,)nen be any sequence of element&oduch thats, = 1. We have

B=pB1L. (83)
Leta = (o )nen be any sequence of element&ofWe have

a=all . (84)

Lemma 7 Lete = (e,)nen be a basis oV. Let3 = (6,)nen be a sequence of nonzero scalars such
that 5y = 1, anda = (o, )nen be any sequence of nonzero scalars. Then we have

tie_ﬂ = Re.ﬂT andtﬁeya = Le,al . (85)
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Proof: SinceLe B andR e,c @€ continuous endomorphsms&@fthey admit transposes which are endo-
morphisms ofl.. According to lemmas 4 and &/, 5, = = Lo BTl = Lo 8- Then/! Leg ="(Rl 1) =

Re 1 (according to lemma 3). The caset(ﬂe_,a is treated in a similar way. O

4.4.2 Extension of Theorem 2 to formal infinite linear combinations

In what follows, our intention is to generalize Theorem 2he tase of continuous endomorphisms on
formal infinite linear combinations. To this end, we supptbmv is equipped with thé/.-weak topol-
ogy, that is, the weakest topology for which the mappifgs ( ) S eV, — (P|S) € K, defined
for a givenP € V,, are continuous. Sinck, is isomorphic toV’ (whenV is equipped with its for-
mal topology previously introduced), it is the so-calledake topology. This topology turng,, into a
Hausdorff topolog|cal space (witk dlscrete) Itis obvious that the duality pairid) is separately con-
tinuous onV, x V, whereV, is discrete and/, has theV/,-weak topology. Thus, a familysS;)cr € Vf
is summable whenever for eveF € Vs, the family ((P|S;)).cr is summable irfK, and, in this case,
(PI> "8y => (P|Sy).
icl iel

Now suppose that the vector space of continuous endommphif;f/e has the topology of simple
convergence. (We also suppose the samé&fal(Vy), with V5 equipped with the discrete topology.) In
this particular topology, each family of continuous endmphmsms(Re a®n)nenin End( o), whereg,,
is a continuous endomorphism ot for each integen, is a summable family. In order to check this,
letP € V, andS € V,. We havet(Rga(bn) = t(anZ,ai € End(V,). The family(%nLgyai)neN is
summable irEnd(1,), and we have

deg, (P)

Z ¢n eal > = Z ¢n eal |S>

neN
dege(P)

= Z <¢n eal( )|S>
n=0 (86)

deg, (P)

= > (PIRZ6nS)
n=0
dege P)

= Z Re a¢n

Moreover for everyn > deg, (P),

m

(Pl Y Rr,6uS)=( Y ‘¢.Ll, (P)S)=0. (87)

n=degy(P) n=deg,(P)

Therefore, we obtain a summable serieXidiscrete, and so i@ga%)neN.
The generalization of Theorem 2 to the case of continuousatqs on formal infinite linear combina-
tions is given below.
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Theorem 3 Leta = (o )nen be any sequence of nonzero scalars, @ahe: (5,).cn be a sequence
of nonzero scalars wittB, = 1. Let¢ be any continuous element Bfd(V.). Then there exists a
sequence of polynomial®,).en € K[x]N such thate is equal to the sum of the summable family

(Rg,mpn (Le,al))neN-

Proof: By Theorem 2/¢ = Z P, (Re,a)Lg g (Sum of a summable family). Then, using the duality
neN
pairing, we check thap = Z fzngn(fem) (sum of a summable family). m|
neN

Corollary 1 Under the same assumptions as those of Theorem 3, everpwoumsi endomorphism €
End(Ve) is equal to the sum of the summable famig , P, (Le 3))nen for some polynomials sequence

(Pp)nen € Kix]N.
Proof: Apply Theorem 3 with3 := « | anda := 3 1. |

Note 3 Without difficulty we can check that the extensﬁggﬂa of the diagonal operatoDe g.o =

[Le., Re.a) is equal to[Le g, Re o). AS a continuous endomorphisBe g.o = > e o Pu(Le ). SO

neN
the commutation rule becomes

Eoplon = RoaLop+ X ReaPu(Tap). 9

5 Conclusions

The idea of the commutation relatiohB — BA = I between two operatord and B (for example
the creation and annihilation operators of second-queditiheory) is fundamental to the foundations
of quantum physics. In this paper we have shown that staftorg this basic equality, calculations of
elementary operations, such as exponentiation assoaeidgttedjuantum dynamics and thermodynamics,
lead us immediately to traditional combinatorial conceqish as Stirling numbers, and generalizations
thereof, which we describe. We give explicit forms for theegrarameter groups generated by the ex-
ponentials of such operators - crucial in quantum calcoteti in certain restricted cases; namely, those
containing one-annihilator only (corresponding to formsm-called Sheffer-type).

In Physics, the creation and annihilation operators acpaces of numbers of particles, moving from
one state to another and so are considered as a special foaddsfr operator We generalize this
concept also, by considering endomorphisms in linear spadeich mathematically correspond to these
ideas. In particular, we note that infinite-dimensionalteespace seems to be a rather natural setting to
deal with ladder operators. Any integer-indexed basis mnmayige the setting in a rather obvious way for
generalized ladder operators that can be either lowerimgjltdation) or raising (creation), and without
any particular commutation rule. We prove that given twalkxdoperators, one lowering, the other one
raising, associated with possibly distinct bases (withstrae first rank), it is possible to expand any linear
endomorphism in terms of iterates of the given ladder opesat
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