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Abstract

The concept of tensor rank was introduced in the twenties. In the seventies, when
methods of Component Analysis on arrays with more than two indices became
popular, tensor rank became a much studied topic. The generic rank may be seen
as an upper bound to the number of factors that are needed to construct a random
tensor. We explain in this paper how to obtain numerically in the complex field the
generic rank of tensors of arbitrary dimensions, based on Terracini’s lemma, and
compare it with the algebraic results already known in the real or complex fields.
In particular, we examine the cases of symmetric tensors, tensors with symmetric
matrix slices, complex tensors enjoying Hermitian symmetries, or merely tensors
with free entries.
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1 Introduction

Generic ranks, defined in the complex field, have been studied for several
decades [1] [2]. However, the value of the generic rank for arbitrary dimen-
sions is not yet known in the unsymmetric case, and has been known in the
symmetric case only recently [3] [4] [5]. The existence itself of the generic rank
is not ensured in the real case, and there exist in general several typical ranks

(see section 2.1 for definitions). The typical tensor rank of three-way arrays
over algebraically closed fields has been much studied in the context of com-
putational complexity theory. Bürgisser, Clausen and Shokrollahi [6, Ch.20]
give an overview of general results for various classes of arrays; these results
have been extended in [5] in the symmetric case. The study of tensor rank
over the real field has lagged behind. In this paper, generic and typical ranks
are discussed for various tensor structures.

The typical rank of three-way arrays over the real field has been relevant for
psychological data analysis since Carroll and Chang [7] and Harshman [8]
independently proposed a method which they christened Candecomp and
Parafac, respectively. Therefore, we shall subsequently refer to this decom-
position with the acronym CP, as several other authors did before, even if the
CP decomposition had been introduced much earlier [9]. This CP decomposi-
tion generalizes Principal Component Analysis to three-way data, by seeking
the best least squares approximation of a data array by the sum of a limited
number of rank-one arrays. In 2-way analysis, the rank of the data matrix
is the maximum number of components that Principal Component Analysis
can extract, up to scale and rotation ambiguities. This property generalizes
smoothly to three-way data. That is, the rank of a three-way array is the
maximum number of components that CP can extract, up to scale and per-
mutation ambiguities. Thus, the study of typical rank of three-way arrays is
of great theoretical importance for CP.

Although CP was developed in a psychometric environment, its main area of
applications has been Chemometrics, e.g. [10]. In addition to straightforward

Email addresses: pcomon@unice.fr (P. Comon), J.M.F.ten.Berge@rug.nl
(J.M.F. ten Berge), Lieven.DeLathauwer@kuleuven-kortrijk.be (L. De
Lathauwer).
1 Part of this work has been presented at the TRICAP Workshop, Chania, Crete,
Greece, June 4–9, 2006. It has been supported in part by the contract ANR-06-
BLAN-0074 ”Decotes”, in part by (1) the Research Council K.U.Leuven, Bel-
gium, under Grant GOA-Ambiorics, CoE EF/05/006 Optimization in Engineering
(OPTEC), CIF1, STRT1/08/023, (2) F.W.O.: (a) project G.0321.06, (b) Research
Communities ICCoS, ANMMM and MLDM, (3) the Belgian Federal Science Pol-
icy Office: IUAP P6/04 (DYSCO, “Dynamical systems, control and optimization”,
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application of CP, chemometricians also use Tucker3 component analysis [11]
[12] [13] quite often. This is another model aiming at decomposing a data
array as weighted sum of rank-one arrays, the weights being collected in a so-
called core array. Typically, the underlying chemometric model dictates that a
vast majority of specified core elements vanish. Because there exist admissible
transformations which generate a vast majority of zero elements in arbitrary
arrays, we need tools to tell models from tautologies. This is where the concept
of typical rank has found another realm of application. For instance, Ten Berge
and Smilde [14] have argued that a sparse core hypothesized by Gurden et al.
[15] is indeed a model and not a tautology. Their hypothetical core was a 5×5×
3 array with only 5 nonzero entries, hence of rank 5 at most. Because 5×5×3
arrays have a typical rank of at least 7, it is clear at once that transformations
which yield as few as five non-zero elements, starting from any randomly
generated 5×5×3 array, do not exist. In this way, the typical rank of three-way
arrays finds applications in distinguishing constrained Tucker3 models from
tautologies. Besides Chemometrics, CP has found important applications in
signal processing, especially in Independent Component Analysis [16] [17] and
in multi-user access in wireless communications [18] [19] [20]. Moreover, the
decomposition is finding its way to scientific computing, where it leads to a
way around the Curse of Dimensionality [21, p. 125] [22] [23].

The paper is organized as follows. In section 2, definitions and historical re-
marks are provided. Next, a numerical algorithm is described in section 3,
which is able to compute the generic rank of any tensor, symmetric or not.
This approach is based on the so-called Terracini’s lemma. Numerical values
are reported in section 4, and compared to the already known rank values pre-
viously obtained by means of algebraic calculations. The consistency of the
results confirm the validity of the approach, which can yield generic ranks for
more complicated structures, such as tensors with symmetric matrix slices,
which occur in the context of the Indscal model [7], among others.

2 Generic and Typical Ranks

2.1 Definitions

Let T be a L-way array of dimensions Nℓ, 1 ≤ ℓ ≤ L, with values in a ring R.
This array always admits a decomposition into a sum of outer products as:

T =
R
∑

r=1

u
(1)
r ◦u

(2)
r ◦ . . .◦u

(L)
r (1)
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where u(ℓ)
r is a vector of dimension Nℓ, ∀r, and ◦ denotes the tensor product 2 .

Now consider an array T with values in a field K. Arrays u(ℓ)
r may be con-

sidered as vectors of the linear space K
Nℓ . Thus, as a combination of tensor

products of vectors, T may be considered as a tensor. Under a linear change
of coordinate system in each space K

Nℓ , defined by a matrix A
(ℓ), the ten-

sor is represented by another array, obtained by the multi-linear transform
{A(1), A

(2), . . . , A(L)}. Since it is legitimate once a basis has been defined in
the space, no distinction will be made in the remainder between the tensor
and its array representation.

The rank of a given tensor T (and by extension, of the array defining its
coordinates in a given basis) is the minimal integer R such that the decompo-
sition (1) is exactly satisfied. This decomposition is referred to as the tensor
Canonical or Parallel factor Decomposition (CP).

A property is called typical if it holds true on a set of nonzero volume [2] [24]
[25] [5]. This supposes that some topology has been defined on K

N1×N2×...NL ;
this can be the Zariski topology for instance, or an Euclidean topology. A
property is said to be generic if it is true almost everywhere. In other words,
a generic property is typical, but the converse is not true.

Let N1, . . . , NL be given positive integers. Then the rank of tensors of size
N1 × N2 × · · · × NL is bounded, and one can make a partition of the tensor
space, according to the rank values. One can define typical ranks as the ranks
that are associated with subsets of nonzero volume in the latter partition. If
there is a single typical rank, then it may be called the generic rank.

For instance, there is a single generic rank if the underlying field K is alge-
braically closed (as the field of complex numbers, C) [2] [5]. But there may
be several typical ranks if K is the real field, R. In the complex field, the cal-
culation of the generic rank of symmetric tensors is completely described by
the Alexander-Hirschowitz (AH) theorem [3]. Recently, Abro and Ottaviani
attempted to generalize the AH theorem to non symmetric complex tensors
[26], and provided an almost exhaustive list of exceptions. This recent contri-
bution is the most significant step towards the complete characterization of
the generic rank of unsymmetric tensors with free entries.

2 This notation is used in order to make the distinction with the matrix Kronecker
product used in the next section.
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2.2 Historical remarks

Bounds on the typical rank over the complex field were given in [2]. The study
of typical rank over the real field was initiated by Kruskal [27] [24], who noted
that 2 × 2 × 2 arrays had both rank 2 and rank 3 with positive probability.
Kruskal also added a few typical ranks for small arrays. Franc [28] discussed
some more results, including bounds on typical rank. Ten Berge and Kiers [25]
gave a first result of some generality, in solving the typical rank issue for all
two-slice arrays (that is, arrays of format 2 × N2 × N3). These results were
further generalized in [29], to include all cases where, for N1 ≥ N2 ≥ N3,
N1 > N2N3 − N2. Additional miscellaneous results can be found in [30] [29]
[31] [32].

When Carroll and Chang developed Candecomp, the main applications they
had in mind (a scalar product fitting problem related to Indscal) involved
three-way arrays with slices that are symmetric in two of the three modes.
Ten Berge, Sidiropoulos and Rocci [33] noted that this form of symmetry
would affect typical ranks, and examined a number of cases; also see [34].
Quite often, indeed, symmetry of slices appears to entail lower typical rank
values. On the other hand, there are also cases where symmetry of the slices
does not affect the typical rank. A partial explanation for this can be found
in [32]. Ten Berge et al. also noted that symmetric slices are often double
centered [7, p. 286], which will further reduce the typical rank. That is, when
an array has N1 double centered slices of order N2 × N2, it can be reduced
to a N1 × (N2 − 1) × (N2 − 1) array, and its typical rank will therefore be
the same as that of noncentered symmetric-slice N1 × (N2 − 1) × (N2 − 1)
arrays. A parallel reasoning can be carried out for any nonsymmetrical double
centered slices. A rationale for double centering slices in the Parafac context
can be found in [35, p. 239]. It is easy to show that the N1 × N2 × N3 array
with N1 double centered slices has the same typical rank as the uncentered
N1 × (N2 − 1)× (N3 − 1) array.

3 Computation of Generic Ranks

The algorithm proposed is directly inspired by [4], which is in turn based
on the so-called Terracini’s lemma [36] [37] [38]; note that the latter is often
attributed to Lasker, and is hence almost one hundred years old. In a few
works, the principle is based on the fact that the dimension of an irreducible
variety is equal almost everywhere to the dimension of its tangent space (and
we know that the set of tensors of rank at most R is irreducible [5], for any R).
Thus the dimension of a variety can be computed by measuring the dimension
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of the tangent space at a generic 3 point. Let’s see now how to compute the
tangent space of interest.

Equation (1) can be seen as a parameterization of tensor T . In fact, given a
set of vectors {u(ℓ)

r ∈ K
Nℓ , 1 ≤ ℓ ≤ L, 1 ≤ r}, consider the mapping ϕ defined

from a known subspace TR of (KN1 ×K
N2 × · · · ×K

NL)R onto K
N1 N2...NL as:

{u(ℓ)
r ∈ TR, 1 ≤ ℓ ≤ L, 1 ≤ r ≤ R} →

R
∑

r=1

u
(1)
r ◦u

(2)
r ◦ . . .◦u

(L)
r

Denote ZR = ϕ(TR) the image of this mapping. Then the dimension D of its
closure Z̄R is given by the rank of the Jacobian of ϕ taken at a generic point,
expressed in any fixed basis of K

N1 N2...NL . If the Jacobian is of maximal rank
at a generic point, that is, if its rank equals almost everywhere the dimension
of the image space (e.g. N1N2 . . . NL for unconstrained arrays), then it means
that R is a typical rank. Actually, R will be either the smallest typical rank, or
the generic rank. Note that it is always possible to reach the maximal Jacobian
rank by increasing the number of terms R, so that the smallest 4 typical rank
is always found.

This result yields the following numerical algorithm:

• Express formally the parameterized rank-one tensor term in a canonical
basis
• Express formally the gradient of the latter in this basis
• Draw randomly the parameters according to an absolutely continuous dis-

tribution, and initialize matrix J with the numerical value of the gradient
• R = 1
• While rank(J) strictly increases, do:
· Draw randomly the parameters according to an absolutely continuous

distribution, and append this new numerical value of the gradient as a
new row block in J

· Compute the new value of D = rank(J)
· R← R + 1
• Compute the dimension of the fiber of solutions as F = M−D, the difference

between the number of parameters and the dimension of the image Z̄R.

In order to clarify the description of this algorithm, we give now the exact
expressions of the Jacobian in various cases.

3 In practice, a generic point is drawn randomly. If the result is questionable, the
point can be drawn another time. Any random drawing should yield the same
dimension, if the pdf is absolutely continuous.
4 Finding all typical ranks is still an open problem, and is not addressed in this
paper.
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3.1 Jacobian for 3rd order asymmetric tensors with free entries

The mapping takes the form below

{a(r), b(r), c(r)}
ϕ
−→ T =

R
∑

r=1

a(r)◦b(r)◦ c(r)

taking into account the presence of redundancies, the number of parameters
in this parameterization is M = R(N1 + N2 +N3− 2). In a canonical basis, T

has the coordinate vector:

R
∑

r=1

a(r)⊗ b(r)⊗ c(r)

where we may decide that a(r), b(r), and c(r) are row arrays of dimension
N1, N2, and N3, respectively, and ⊗ denotes the Kronecker product. Hence,
after R iterations, the Jacobian of ϕ is the R(N1 +N2 +N3)×N1N2N3 matrix:

J =









































































IN1
⊗ b(1) ⊗ c(1)

a(1) ⊗ IN2
⊗ c(1)

a(1) ⊗ b(1) ⊗ IN3

...

IN1
⊗ . . . ⊗ . . .

. . . ⊗ IN2
⊗ . . .

. . . ⊗ . . . ⊗ IN3

...

IN1
⊗ b(R) ⊗ c(R)

a(R) ⊗ IN2
⊗ c(R)

a(R) ⊗ b(R) ⊗ IN3









































































(2)

The values of the generic rank obtained with this algorithm, called
rangj3(N1,N2,N3), or rangj(N,L) 5 for tensors of arbitrary order L and equal
dimensions, are reported in tables 1, 2, and 3.

5 The codes can be downloaded from www.i3s.unice.fr/∼pcomon.
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3.2 Jacobian for 3rd order asymmetric tensors with symmetric matrix slices

In this section, we consider tensors of size N2 × N2 × N3, having symmetric
N2 ×N2 matrix slices. We consider the mapping:

{b(r), c(r)} −→ T =
R
∑

r=1

b(r)◦ b(r)◦c(r).

Our code rgindscal3(N2,N3) implements the computation of the rank of the
Jacobian below, when its size increases according to the algorithm described
in section 3:

J =





























IN2
⊗ b(1)⊗ c(1) + b(1)⊗ IN2

⊗ c(1)

b(1)⊗ b(1)⊗ IN3

...

IN2
⊗ b(R)⊗ c(R) + b(R)⊗ IN2

⊗ c(R)

b(R)⊗ b(R)⊗ IN3





























(3)

After R iterations, this matrix is of size R(N2 + N3)×N2
2 N3. The number of

parameters in this parameterization is M = R(N2 + N3 − 1). Values of the
generic rank are reported in table 4.

3.3 Jacobian for 3rd order double centered tensors with symmetric matrix

slices

Now, take again N2×N2×N3 tensors with symmetric N2×N2 matrix slices,
but assume in addition that every row and column in the latter matrix slices
are zero-mean. In order to achieve this, it is sufficient to generate vectors b(r)
with zero mean [39]; in other words, only N2 − 1 random numbers need to be
drawn, the last entry of each vector b(r) being obtained via bN2

= −
∑N2−1

n2=1 bn2
.

The Jacobian takes then the expression below:

J =





























[IN2−1, −1]⊗ b(1)⊗ c(1) + b(1)⊗ [IN2−1, −1]⊗ c(1)

b(1)⊗ b(1)⊗ IN3

...

[IN2−1, −1]⊗ b(R)⊗ c(R) + b(R)⊗ [IN2−1, −1]⊗ c(R)

b(R)⊗ b(R)⊗ IN3





























(4)
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where 1 denotes a column of ones of size N2 − 1. At the Rth iteration, this
matrix is of size R(N2 + N3 − 1)× N2

2 N3. The number of parameters in this
parameterization is M = R(N2 + N3 − 2). Table 5 reports some numerical
values obtained with the code rgindscal2z.

3.4 Jacobian for 3rd order tensors with double centered matrix slices

The previous reasoning can be applied to N1 × N2 × N3 tensors with no
symmetry constraint and whose N1 × N2 matrix slices have zero-mean rows
and columns. As before, it is sufficient to generate vectors a(r) and b(r) with
zero mean. The Jacobian is then equal to:

J =











































[IN1−1, −1]⊗ b(1)⊗ c(1)

a(1)⊗ [IN2−1, −1]⊗ c(1)

a(1)⊗ b(1)⊗ IN3

...

[IN1−1, −1]⊗ b(R)⊗ c(R)

a(R)⊗ [IN2−1, −1]⊗ c(R)

a(R)⊗ b(R)⊗ IN3











































(5)

At the Rth iteration, this matrix is of size R(N1 + N2 + N3 − 2) ×
N1N2N3. The number of parameters in this parameterization is M =
R(N1 + N2 + N3 − 3). The numerical values obtained with the code
rangj3z are not reported, since we always have, for any triplet (N1, N2, N3):
rangj3z(N1,N2,N3)=rangj3(N1-1,N2-1,N3). In other words, as far as the
generic rank is concerned, centering in a given mode of dimension Ni yields
the same effect as reducing the dimension to Ni − 1, which makes sense.

3.5 Jacobian for symmetric tensors

In the case of symmetric tensors of dimension N and order L, the mapping ϕ
is defined from K

NR to the space of symmetric tensors [4], or equivalently to

K
p with p =

(

N+L−1
L

)

, as:

{a(r) ∈ K
N , 1 ≤ r ≤ R}

ϕ
−→

R
∑

r=1

a(r)◦L

where ◦ stands for the tensor (outer) product; once a basis is chosen, the
tensor product may be expressed by a Kronecker product, yielding a similar

9



expression. In the case of order-3 tensors (L = 3) and after R iterations, the
Jacobian of ϕ takes the following form, somewhat simpler than the previous
cases:

J =















IN ⊗ a(1)⊗ a(1) + a(1)⊗ IN ⊗ a(1) + a(1)⊗ a(1)⊗ IN

...

IN ⊗ a(r)⊗ a(r) + a(r)⊗ IN ⊗ a(r) + a(r)⊗ a(r)⊗ IN















(6)

This matrix is of size RN × N3, but we know that its rank cannot exceed
(

N+2
3

)

= N(N + 1)(N + 2)/6. The number of parameters in this parame-
terization is M = RN . Numerical values of the generic rank obtained with
rangjs(N,L) are reported in table 6.

3.6 Jacobian for 4th order tensors with Hermitian symmetry

In this section, we consider fourth-order tensors of size N ×N ×N ×N with
Hermitian symmetry. We say that a fourth-order tensor T has Hermitian
symmetry if it satisfies:

T (i, j, k, l) = T (k, j, i, l) = T (i, l, k, j) = T (j, i, l, k)∗ (7)

for all values of indices i, j, k and l. In particular, fourth-order complex circular
cumulants have this Hermitian symmetry. The space of fourth-order tensors
with Hermitian symmetry is denoted by S(N). We consider the following
mapping from C

NR to S(N):

{v(r) ∈ C
N , 1 ≤ r ≤ R}

ϕǫ

−→
R
∑

r=1

ǫr v(r)⊗ v(r)∗ ⊗ v(r)⊗ v(r)∗

in which ǫr = ±1.

A symmetric real tensor has N(N + 1)(N + 2)(N + 3)/24 degrees of freedom.
However, in the complex case, a tensor enjoying Hermitian symmetries (7) has
N2(N +1)2/4 distinct entries, of which some are strictly real. By counting the
number of different real and imaginary parts of the tensor entries, we obtain
that S(N) is a real vector space of dimension K(N) [40, Annexe B]:

K(N) = 6

(

N

4

)

+ 4

(

N

1

)(

N − 1

2

)

+ 3

(

N

2

)

+ 2

(

N

1

)(

N − 1

1

)

+

(

N

1

)

. (8)

It is formed by the union of the images of ϕǫ, for all ǫ = (ǫ1, . . . , ǫr). Note that
ǫl does not affect the rank of the Jacobian. For clarity it will be omitted in
the expressions below.
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Function ϕǫ is not analytic in C. However, it is differentiable in R. The Ja-
cobian of ϕǫ, interpreted as a mapping from R

2NR to S(N), now takes the
following form:

J =





























Re(γre(v(1))) Im(γre(v(1)))

Re(γim(v(1))) Im(γim(v(1)))
...

...

Re(γre(v(R))) Im(γre(v(R)))

Re(γim(v(R))) Im(γim(v(R)))





























(9)

with

γre(v(r))= IN ⊗ v(r)∗ ⊗ v(r)⊗ v(r)∗ + v(r)⊗ IN ⊗ v(r)⊗ v(r)∗

+v(r)⊗ v(r)∗ ⊗ IN ⊗ v(r)∗ + v(r)⊗ v(r)∗ ⊗ v(r)⊗ IN

and

γim(v(r)) = iIN ⊗ v(r)∗ ⊗ v(r)⊗ v(r)∗ + v(r)⊗−iIN ⊗ v(r)⊗ v(r)∗

+v(r)⊗ v(r)∗ ⊗ iIN ⊗ v(r)∗ + v(r)⊗ v(r)∗ ⊗ v(r)⊗−iIN .

The matrix J is of size 2RN × 2N4, but we know that its rank cannot exceed
K(N). The number of parameters in this parameterization is M = 2RN .
Numerical values of the smallest typical rank obtained with rangjh4(N) are
reported in table 7.

4 Numerical results

The available results on unconstrained, slicewise symmetric, and double cen-
tered arrays can be compared with the numerical values delivered by the
computer codes.

Tensors with free entries. Table 1 reports typical ranks for 2-slice, 3-slice,
and 4-slice arrays. All known typical rank values [29,31,32] are reported in
plain face, and are compatible with the results from rangj3. Specifically, the
smallest of the known typical rank values within a cell coincides throughout
with the results from rangj3. For the yet unknown entries, we insert the results
from rangj3 in bold face. These bold face values represent the smallest typical
rank in the real field, and the generic rank in the complex field.
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N3 2 3 4

N1 N2 2 3 4 5 3 4 5 4 5

2 2,3 3 4 4 3,4 4 5 4,5 5

3 3 3,4 4 5 5 5 5,6 6 6

4 4 4 4,5 5 5 6 6 7 8

5 4 5 5 5,6 5,6 6 8 8 9

6 4 6 6 6 6 7 8 8 10

7 4 6 7 7 7 7 9 9 10

8 4 6 8 8 8 8,9 9 10 11

9 4 6 8 9 9 9 9 10 12

10 4 6 8 10 9 10 10 10 12

11 4 6 8 10 9 11 11 11 13

12 4 6 8 10 9 12 12 12,13 13

Table 1
Typical ranks for 2-slice, 3-slice, and 4-slice unconstrained arrays. Values reported
in bold correspond to smallest typical ranks computed numerically; values in plain
font were known before. Values separated by commas are known typical ranks. In
the complex field, the smallest value in a cell is generic.

The values reported in table 1 correspond to necessary conditions that ensure
uniqueness of the CP, in the sense that a tensor having a rank larger than
those generic values has infinitely many CPs in C. Conversely, if the rank
of a tensor is smaller than these generic values, then there is almost surely
a finite number 6 of possible CPs up to a scale factor, in either R or C. On
the other hand, the bound given by Kruskal [24] corresponds to a sufficient
condition ensuring uniqueness of the CP up to a permutation, and is always
smaller than or equal to (but generally much smaller than) the generic rank.
Other sufficient conditions have been derived in the literature under some-
what different assumptions, see e.g. [41] [42] for tensors enjoying Hermitean
symmetries.

We report values of the smallest typical/generic rank of 3-way arrays with
equal dimensions in table 2. The values shown in table 2 can also be compared
to those obtained in the symmetric case (see table 6).

Now the algorithm can be run on tensors of order higher than 3. To make
the presentation of the results readable, table 3 reports values of the generic

6 This finite number of solutions may possibly be larger than the number of per-
mutations. In such a case, the solution is not essentially unique.
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N 2 3 4 5 6 7 8 9

R̄ 2 5 7 10 14 19 24 30

Table 2
Smallest typical rank R̄ of unconstrained arrays of dimension N ×N ×N . Values

reported in bold correspond to ranks computed numerically; values in plain font
were known before. In the complex field, these values are generic.

L N 2 3 4 5 6 7 8

3 2 5 7 10 14 19 24

4 4 9 20 37 62 97

L N 2 3 4 5 6 7 8

3 0 8 6 5 8 18 16

4 4 0 4 4 6 24

Table 3
(top) Smallest typical rank R̄ of unconstrained arrays of equal dimensions, N ,

and order L. In the complex field these values are generic. (bottom) Number F of
remaining degrees of freedom; when F = 0, there are only a finite number of CP

solutions.

rank obtained for asymmetric tensors with equal dimensions, N , and order
L, with an algorithm referred to as rangj(N,L). These results are consistent
with those of [43]. We also indicate the dimensionality of the fiber of solutions.
This number is simply defined as the difference:

F (N, L) = R̄(N, L) (LN − L + 1)−NL.

For those values of dimension and order for which F = 0, only a finite number
of different CPs are possible.

Tensors with symmetric matrix slices. Having verified that rangj3 and
rangj work correctly throughout the cases where the generic/typical ranks
are known, we next turn to the N1 × N2 × N2 arrays with N1 symmetric
slices (Table 4). Again, known values coincide with numerical ones delivered
by the code rgindscal3. We inserted results obtained from rgindscal3 alone
in bold face. As far as can be determined, all results are again in agreement
with previously known values [33] [34].

Tensors with double centered symmetric matrix slices. When the ma-
trix slices are symmetric and also row-wise (or column-wise, which is the same
thing) zero-mean, the code rgindscal2z yielded the values reported in table
5. Note that the generic rank computed by rgindscal2z(N2,N1) is the same
as that computed by rgindscal3(N2-1,N1), at least according to the values
explored in table 4. This shows that our method is easily adapted to handle
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N1 N2 2 3 4 5

2 2,3 3,4 4,5 5,6

3 3 4 6 7

4 3 4,5 6 8

5 3 5,6 7 9

6 3 6 7 9

7 3 6 7 10

8 3 6 8 10

9 3 6 9,10 11

10 3 6 10 11

Table 4
Typical ranks for N1 × N2 × N2 arrays, with N2 × N2 symmetric slices. Values

reported in bold correspond to smallest typical ranks computed numerically. Values
separated by commas are known typical ranks. In the complex field, the smallest
value in a cell is generic.

the special case of double centered matrices.

Tensors with double centered matrix slices without symmetry con-

straint. A similar observation holds also true when the centered matrix slices
are not symmetric. We do not separately report typical rank values for the case
of double-centered (non symmetric) slices. Instead, we verified that the values
obtained numerically with centering coincided with the values obtained numer-
ically for uncentered arrays: rangj3z(N1,N2,N3)=rangj3(N1-1,N2-1,N3).

Symmetric tensors. In table 6 we report values obtained with 3-way or 4-
way symmetric arrays, obtained with the code rangjs. Note that these results
have been already reported in [4]. The dimensionality of the fiber of solutions
is given by:

F (N, L) = R̄ N −

(

N + L− 1

L

)

.

It is interesting to compare the ranks with those of the unsymmetric case,
obviously larger, reported in table 3. In particular, one can observe that that
the case F = 0 is again rarely met with generic arrays, but less rarely than in
the non-symmetric case.

Fourth-order tensors with Hermitian symmetry. Finally, we report in
table 7 values obtained for fourth-order tensors having Hermitian symmetry.
These values were obtained with the code rangj4h.
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N1 N2 2 3 4 5

2 1 2 3 4

3 1 3 4 6

4 1 3 4 6

5 1 3 5 7

6 1 3 6 7

7 1 3 6 7

8 1 3 6 8

9 1 3 6 9

10 1 3 6 10

Table 5
Smallest typical rank R̄ for N1 × N2 × N2 arrays, with N2 ×N2 symmetric slices

having zero-mean columns. In the complex field, these values are generic.

L N 2 3 4 5 6 7 8

3 2 4 5 8 10 12 15

4 3 6 10 15 21 30 42

L N 2 3 4 5 6 7 8

3 0 2 0 5 4 0 0

4 1 3 5 5 0 0 6

Table 6
(top) Smallest typical ranks R̄ of symmetric arrays of dimension N and order L.

In the complex field, these values are generic. (bottom) Number F of remaining
degrees of freedom; when F = 0, there are only a finite number of CP solutions.

N 2 3 4 5 6 7 8

R̄ 4 9 16 25 41 61 87

Table 7
Smallest typical rank R̄ of fourth-order tensors with Hermitian symmetry of di-

mension N × N × N × N . Values reported in bold correspond to ranks computed
numerically.
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[28] A. FRANC. Etudes algébriques des multitableaux: Apports de l’algèbre
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