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The concept of tensor rank was introduced in the twenties. In the seventies, when methods of Component Analysis on arrays with more than two indices became popular, tensor rank became a much studied topic. The generic rank may be seen as an upper bound to the number of factors that are needed to construct a random tensor. We explain in this paper how to obtain numerically in the complex field the generic rank of tensors of arbitrary dimensions, based on Terracini's lemma, and compare it with the algebraic results already known in the real or complex fields. In particular, we examine the cases of symmetric tensors, tensors with symmetric matrix slices, complex tensors enjoying Hermitian symmetries, or merely tensors with free entries.

Introduction

Generic ranks, defined in the complex field, have been studied for several decades [START_REF] Howell | Global properties of tensor rank[END_REF] [START_REF] Strassen | Rank and optimal computation of generic tensors[END_REF]. However, the value of the generic rank for arbitrary dimensions is not yet known in the unsymmetric case, and has been known in the symmetric case only recently [START_REF] Alexander | Polynomial interpolation in several variables[END_REF] [4] [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF]. The existence itself of the generic rank is not ensured in the real case, and there exist in general several typical ranks (see section 2.1 for definitions). The typical tensor rank of three-way arrays over algebraically closed fields has been much studied in the context of computational complexity theory. Bürgisser, Clausen and Shokrollahi [START_REF] Ürgisser | Algebraic complexity theory[END_REF]Ch.20] give an overview of general results for various classes of arrays; these results have been extended in [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF] in the symmetric case. The study of tensor rank over the real field has lagged behind. In this paper, generic and typical ranks are discussed for various tensor structures.

The typical rank of three-way arrays over the real field has been relevant for psychological data analysis since Carroll and Chang [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF] and Harshman [START_REF] Harshman | Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis[END_REF] independently proposed a method which they christened Candecomp and Parafac, respectively. Therefore, we shall subsequently refer to this decomposition with the acronym CP, as several other authors did before, even if the CP decomposition had been introduced much earlier [START_REF] Hitchcock | Multiple invariants and generalized rank of a p-way matrix or t ensor[END_REF]. This CP decomposition generalizes Principal Component Analysis to three-way data, by seeking the best least squares approximation of a data array by the sum of a limited number of rank-one arrays. In 2-way analysis, the rank of the data matrix is the maximum number of components that Principal Component Analysis can extract, up to scale and rotation ambiguities. This property generalizes smoothly to three-way data. That is, the rank of a three-way array is the maximum number of components that CP can extract, up to scale and permutation ambiguities. Thus, the study of typical rank of three-way arrays is of great theoretical importance for CP.

Although CP was developed in a psychometric environment, its main area of applications has been Chemometrics, e.g. [START_REF] Smilde | Multi-Way Analysis[END_REF]. In addition to straightforward Email addresses: pcomon@unice.fr (P. Comon), J.M.F.ten.Berge@rug.nl (J.M.F. ten Berge), Lieven.DeLathauwer@kuleuven-kortrijk.be (L. De Lathauwer). application of CP, chemometricians also use Tucker3 component analysis [START_REF] De Lathauwer | A multilinear singular value decomposition[END_REF] [12] [START_REF] Tucker | Some mathematical notes for three-mode factor analysis[END_REF] quite often. This is another model aiming at decomposing a data array as weighted sum of rank-one arrays, the weights being collected in a socalled core array. Typically, the underlying chemometric model dictates that a vast majority of specified core elements vanish. Because there exist admissible transformations which generate a vast majority of zero elements in arbitrary arrays, we need tools to tell models from tautologies. This is where the concept of typical rank has found another realm of application. For instance, Ten Berge and Smilde [START_REF] Smilde | Non-triviality and identification of a constrained tucker 3 analysis[END_REF] have argued that a sparse core hypothesized by Gurden et al. [START_REF] Gurden | Modeling of spectroscopic batch process data using grey models to incorporate external information[END_REF] is indeed a model and not a tautology. Their hypothetical core was a 5×5× 3 array with only 5 nonzero entries, hence of rank 5 at most. Because 5 × 5 × 3 arrays have a typical rank of at least 7, it is clear at once that transformations which yield as few as five non-zero elements, starting from any randomly generated 5×5×3 array, do not exist. In this way, the typical rank of three-way arrays finds applications in distinguishing constrained Tucker3 models from tautologies. Besides Chemometrics, CP has found important applications in signal processing, especially in Independent Component Analysis [16] [17] and in multi-user access in wireless communications [START_REF] Sidiropoulos | Blind parafac receivers for ds-cdma systems[END_REF] [19] [START_REF] Sidiropoulos | Khatri-rao space-time codes[END_REF]. Moreover, the decomposition is finding its way to scientific computing, where it leads to a way around the Curse of Dimensionality [21, p. 125] [22] [23].

The paper is organized as follows. In section 2, definitions and historical remarks are provided. Next, a numerical algorithm is described in section 3, which is able to compute the generic rank of any tensor, symmetric or not. This approach is based on the so-called Terracini's lemma. Numerical values are reported in section 4, and compared to the already known rank values previously obtained by means of algebraic calculations. The consistency of the results confirm the validity of the approach, which can yield generic ranks for more complicated structures, such as tensors with symmetric matrix slices, which occur in the context of the Indscal model [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF], among others.

Generic and Typical Ranks

Definitions

Let T be a L-way array of dimensions N ℓ , 1 ≤ ℓ ≤ L, with values in a ring R. This array always admits a decomposition into a sum of outer products as:

T = R r=1 u (1) r • u (2) r • . . . • u (L) r (1) 
where u (ℓ) r is a vector of dimension N ℓ , ∀r, and • denotes the tensor product2 .

Now consider an array T with values in a field K. Arrays u (ℓ) r may be considered as vectors of the linear space K N ℓ . Thus, as a combination of tensor products of vectors, T may be considered as a tensor. Under a linear change of coordinate system in each space K N ℓ , defined by a matrix A (ℓ) , the tensor is represented by another array, obtained by the multi-linear transform {A (1) , A (2) , . . . , A (L) }. Since it is legitimate once a basis has been defined in the space, no distinction will be made in the remainder between the tensor and its array representation.

The rank of a given tensor T (and by extension, of the array defining its coordinates in a given basis) is the minimal integer R such that the decomposition (1) is exactly satisfied. This decomposition is referred to as the tensor Canonical or Parallel factor Decomposition (CP).

A property is called typical if it holds true on a set of nonzero volume [START_REF] Strassen | Rank and optimal computation of generic tensors[END_REF] [24] [25] [5]. This supposes that some topology has been defined on K N 1 ×N 2 ×...N L ; this can be the Zariski topology for instance, or an Euclidean topology. A property is said to be generic if it is true almost everywhere. In other words, a generic property is typical, but the converse is not true.

Let N 1 , . . . , N L be given positive integers. Then the rank of tensors of size

N 1 × N 2 × • • • × N L is
bounded, and one can make a partition of the tensor space, according to the rank values. One can define typical ranks as the ranks that are associated with subsets of nonzero volume in the latter partition. If there is a single typical rank, then it may be called the generic rank.

For instance, there is a single generic rank if the underlying field K is algebraically closed (as the field of complex numbers, C) [2] [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF]. But there may be several typical ranks if K is the real field, R. In the complex field, the calculation of the generic rank of symmetric tensors is completely described by the Alexander-Hirschowitz (AH) theorem [START_REF] Alexander | Polynomial interpolation in several variables[END_REF]. Recently, Abro and Ottaviani attempted to generalize the AH theorem to non symmetric complex tensors [START_REF] Abo | Induction for secant varieties of Segre varieties[END_REF], and provided an almost exhaustive list of exceptions. This recent contribution is the most significant step towards the complete characterization of the generic rank of unsymmetric tensors with free entries.

Historical remarks

Bounds on the typical rank over the complex field were given in [START_REF] Strassen | Rank and optimal computation of generic tensors[END_REF]. The study of typical rank over the real field was initiated by Kruskal [START_REF] Kruskal | Statement of some current results about three-way arrays[END_REF] [24], who noted that 2 × 2 × 2 arrays had both rank 2 and rank 3 with positive probability. Kruskal also added a few typical ranks for small arrays. Franc [START_REF] Franc | Etudes algébriques des multitableaux: Apports de l'algèbre tensiorielle[END_REF] discussed some more results, including bounds on typical rank. Ten Berge and Kiers [START_REF] Bolasco | Simplicity of core arrays in three-way principal component analysis and the typical rank of p × q × 2 arrays[END_REF] gave a first result of some generality, in solving the typical rank issue for all two-slice arrays (that is, arrays of format 2 × N 2 × N 3 ). These results were further generalized in [START_REF] Berge | The typical rank of tall three-way arrays[END_REF], to include all cases where, for

N 1 ≥ N 2 ≥ N 3 , N 1 > N 2 N 3 -N 2 .
Additional miscellaneous results can be found in [START_REF] Atkinson | Bounds on the ranks of some 3-tensors[END_REF] [START_REF] Berge | The typical rank of tall three-way arrays[END_REF] [31] [START_REF] Berge | Symmetry transformations for square sliced three way arrays, with applications to their typical rank[END_REF].

When Carroll and Chang developed Candecomp, the main applications they had in mind (a scalar product fitting problem related to Indscal) involved three-way arrays with slices that are symmetric in two of the three modes. Ten Berge, Sidiropoulos and Rocci [START_REF] Berge | Typical rank and INDSCAL dimensionality for symmetric three-way arrays of order i × 2 × 2 or i × 3 × 3[END_REF] noted that this form of symmetry would affect typical ranks, and examined a number of cases; also see [START_REF] Berge | The Carroll & Chang conjecture of equal INDSCAL components when Candecomp/Parafac gives perfect fit[END_REF]. Quite often, indeed, symmetry of slices appears to entail lower typical rank values. On the other hand, there are also cases where symmetry of the slices does not affect the typical rank. A partial explanation for this can be found in [START_REF] Berge | Symmetry transformations for square sliced three way arrays, with applications to their typical rank[END_REF]. Ten Berge et al. also noted that symmetric slices are often double centered [7, p. 286], which will further reduce the typical rank. That is, when an array has N 1 double centered slices of order N 2 × N 2 , it can be reduced to a N 1 × (N 2 -1) × (N 2 -1) array, and its typical rank will therefore be the same as that of noncentered symmetric-slice N 1 × (N 2 -1) × (N 2 -1) arrays. A parallel reasoning can be carried out for any nonsymmetrical double centered slices. A rationale for double centering slices in the Parafac context can be found in [35, p. 239]. It is easy to show that the N 1 × N 2 × N 3 array with N 1 double centered slices has the same typical rank as the uncentered N 1 × (N 2 -1) × (N 3 -1) array.

Computation of Generic Ranks

The algorithm proposed is directly inspired by [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF], which is in turn based on the so-called Terracini's lemma [START_REF] Terracini | Sulla rappresentazione delle forme quaternarie mediante somme di poten ze di forme lineari[END_REF] [37] [START_REF] Wakeford | Apolarity and canonical forms[END_REF]; note that the latter is often attributed to Lasker, and is hence almost one hundred years old. In a few works, the principle is based on the fact that the dimension of an irreducible variety is equal almost everywhere to the dimension of its tangent space (and we know that the set of tensors of rank at most R is irreducible [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF], for any R). Thus the dimension of a variety can be computed by measuring the dimension of the tangent space at a generic3 point. Let's see now how to compute the tangent space of interest. Equation ( 1) can be seen as a parameterization of tensor T . In fact, given a set of vectors {u (ℓ) r ∈ K N ℓ , 1 ≤ ℓ ≤ L, 1 ≤ r}, consider the mapping ϕ defined from a known subspace T R of (K

N 1 × K N 2 × • • • × K N L ) R onto K N 1 N 2 ... N L as: {u (ℓ) r ∈ T R , 1 ≤ ℓ ≤ L, 1 ≤ r ≤ R} → R r=1 u (1) r • u (2) r • . . . • u (L) r Denote Z R = ϕ(T R
) the image of this mapping. Then the dimension D of its closure ZR is given by the rank of the Jacobian of ϕ taken at a generic point, expressed in any fixed basis of K N 1 N 2 ... N L . If the Jacobian is of maximal rank at a generic point, that is, if its rank equals almost everywhere the dimension of the image space (e.g. N 1 N 2 . . . N L for unconstrained arrays), then it means that R is a typical rank. Actually, R will be either the smallest typical rank, or the generic rank. Note that it is always possible to reach the maximal Jacobian rank by increasing the number of terms R, so that the smallest4 typical rank is always found.

This result yields the following numerical algorithm:

• Express formally the parameterized rank-one tensor term in a canonical basis • Express formally the gradient of the latter in this basis • Draw randomly the parameters according to an absolutely continuous distribution, and initialize matrix J with the numerical value of the gradient • R = 1 • While rank(J ) strictly increases, do:

• Draw randomly the parameters according to an absolutely continuous distribution, and append this new numerical value of the gradient as a new row block in J • Compute the new value of D = rank(J )

• R ← R + 1
• Compute the dimension of the fiber of solutions as F = M -D, the difference between the number of parameters and the dimension of the image ZR .

In order to clarify the description of this algorithm, we give now the exact expressions of the Jacobian in various cases.

Jacobian for 3rd order asymmetric tensors with free entries

The mapping takes the form below

{a(r), b(r), c(r)} ϕ -→ T = R r=1 a(r) • b(r) • c(r)
taking into account the presence of redundancies, the number of parameters in this parameterization is

M = R(N 1 + N 2 + N 3 -2)
. In a canonical basis, T has the coordinate vector:

R r=1 a(r) ⊗ b(r) ⊗ c(r)
where we may decide that a(r), b(r), and c(r) are row arrays of dimension N 1 , N 2 , and N 3 , respectively, and ⊗ denotes the Kronecker product. Hence, after R iterations, the Jacobian of ϕ is the R( 

N 1 + N 2 + N 3 ) × N 1 N 2 N 3 matrix: J =                                     I N 1 ⊗ b(1) ⊗ c(1) a(1) ⊗ I N 2 ⊗ c (1) a(1 
I N 1 ⊗ b(R) ⊗ c(R) a(R) ⊗ I N 2 ⊗ c(R) a(R) ⊗ b(R) ⊗ I N 3                                     (2) 
The values of the generic rank obtained with this algorithm, called rangj3(N1,N2,N3), or rangj(N,L) 5 for tensors of arbitrary order L and equal dimensions, are reported in tables 1, 2, and 3.

Jacobian for 3rd order asymmetric tensors with symmetric matrix slices

In this section, we consider tensors of size N 2 × N 2 × N 3 , having symmetric N 2 × N 2 matrix slices. We consider the mapping:

{b(r), c(r)} -→ T = R r=1 b(r) • b(r) • c(r).
Our code rgindscal3(N2,N3) implements the computation of the rank of the Jacobian below, when its size increases according to the algorithm described in section 3:

J =               I N 2 ⊗ b(1) ⊗ c(1) + b(1) ⊗ I N 2 ⊗ c(1) b(1) ⊗ b(1) ⊗ I N 3 . . . I N 2 ⊗ b(R) ⊗ c(R) + b(R) ⊗ I N 2 ⊗ c(R) b(R) ⊗ b(R) ⊗ I N 3               (3) 
After R iterations, this matrix is of size

R(N 2 + N 3 ) × N 2 2 N 3 .
The number of parameters in this parameterization is M = R(N 2 + N 3 -1). Values of the generic rank are reported in table 4.

Jacobian for 3rd order double centered tensors with symmetric matrix slices

Now, take again N 2 × N 2 × N 3 tensors with symmetric N 2 × N 2 matrix slices, but assume in addition that every row and column in the latter matrix slices are zero-mean. In order to achieve this, it is sufficient to generate vectors b(r) with zero mean [START_REF] Comon | Generic and typical ranks of threeway arrays[END_REF]; in other words, only N 2 -1 random numbers need to be drawn, the last entry of each vector b(r) being obtained via b

N 2 = -N 2 -1 n 2 =1 b n 2 .
The Jacobian takes then the expression below:

J =               [I N 2 -1 , -1] ⊗ b(1) ⊗ c(1) + b(1) ⊗ [I N 2 -1 , -1] ⊗ c(1) b(1) ⊗ b(1) ⊗ I N 3 . . . [I N 2 -1 , -1] ⊗ b(R) ⊗ c(R) + b(R) ⊗ [I N 2 -1 , -1] ⊗ c(R) b(R) ⊗ b(R) ⊗ I N 3               (4) 
where 1 denotes a column of ones of size N 2 -1. At the Rth iteration, this matrix is of size R(N 2 + N 3 -1) × N 2 2 N 3 . The number of parameters in this parameterization is M = R(N 2 + N 3 -2). Table 5 reports some numerical values obtained with the code rgindscal2z.

Jacobian for 3rd order tensors with double centered matrix slices

The previous reasoning can be applied to N 1 × N 2 × N 3 tensors with no symmetry constraint and whose N 1 × N 2 matrix slices have zero-mean rows and columns. As before, it is sufficient to generate vectors a(r) and b(r) with zero mean. The Jacobian is then equal to:

J =                      [I N 1 -1 , -1] ⊗ b(1) ⊗ c(1) a(1) ⊗ [I N 2 -1 , -1] ⊗ c(1) a(1) ⊗ b(1) ⊗ I N 3 . . . [I N 1 -1 , -1] ⊗ b(R) ⊗ c(R) a(R) ⊗ [I N 2 -1 , -1] ⊗ c(R) a(R) ⊗ b(R) ⊗ I N 3                      (5) 
At the Rth iteration, this matrix is of size

R(N 1 + N 2 + N 3 -2) × N 1 N 2 N 3 .
The number of parameters in this parameterization is M = R(N 1 + N 2 + N 3 -3). The numerical values obtained with the code rangj3z are not reported, since we always have, for any triplet (N 1 , N 2 , N 3 ): rangj3z(N1,N2,N3)=rangj3(N1-1,N2-1,N3). In other words, as far as the generic rank is concerned, centering in a given mode of dimension N i yields the same effect as reducing the dimension to N i -1, which makes sense.

Jacobian for symmetric tensors

In the case of symmetric tensors of dimension N and order L, the mapping ϕ is defined from K N R to the space of symmetric tensors [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF], or equivalently to K p with p = N +L-1 L , as:

{a(r) ∈ K N , 1 ≤ r ≤ R} ϕ -→ R r=1 a(r) • L
where • stands for the tensor (outer) product; once a basis is chosen, the tensor product may be expressed by a Kronecker product, yielding a similar expression. In the case of order-3 tensors (L = 3) and after R iterations, the Jacobian of ϕ takes the following form, somewhat simpler than the previous cases:

J =        I N ⊗ a(1) ⊗ a(1) + a(1) ⊗ I N ⊗ a(1) + a(1) ⊗ a(1) ⊗ I N . . . I N ⊗ a(r) ⊗ a(r) + a(r) ⊗ I N ⊗ a(r) + a(r) ⊗ a(r) ⊗ I N        (6) 
This matrix is of size RN × N 3 , but we know that its rank cannot exceed

N +2 3
= N(N + 1)(N + 2)/6. The number of parameters in this parameterization is M = RN. Numerical values of the generic rank obtained with rangjs(N,L) are reported in table 6.

Jacobian for 4th order tensors with Hermitian symmetry

In this section, we consider fourth-order tensors of size N × N × N × N with Hermitian symmetry. We say that a fourth-order tensor T has Hermitian symmetry if it satisfies:

T (i, j, k, l) = T (k, j, i, l) = T (i, l, k, j) = T (j, i, l, k) * (7) 
for all values of indices i, j, k and l. In particular, fourth-order complex circular cumulants have this Hermitian symmetry. The space of fourth-order tensors with Hermitian symmetry is denoted by S(N). We consider the following mapping from C N R to S(N):

{v(r) ∈ C N , 1 ≤ r ≤ R} ϕǫ -→ R r=1 ǫ r v(r) ⊗ v(r) * ⊗ v(r) ⊗ v(r) *
in which ǫ r = ±1.

A symmetric real tensor has N(N + 1)(N + 2)(N + 3)/24 degrees of freedom. However, in the complex case, a tensor enjoying Hermitian symmetries (7) has N 2 (N + 1) 2 /4 distinct entries, of which some are strictly real. By counting the number of different real and imaginary parts of the tensor entries, we obtain that S(N) is a real vector space of dimension K(N) [40, Annexe B]:

K(N) = 6 N 4 + 4 N 1 N -1 2 + 3 N 2 + 2 N 1 N -1 1 + N 1 . (8) 
It is formed by the union of the images of ϕ ǫ , for all ǫ = (ǫ 1 , . . . , ǫ r ). Note that ǫ l does not affect the rank of the Jacobian. For clarity it will be omitted in the expressions below.

Function ϕ ǫ is not analytic in C. However, it is differentiable in R. The Jacobian of ϕ ǫ , interpreted as a mapping from R 2N R to S(N), now takes the following form:

J =               Re(γ re (v(1))) Im(γ re (v(1))) Re(γ im (v(1))) Im(γ im (v(1))) . . . . . . Re(γ re (v(R))) Im(γ re (v(R))) Re(γ im (v(R))) Im(γ im (v(R)))               (9) 
with

γ re (v(r)) = I N ⊗ v(r) * ⊗ v(r) ⊗ v(r) * + v(r) ⊗ I N ⊗ v(r) ⊗ v(r) * + v(r) ⊗ v(r) * ⊗ I N ⊗ v(r) * + v(r) ⊗ v(r) * ⊗ v(r) ⊗ I N and γ im (v(r)) = iI N ⊗ v(r) * ⊗ v(r) ⊗ v(r) * + v(r) ⊗ -iI N ⊗ v(r) ⊗ v(r) * + v(r) ⊗ v(r) * ⊗ iI N ⊗ v(r) * + v(r) ⊗ v(r) * ⊗ v(r) ⊗ -iI N .
The matrix J is of size 2RN × 2N 4 , but we know that its rank cannot exceed K(N). The number of parameters in this parameterization is M = 2RN. Numerical values of the smallest typical rank obtained with rangjh4(N) are reported in table 7.

Numerical results

The available results on unconstrained, slicewise symmetric, and double centered arrays can be compared with the numerical values delivered by the computer codes.

Tensors with free entries. Table 1 reports typical ranks for 2-slice, 3-slice, and 4-slice arrays. All known typical rank values [START_REF] Berge | The typical rank of tall three-way arrays[END_REF][START_REF] Berge | Partial uniqueness in CANDECOMP/PARAFAC[END_REF][START_REF] Berge | Symmetry transformations for square sliced three way arrays, with applications to their typical rank[END_REF] are reported in plain face, and are compatible with the results from rangj3. Specifically, the smallest of the known typical rank values within a cell coincides throughout with the results from rangj3. For the yet unknown entries, we insert the results from rangj3 in bold face. These bold face values represent the smallest typical rank in the real field, and the generic rank in the complex field. 1 Typical ranks for 2-slice, 3-slice, and 4-slice unconstrained arrays. Values reported in bold correspond to smallest typical ranks computed numerically; values in plain font were known before. Values separated by commas are known typical ranks. In the complex field, the smallest value in a cell is generic.

The values reported in table 1 correspond to necessary conditions that ensure uniqueness of the CP, in the sense that a tensor having a rank larger than those generic values has infinitely many CPs in C. Conversely, if the rank of a tensor is smaller than these generic values, then there is almost surely a finite number6 of possible CPs up to a scale factor, in either R or C. On the other hand, the bound given by Kruskal [START_REF] Kruskal | Rank, decomposition, and uniqueness for 3-way and n-way arrays[END_REF] corresponds to a sufficient condition ensuring uniqueness of the CP up to a permutation, and is always smaller than or equal to (but generally much smaller than) the generic rank. Other sufficient conditions have been derived in the literature under somewhat different assumptions, see e.g. [41] [42] for tensors enjoying Hermitean symmetries.

We report values of the smallest typical/generic rank of 3-way arrays with equal dimensions in table 2. The values shown in table 2 can also be compared to those obtained in the symmetric case (see table 6). Now the algorithm can be run on tensors of order higher than 3. To make the presentation of the results readable, table 3 rank obtained for asymmetric tensors with equal dimensions, N, and order L, with an algorithm referred to as rangj(N,L). These results are consistent with those of [START_REF] Lickteig | Typical tensorial rank[END_REF]. We also indicate the dimensionality of the fiber of solutions. This number is simply defined as the difference:

F (N, L) = R(N, L) (LN -L + 1) -N L .
For those values of dimension and order for which F = 0, only a finite number of different CPs are possible.

Tensors with symmetric matrix slices. Having verified that rangj3 and rangj work correctly throughout the cases where the generic/typical ranks are known, we next turn to the N 1 × N 2 × N 2 arrays with N 1 symmetric slices (Table 4). Again, known values coincide with numerical ones delivered by the code rgindscal3. We inserted results obtained from rgindscal3 alone in bold face. As far as can be determined, all results are again in agreement with previously known values [33] [34].

Tensors with double centered symmetric matrix slices. When the matrix slices are symmetric and also row-wise (or column-wise, which is the same thing) zero-mean, the code rgindscal2z yielded the values reported in table 5. Note that the generic rank computed by rgindscal2z(N2,N1) is the same as that computed by rgindscal3(N2-1,N1), at least according to the values explored in table 4. This shows that our method is easily adapted to handle the special case of double centered matrices.

Tensors with double centered matrix slices without symmetry constraint. A similar observation holds also true when the centered matrix slices are not symmetric. We do not separately report typical rank values for the case of double-centered (non symmetric) slices. Instead, we verified that the values obtained numerically with centering coincided with the values obtained numerically for uncentered arrays: rangj3z(N1,N2,N3)=rangj3(N1-1,N2-1,N3). Symmetric tensors. In table 6 we report values obtained with 3-way or 4way symmetric arrays, obtained with the code rangjs. Note that these results have been already reported in [START_REF] Comon | Decomposition of quantics in sums of powers of linear forms[END_REF]. The dimensionality of the fiber of solutions is given by:

F (N, L) = R N - N + L -1 L .
It is interesting to compare the ranks with those of the unsymmetric case, obviously larger, reported in table 3. In particular, one can observe that that the case F = 0 is again rarely met with generic arrays, but less rarely than in the non-symmetric case.

Fourth-order tensors with Hermitian symmetry. Finally, we report in table 7 values obtained for fourth-order tensors having Hermitian symmetry. These values were obtained with the code rangj4h. 
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  typical rank R for N 1 × N 2 × N 2 arrays, with N 2 × N 2 symmetric slices having zero-mean columns. In the complex field, these values are generic. Smallest typical ranks R of symmetric arrays of dimension N and order L. In the complex field, these values are generic. (bottom) Number F of remaining degrees of freedom; when F = 0, there are only a finite number of CP solutions.

Table 2

 2 reports values of the generic Smallest typical rank R of unconstrained arrays of dimension N × N × N . Values reported in bold correspond to ranks computed numerically; values in plain font were known before. In the complex field, these values are generic.

	N 2 3 4 5	6	7	8	9
		R 2 5 7 10 14 19 24 30
	L N 2 3	4	5	6	7	8
	3	2 5	7 10 14 19 24
	4	4 9 20 37 62 97
	L N 2 3	4	5	6	7	8
	3	0 8	6	5	8	18 16
	4	4 0	4	4	6	24

Table 3 (

 3 top) Smallest typical rank R of unconstrained arrays of equal dimensions, N , and order L. In the complex field these values are generic. (bottom) Number F of remaining degrees of freedom; when F = 0, there are only a finite number of CP solutions.

Table 4

 4 Typical ranks for N 1 × N 2 × N 2 arrays, with N 2 × N 2 symmetric slices. Values reported in bold correspond to smallest typical ranks computed numerically. Values separated by commas are known typical ranks. In the complex field, the smallest value in a cell is generic.

	N 1 N 2	2	3	4	5
	2	2,3 3,4 4,5 5,6
	3	3	4	6	7
	4	3 4,5	6	8
	5	3 5,6	7	9
	6	3	6	7	9
	7	3	6	7	10
	8	3	6	8	10
	9	3	6 9,10 11
	10	3	6	10	11

Table 7

 7 Smallest typical rank R of fourth-order tensors with Hermitian symmetry of dimension N × N × N × N . Values reported in bold correspond to ranks computed numerically.

This notation is used in order to make the distinction with the matrix Kronecker product used in the next section.

In practice, a generic point is drawn randomly. If the result is questionable, the point can be drawn another time. Any random drawing should yield the same dimension, if the pdf is absolutely continuous.

Finding all typical ranks is still an open problem, and is not addressed in this paper.

The codes can be downloaded from www.i3s.unice.fr/∼pcomon.

This finite number of solutions may possibly be larger than the number of permutations. In such a case, the solution is not essentially unique.