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NONNEGATIVE APPROXIMATIONS OF NONNEGATIVE TENSORS

LEK-HENG LIM AND PIERRE COMON

Abstract. We study the decomposition of a nonnegative tensor into a minimal sum
of outer product of nonnegative vectors and the associated parsimonious näıve Bayes
probabilistic model. We show that the corresponding approximation problem, which is
central to nonnegative parafac, will always have optimal solutions. The result holds for
any choice of norms and, under a mild assumption, even Brègman divergences.
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1. Dedication

This article is dedicated to the memory of our late colleague Richard Allan Harshman.
It is loosely organized around two of Harshman’s best known works — parafac [19] and
lsi [13], and answers two questions that he posed. We target this article to a technometrics
readership.

In Section 4, we discussed a few aspects of nonnegative tensor factorization and Hof-
mann’s plsi, a variant of the lsi model co-proposed by Harshman [13]. In Section 5, we
answered a question of Harshman on why the apparently unrelated construction of Bini,
Capovani, Lotti, and Romani in [1] should be regarded as the first example of what he
called ‘parafac degeneracy’ [27]. Finally in Section 6, we showed that such parafac

degeneracy will not happen for nonnegative approximations of nonnegative tensors, an-
swering another question of his.

2. Introduction

The decomposition of a tensor into a minimal sum of outer products of vectors was
first studied by Hitchcock [21, 22] in 1927. The topic has a long and illustrious history
in algebraic computational complexity theory (cf. [7] and the nearly 600 references in its
bibliography) dating back to Strassen’s celebrated result [36]. It has also recently found
renewed interests, coming most notably from algebraic statistics and quantum computing.

However the study of the corresponding approximation problem, i.e. the approximation
of a tensor by a sum of outer products of vectors, probably first surfaced as data analytic
models in psychometrics in the work of Harshman [19], who called his model parafac (for
Parallel Factor Analysis), and the work of Carrol and Chang [8], who called their model
candecomp (for Canonical Decomposition).

The candecomp/parafac model, sometimes abbreviated as cp model, essentially asks
for a solution to the following problem: given a tensor A ∈ R

d1×···×dk , find an optimal
rank-r approximation to A,

(1) Xr ∈ argminrank(X)≤r‖A − X‖,

Key words and phrases. Nonnegative tensors, nonnegative hypermatrices, nonnegative tensor decom-
positions, nonnegative tensor rank, probabilistic latent semantic indexing, candecomp, parafac, tensor
norm, tensor Brègman divergence.
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or, more precisely, find scalars λp and unit vectors1 up,vp, . . . , zp, p = 1, . . . , r, that
minimizes

(2)
∥

∥

∥
A −

∑r

p=1
λp up ⊗ vp ⊗ · · · ⊗ zp

∥

∥

∥
.

The norm ‖ · ‖ here is arbitrary and we will discuss several natural choices in the next
section. When k = 2, A becomes a matrix and a solution to the problem when ‖ · ‖ is
unitarily invariant is given by the celebrated Eckart-Young theorem: Xr may be taken to
be

Xr =
∑r

p=1
σp up ⊗ vp,

where σ1 ≥ · · · ≥ σr are the first r singular values of A and up,vp the corresponding left
and right singular vectors.

However when k ≥ 3 the problem becomes more subtle. In fact, a global minimizer of (2)
may not even exist as soon as k ≥ 3; in which case the problem in (1) is ill-posed because the
set of minimizers is empty. We refer the reader to Section 5 for examples and discussions.
Nevertheless we will show that for nonnegative tensors the problem of finding a best
nonnegative rank-r approximation always has a solution, i.e. (2) will always have a global
minimum when A and up,vp, . . . , zp are required to be nonnegative. Such nonnegativity
arises naturally in applications. For example, in the context of chemometrics, sample
concentration and spectral intensity often cannot assume negative values [5, 6, 9, 26, 31,
33]. Nonnegativity can also be motivated by the data analytic tenet [29] that the way ‘basis
functions’ combine to build ‘target objects’ is an exclusively additive process and should
not involve any cancellations between the basis functions. For k = 2, this is the motivation
behind nonnegative matrix factorization (nmf) [29, 33], essentially a decomposition of a
nonnegative matrix A ∈ R

m×n into a sum of outer-products of nonnegative vectors,

A = WH⊤ =
∑r

p=1
wp ⊗ hp,

or, in the noisy situation, the approximation of a nonnegative matrix by such a sum:

minW≥0,H≥0‖A − WH⊤‖ = minwp≥0,hp≥0

∥

∥

∥
A −

∑r

p=1
wp ⊗ hp

∥

∥

∥
.

The generalization of nmf to tensors of higher order yields a model known as nonnegative
parafac [9, 26, 31], which has also been studied more recently under the name nonnegative
tensor factorization (ntf) [34]. As we have just mentioned, a general tensor can fail to have
a best low-rank approximation. So the first question that one should ask in a multilinear
generalization of a bilinear model is whether the generalized problem would still have a
solution — and this was the question that Harshman posed. More generally, we will show
that nonnegative parafac always has a solution for any continuous measure of proximity
satisfying some mild conditions, e.g. norms or Brègman divergences. These include the
sum-of-squares loss and Kullback-Leibler divergence commonly used in nmf and ntf.

The following will be proved in Sections 6 and 7. Let Ω0 ⊆ Ω ⊆ R
d1×···×dk
+ be closed

convex subsets. Let d : Ω × Ω0 → R be a norm or a Brègman divergence. For any
nonnegative tensor A ∈ Ω and any given r ∈ N, a best nonnegative rank-r approximation
always exist in the sense that the following infimum

inf{d (A,X) | X ∈ Ω0, rank+(X) ≤ r}

is attained by some nonnegative tensor Xr ∈ Ω0, rank+(Xr) ≤ r. In particular, the
nonnegative tensor approximation problem

Xr ∈ argminrank+(X)≤r‖A − X‖

1Whenever possible, we will use up,vp, . . . , zp instead of the more cumbersome u
(1)
p ,u

(2)
p , . . . ,u

(k)
p

to denote the vector factors in an outer product. It is to be understood that there are k vectors in
“up,vp, . . . , zp,” where k ≥ 3.
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is well-posed. Here rank+(X) denotes the nonnegative rank of X and will be formally
introduced in Section 4.

3. Tensors as hypermatrices

Let V1, . . . , Vk be real vector spaces of dimensions d1, . . . , dk respectively. An element
of the tensor product V1 ⊗ · · · ⊗ Vk is called an order-k tensor. Up to a choice of bases on
V1, . . . , Vk, such a tensor may be represented by a d1 × · · · × dk array of real numbers2,

(3) A = Jaj1···jk
Kd1,...,dk

j1,...,jk=1 ∈ R
d1×···×dk .

Gelfand, Kapranov, and Zelevinsky called such coordinate representations of abstract ten-
sors hypermatrices [18]. It is worth pointing out that an array is just a data structure
but like matrices, hypermatrices are more than mere arrays of numerical values. They are
equipped with algebraic operations arising from the algebraic structure of V1 ⊗ · · · ⊗ Vk:

• Addition and Scalar Multiplication: For Jaj1···jk
K, Jbj1···jk

K ∈ R
d1×···×dk and λ, µ ∈

R,

(4) λJaj1···jk
K + µJbj1···jk

K = Jλaj1···jk
+ µbj1···jk

K ∈ R
d1×···×dk .

• Outer Product Decomposition: Every A = Jaj1···jk
K ∈ R

d1×···×dk may be decom-
posed as

(5) A =
∑r

p=1
λp up ⊗ vp ⊗ · · · ⊗ zp, aj1···jk

=
∑r

p=1
λpupj1vpj2 · · · zpjk

,

with λp ∈ R, up = [up1, . . . , upd1 ]
⊤ ∈ R

d1 , . . . , zp = [zp1, . . . , zpdk
]⊤ ∈ R

dk , p =
1, . . . , r.

The symbol ⊗ denotes the Segre outer product : For vectors x = [x1, . . . , xl]
⊤ ∈ R

l,
y = [y1, . . . , ym]⊤ ∈ R

m, z = [z1, . . . , zn]⊤ ∈ R
n, the quantity x ⊗ y ⊗ z, is simply the 3-

hypermatrix JxiyjzkK
l,m,n
i,j,k=1 ∈ R

l×m×n, with obvious generalization to an arbitrary number

of vectors.
It follows from (4) that R

d1×···×dk is a vector space of dimension d1 · · · dk. The exis-
tence of a decomposition (5) distinguishes R

d1×···×dk from being merely a vector space
by endowing it with a tensor product structure. While as real vector spaces, R

l×m×n

(hypermatrices), R
lm×n, Rln×m, Rmn×l (matrices), and R

lmn (vectors) are all isomorphic,
the tensor product structure distinguishes them. Note that a different choice of bases on
V1, . . . , Vk would lead to a different hypermatrix representation of elements in V1⊗· · ·⊗Vk.
So strictly speaking, a tensor and a hypermatrix are different in the same way a linear
operator and a matrix are different. Furthermore, just as a bilinear functional, a linear
operator, and a dyad may all be represented by the same matrix, different types of tensors
may be represented by the same hypermatrix if one disregards covariance and contravari-
ance. Nonetheless the term ‘tensor’ has been widely used to mean a hypermatrix in the
data analysis communities (including bioinformatics, computer vision, machine learning,
neuroinformatics, pattern recognition, signal processing, technometrics), and we will re-
frain from being perverse and henceforth adopt this naming convention. For the more
pedantic readers, it is understood that what we call a tensor in this article really means a
hypermatrix.

A non-zero tensor that can be expressed as an outer product of vectors is called a rank-1

tensor. More generally, the rank of a tensor A = Jaj1···jk
Kd1,...,dk

j1,...,jk=1 ∈ R
d1×···×dk , denoted

2The subscripts and superscripts will be dropped when the range of j1, . . . , jk is obvious or unimportant.
We use double brackets to delimit hypermatrices.
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rank(A), is defined as the minimum r for which A may be expressed as a sum of r rank-1
tensors [21, 22],

(6) rank(A) := min
{

r
∣

∣

∣
A =

∑r

p=1
λp up ⊗ vp ⊗ · · · ⊗ zp

}

.

The definition of rank in (6) agrees with the definition of matrix rank when applied to an
order-2 tensor.

The Frobenius norm or F -norm of a tensor A = Jaj1···jk
Kd1,...,dk

j1,...,jk=1 ∈ R
d1×···×dk is defined

by

(7) ‖A‖F =
[

∑d1,...,dk

j1,...,jk=1
|aj1···jk

|2
]

1
2
.

The F -norm is by far the most popular choice of norms for tensors in data analytic
applications. However when A is nonnegative valued, then there is a more natural norm
that allows us to interpret the normalized values of A as probability distribution values,
as we will see in the next section. With this in mind, we define the E-norm and G-norm
by

(8) ‖A‖E =
∑d1,...,dk

i1,...,ik=1
|aj1···jk

|

and

‖A‖G = max{|aj1···jk
| | j1 = 1, . . . , d1; . . . ; jk = 1, . . . , dk}.

Observe that the E-, F -, and G-norms of a tensor A are simply the l1-, l2-, and l∞-norms
of A regarded as a vector of dimension d1 · · · dk. Furthermore they are multiplicative on
rank-1 tensors in the following sense:

‖u ⊗ v ⊗ · · · ⊗ z‖E = ‖u‖1‖v‖1 · · · ‖z‖1,(9)

‖u ⊗ v ⊗ · · · ⊗ z‖F = ‖u‖2‖v‖2 · · · ‖z‖2,

‖u ⊗ v ⊗ · · · ⊗ z‖G = ‖u‖∞‖v‖∞ · · · ‖z‖∞.

The F -norm has the advantage of being induced by an inner product on R
d1×···×dk , namely,

(10) 〈A,B〉 =
∑d1,...,dk

j1,...,jk=1
aj1···jk

bj1···jk
.

As usual, it is straightforward to deduce a Cauchy-Schwarz inequality

|〈A,B〉| ≤ ‖A‖F ‖B‖F ,

and a Hölder inequality

|〈A,B〉| ≤ ‖A‖E‖B‖G.

Many other norms may be defined on a space of tensors. For any 1 ≤ p ≤ ∞, one may
define the lp-equivalent of (7), of which E-, F -, and G-norms are special cases. Another
common class of tensor norms generalizes operator norms of matrices: For example if
A = JaijkK ∈ R

l×m×n and

A(x,y, z) :=
∑l,m,n

i,j,k=1
aijkxiyjzjk

denotes the associated trilinear functional, then

‖A‖p,q,r := sup
x,y,z6=0

|A(x,y, z)|

‖x‖p‖y‖q‖z‖r

defines a norm for any 1 ≤ p, q, r ≤ ∞. Nevertheless all these norms are equivalent (and
thus induce the same topology) since the tensor product spaces here are finite-dimensional.
In particular, the results in this paper apply to any choice of norms since they pertain to
the convergence of sequences of tensors.
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The discussion in this section remains unchanged if R is replaced by C throughout
(apart from a corresponding replacement of the Euclidean inner product in (10) by the
Hermitian inner product) though a minor caveat is that the tensor rank as defined in (6)
depends on the choice of base fields (see [12] for a discussion).

4. Nonnegative decomposition of nonnegative tensors

We will see that a finite collection of discrete random variables satisfying both the näıve
Bayes hypothesis and the Ockham principle of parsimony have a joint probability distribu-
tion that, when regarded as a nonnegative tensor on the probability simplex, decomposes
in a nonnegative rank-revealing manner that parallels the matrix singular value decompo-
sition. This generalizes Hofmann’s probabilistic variant [23] of latent semantic indexing
(lsi), a well-known technique in natural language processing and information retrieval
that Harshman played a role in developing [13]. Nonnegative tensor decompositions were
first studied in the context of parafac with nonnegativity constraints by the technomet-
rics communities [5, 6, 9, 26, 31]. The interpretation as a näıve Bayes decomposition of
probability distributions into conditional distributions was due to Garcia, Stillman, and
Sturmfels [16] and Sashua and Hazan [34]. It is perhaps worth taking this opportunity to
point out a minor detail that had somehow been neglected in [16, 34]: the näıve Bayes
hypothesis is not sufficient to guarantee a nonnegative rank-revealing decomposition, one
also needs the Ockham principle of parsimony, i.e. the hidden variable in question has to
be minimally supported.

A tensor A = Jaj1···jk
Kd1,...,dk

j1,...,jk=1 ∈ R
d1×···×dk is nonnegative, denoted A ≥ 0, if all aj1···jk

≥

0. We will write R
d1×···×dk
+ := {A ∈ R

d1×···×dk | A ≥ 0}. For A ≥ 0, a nonnegative outer-
product decomposition is one of the form

(11) A =
∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp

where δp ≥ 0 and up,vp, . . . , zp ≥ 0 for p = 1, . . . , r. It is clear that such a decomposition
exists for any A ≥ 0. The minimal r for which such a decomposition is possible will be
called the nonnegative rank. For A ≥ 0, this is denoted and defined via

rank+(A) := min
{

r
∣

∣

∣
A =

∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp, δp,up,vp, . . . , zp ≥ 0 for all p

}

.

Let ∆d denote the unit d-simplex, i.e. the convex hull of the standard basis vectors in
R

d+1. Explicitly,

∆d :=
{

∑d+1

p=1
δpep ∈ R

d+1
∣

∣

∣

∑d+1

p=1
δp = 1, δ1, . . . , δd+1 ≥ 0

}

= {x ∈ R
d+1
+ | ‖x‖1 = 1}.

For nonnegative valued tensors, the E-norm has the advantage that (8) reduces to a simple
sum of all entries. This simple observation leads to the following proposition stating that
the decomposition in (11) may be realized over unit simplices if we normalize A by its
E-norm.

Proposition 4.1. Let A ∈ R
d1×···×dk
+ be a nonnegative tensor with rank+(A) = r. Then

there exist δ = [δ1, . . . , δr]
⊤ ∈ R

r
+, up ∈ R

d1−1
+ ,vp ∈ R

d2−1
+ , . . . , zp ∈ R

dk−1
+ , p = 1, . . . , r,

where

‖δ‖1 = ‖A‖E

and

‖up‖1 = ‖vp‖1 = · · · = ‖zp‖1 = 1,

such that

(12) A =
∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp.
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Proof. If A = 0, this is obvious. So we will suppose that A 6= 0. By the minimality of
r = rank+(A), we know that up,vp, . . . , zp in (12) are all nonzero and we may assume that

‖up‖1 = ‖vp‖1 = · · · = ‖zp‖1 = 1

since otherwise we may normalize

ûp = up/‖up‖1, v̂p = vp/‖vp‖1, . . . , ẑp = zp/‖zp‖1,

and set
δ̂p = δp‖up‖1‖vp‖1 · · · ‖zp‖1,

and still have an equation of the form in (12). It remains to show that

‖δ‖1 = ‖A‖E .

Note that since all quantities involved are nonnegative,

‖A‖E =
∥

∥

∥

∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp

∥

∥

∥

E
=

∑r

p=1
δp‖up ⊗ vp ⊗ · · · ⊗ zp‖E .

By (9), the rhs can be further simplified to
∑r

p=1
δp‖up‖1‖vp‖1 · · · ‖zp‖1 =

∑r

p=1
δp = ‖δ‖1,

as required. �

Note that the conditions on the vectors imply that they lie in unit simplices of various
dimensions:

(13) u1, . . . ,ur ∈ ∆d1−1, v1, . . . ,vr ∈ ∆d2−1, . . . , z1, . . . , zr ∈ ∆dk−1.

For k = 2, the above decomposition is best viewed as a parallel to the singular value
decomposition of a matrix A ∈ R

m×n, which is in particular an expression of the form

(14) A =
∑r

p=1
σp up ⊗ vp,

where r = rank(A),

‖σ‖2 =
[

∑r

p=1
|σp|

2
]

1
2

= ‖A‖F , and ‖up‖2 = ‖vp‖2 = 1,

for all p = 1, . . . , r. Here σ = [σ1, . . . , σr]
⊤ ∈ R

r is the vector of nonzero singular values
of A. If A is normalized to have unit F -norm, then all quantities in (14) may be viewed
as living in unit spheres of various dimensions: A ∈ S

mn−1, σ ∈ S
r−1, u1, . . . ,ur ∈ S

m−1,
v1, . . . ,vr ∈ S

n−1 where S
d−1 = {x ∈ R

d | ‖x‖2 = 1} is the unit sphere in R
d. For k = 2,

the nonnegative matrix decomposition in Proposition 4.1 is one where the unit spheres are
replaced by unit simplices and the l2- and F -norms replaced by the l1- and E-norms. An
obvious departure from the case of svd is that the vectors in (13) are not orthogonal.

Henceforth when we use the terms ntf and nmf, we will mean a decomposition of the
type in Proposition 4.1. For a nonnegative tensor with unit E-norm, A ∈ ∆d1···dk−1, the
decomposition in Proposition 4.1 has a probabilistic interpretation.

Let U, V, . . . , Z be discrete random variables and q(u, v, . . . , z) = Pr(U = u, V =
v, . . . , Z = z) be their joint probability distribution. Suppose U, V, . . . , Z satisfy the näıve
Bayes hypothesis, i.e. they are conditionally independent upon a single hidden random
variable Θ. Let q1(u | θ), q2(v | θ), . . . , qk(z | θ) denote respectively the marginal proba-
bility distributions of U, V, . . . , Z conditional on the event Θ = θ. Then the probability
distributions must satisfy the relation

(15) q(u, v, . . . , z) =
∑r

θ=1
δ(θ) q1(u | θ)q2(v | θ) · · · qk(z | θ)

where δ(θ) = Pr(Θ = θ). Since the discrete random variables U, V, . . . , Z may take
d1, d2, . . . , dk possible values respectively, the Bayes rule in (15) can be rewritten as
the tensor decomposition in (12), provided we ‘store’ the marginal distributions q1(u |
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θ), q2(v | θ), . . . , qk(z | θ) in the vectors uθ,vθ, . . . , zθ respectively. The requirement that
r = rank+(A) corresponds to the Ockham principle of parsimony : that the model (15) be
the simplest possible, i.e. the hidden variable Θ be minimally supported.

For the case k = 2, (15) is Hofmann’s plsi [23], a probabilistic variant of latent semantic
indexing [13]. While it is known [17] that the multiplicative updating rule for nmf with
kl divergence in [29] is equivalent to the use of em algorithm for maximum likelihood
estimation of plsi in [23], this is about the equivalence of two algorithms (em and multi-
plicative updating) applied to two approximation problems (maximum likelihood of plsi

and minimum kl divergence of nmf). Since the em algorithm and the nmf multiplicative
updating rules are first-order methods that can at best converge to a stationary point,
saying that these two algorithms are equivalent for their respective approximation prob-
lems does not imply that the respective models are equivalent. The preceding paragraph
states that the probabilistic relational models behind plsi and ntf (and therefore nmf)
are one and the same — a collection of random variables satisfying the näıve Bayes as-
sumption with respect to a parsimonious hidden variable. This is a statement independent
of approximation or computation.

5. Nonexistence of globally optimal solution for real and complex tensor

approximations

A major difficulty that one should be aware of is that the problem of finding a best
rank-r approximation for tensors of order 3 or higher has no solution in general. There
exists A ∈ R

d1×···×dk such that

(16) inf
∥

∥

∥
A −

∑r

p=1
λp up ⊗ vp ⊗ · · · ⊗ zp

∥

∥

∥

is not attained by any choice of λp,up,vp, . . . , zp, p = 1, . . . , r. It is also in general not

possible to determine a priori if a given A ∈ R
d1×···×dk will fail to have a best rank-r

approximation. This problem is more widespread than one might imagine. It has been
shown in [12] that examples of this failure happens over a wide range of dimensions, orders,
ranks, and for any continuous measure of proximity (thus including all norms and Brègman
divergence). Moreover such failures can occur with positive probability and in some cases
with certainty, i.e. where the infimum in (16) is never attained. This phenomenon also
extends to symmetric tensors [11].

This poses some serious conceptual difficulties — if one cannot guarantee a solution
a priori, then what is one trying to compute in instances where there are no solutions?
We often get the answer “an approximate solution”. But how could one approximate a
solution that does not even exist in the first place? Conceptual issues aside, this also
causes computational difficulties in practice. Forcing a solution in finite precision for a
problem that does not have a solution is an ill-advised strategy since a well-posed problem
near to an ill-posed one is, by definition, ill-conditioned and therefore hard to compute.
This ill-conditioning manifests itself in iterative algorithms as summands that grew un-
bounded in magnitude but with the peculiar property that the sum remains bounded.
This was first observed by Bini, Lotti, and Romani [2] in the context of arbitrary preci-
sion approximations (where this phenomenon is desirable). Independently Harshman and
his collaborators Kruskal and Lundy [27] also investigated this phenomenon, which they
called parafac degeneracy, from the perspective of model fitting (where it is undesirable).
In Theorem 6.1, we will prove the cheerful fact that one does not need to worry about
parafac degeneracy when fitting a nonnegative parafac model.

The first published account of an explicitly constructed example of parafac degeneracy
appeared in a study of the complexity of matrix multiplication by Bini, Capovani, Lotti,
and Romani [1]. However their discussion was for a context entirely different from data
analysis/model fitting and was presented in notations somewhat unusual. Until today,
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many remain unconvinced that the construction in [1] indeed provides an explicit example
of parafac degeneracy and continue to credit the much later work of Paatero [32]. The
truth is that such constructions are well-known in algebraic computational complexity; in
addition to [1], one may also find them in [2, 7, 25], all predating [32]. As a small public
service3, we will translate the original construction of Bini, Capovani, Lotti, and Romani
into notations more familiar to the technometrics communities.

In [1], Bini, Capovani, Lotti, and Romani gave an algorithm that can approximate to
arbitrary precision the product of two n × n matrices and requires only O(n2.7799) scalar
multiplications. The key to their construction is the following triplet of matrices which at
first glance seem somewhat mysterious:

U =





1 0 1 0 1
0 0 0 ε ε
1 1 0 1 0



 , V =









ε 0 0 −ε 0
0 −1 0 1 0
0 0 0 0 ε
1 −1 1 0 1









, W =









ε−1 ε−1 −ε−1 ε−1 0
0 0 0 1 0
0 0 −ε−1 0 ε−1

1 0 0 0 −1









.

We will show that these matrices may be used to construct a sequence of tensors exhibiting
parafac degeneracy.

We will assume that U has a 4th row of zeros and so U, V,W ∈ R
4×4. As usual,

uij, vij , wij will denote the (i, j)th entry of the respective matrices. Let n ≥ 4 and
x1,x2,x3,x4 ∈ R

n (or C
n) be linearly independent vectors. For ε > 0, define

Aε :=
∑4

j=1

[(

∑4

i=1
uijxi

)

⊗
(

∑4

i=1
vijxi

)

⊗
(

∑4

i=1
wijxi

)]

.

Observe that

Aε = (x1 + x3) ⊗ (εx1 + x4) ⊗ (ε−1x1 + x4) + x3 ⊗ (−x2 − x4) ⊗ ε−1x1

+ x1 ⊗ x4 ⊗ (−ε−1x1 − ε−1x3) + (εx2 + x3) ⊗ (−εx1 + x2) ⊗ (ε−1x1 + x2)

+ (x1 + εx2) ⊗ (εx3 + x4) ⊗ (ε−1x3 − x4).

It is straight forward to verify that

limε→0 Aε = A

where

A = x1⊗x1⊗x1 +x1⊗x3⊗x3 +x2⊗x2⊗x1 +x2⊗x4⊗x3 +x3⊗x2⊗x2 +x3⊗x4⊗x4.

Note that the sequence Aε exhibits parafac degeneracy: as ε → 0, each of the summands
becomes unbounded in magnitude but Aε remains bounded (and in fact converges to A).

Regardless of whether x1,x2,x3,x4 ∈ R
n or C

n, it is clear that for all ε > 0,

rank(Aε) ≤ 5.

Furthermore, one may show that rank(A) = 6 over C and therefore rank(A) ≥ 6 over
R (cf. remarks at the end of Section 3). In either case, A is an instance in R

n×n×n

or C
n×n×n where the approximation problem in (1) has no solution for r = 5 — since

infrank(X)≤5‖A − X‖ = 0 and rank(A) ≥ 6 together imply that

argminrank(X)≤5‖A − X‖ = ∅.

Hence the construction in [1] also yields an explicit example of a best rank-r approximation
problem (over R and C) that has no solution.

3And also to fulfill, belatedly, an overdued promise made to Richard when he was preparing his bibli-
ography on parafac degeneracy.
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6. Existence of globally optimal solution for nonnegative tensor

approximations

As we have mentioned in Section 2, nonnegativity constraints are often natural in the use
of parafac. Empirical evidence from Bro’s chemometrics studies revealed that parafac

degeneracy was never observed when fitting nonnegative-valued data with a nonnegative
parafac model. This then led Harshman to conjecture that this is always the case. The
text of his e-mail had been reproduced in [30].

The conjectured result involves demonstrating the existence of global minima over a
non-compact feasible region and is thus not immediate. Nevertheless the proof is still
straightforward by the following observation: If a continuous real-valued function has a
non-empty compact sublevel set, then it has to attain its infimum — a consequence of the
extreme value theorem. This is essentially what we will show in the following proof for
the nonnegative parafac loss function (in fact, we will show that all sublevel sets of the
function are compact). We will use the E-norm in our proof for simplicity, the result for
other norms then follows from the equivalence of all norms on finite-dimensional spaces.
Essentially the same proof, but in terms of the more customary F -norm, appeared in [30].
We will follow the notations in Section 4.

Theorem 6.1. Let A ∈ R
d1×···×dk be nonnegative. Then

inf
{∥

∥

∥
A −

∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp

∥

∥

∥

E

∣

∣

∣
δ ∈ R

r
+,up ∈ ∆d1−1, . . . , zp ∈ ∆dk−1, p = 1, . . . , r

}

is attained.

Proof. Recall that R
n
+ = {x ∈ R

n | x ≥ 0} and ∆n−1 = {x ∈ R
n
+ | ‖x‖1 = 1}. We define

the function f : R
r × (Rd1 × · · · × R

dk)r → R by

(17) f(T ) :=
∥

∥

∥
A −

∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp

∥

∥

∥

E

where we let T = (δ1, . . . , δr;u1,v1, . . . , z1; . . . ;ur,vr, . . . , zr) denote the argument of f .

Let D be the following subset of R
r × (Rd1 × · · · × R

dk)r = R
r(1+d1+···+dk),

D := R
r
+ × (∆d1−1 × · · · × ∆dk−1)r.

Note that D is closed but unbounded. Let the infimum in question be µ := inf{f(T ) | T ∈
D}. We will show that the sublevel set of f restricted to D,

Eα = {T ∈ D | f(T ) ≤ α}

is compact for all α > µ and thus the infimum of f on D must be attained. The set
Eα = D ∩ f−1(−∞, α] is closed since f is continuous (by the continuity of norm). It
remains to show that Eα is bounded. Suppose the contrary. Then there exists a sequence
(Tn)∞n=1 ⊂ D with ‖Tn‖1 → ∞ but f(Tn) ≤ α for all n. Clearly, ‖Tn‖1 → ∞ implies that

δ
(n)
q → ∞ for at least one q ∈ {1, . . . , r}. Note that

f(T ) ≥
∣

∣

∣
‖A‖E −

∥

∥

∥

∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp

∥

∥

∥

E

∣

∣

∣
.
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Since all terms involved in the approximant are nonnegative, we have
∥

∥

∥

∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp

∥

∥

∥

E
=

∑d1,...,dk

j1,...,jk=1

∑r

p=1
δpupj1vpj2 · · · zpjk

≥
∑d1,...,dk

j1,...,jk=1
δquqj1vqj2 · · · zqjk

= δq

∑d1,...,dk

j1,...,jk=1
uqj1vqj2 · · · zqjk

= δq‖uq ⊗ vq ⊗ · · · ⊗ zq‖E

= δq‖uq‖1‖vq‖1 · · · ‖zq‖1

= δq

where the last two equalities follow from (9) and ‖uq‖1 = ‖vq‖1 = · · · = ‖zq‖1 = 1. Hence,

as δ
(n)
q → ∞, f(Tn) → ∞ — contradicting the assumption that f(Tn) ≤ α for all n. �

The proof essentially shows that the function f is coercive — a real-valued function f
is said to be coercive for minimization if lim‖x‖→+∞ f(x) = +∞ [4]. This is a standard
condition often used to guarantee that a continuous function on a noncompact domain
attains its global minimum and is equivalent to saying that f has bounded sublevel sets.
A minor point to note is that had we instead optimized over a sum of rank-1 terms
u ⊗ v ⊗ · · · ⊗ z, the proof would fail because the vectors u,v, . . . , z may be scaled by
non-zero positive scalars that product to 1, i.e.

αu ⊗ βv ⊗ · · · ⊗ ζz = u⊗ v ⊗ · · · ⊗ z, αβ · · · ζ = 1.

So for example (nx) ⊗ y ⊗ (z/n) can have diverging loading factors even while the outer-
product remains fixed. We avoided this by requiring that u,v, . . . , z be unit vectors and
having a δ that records the magnitude.

The following proposition provides four useful characterizations of the statement that

the function rank+ : R
d1×···×dk
+ → R is upper semicontinuous. This is the nonnegative

rank equivalent of a similar result in [12].

Proposition 6.2. Let r, k ∈ N and let the topology on R
d1×···×dk
+ be induced by the E-

norm. The following statements are equivalent; and since the last statement is true by
Theorem 6.1, so are the others.

(a) The set Sr := {X ∈ R
d1×···×dk
+ | rank+(X) ≤ r} is closed.

(b) Every A ∈ R
d1×···×dk
+ , rank+(A) > r, has a best nonnegative rank-r approximation,

i.e.
inf{‖A − X‖E | rank+(X) ≤ r}

is attained (by some Xr with rank+(Xr) ≤ r).

(c) No A ∈ R
d1×···×dk
+ , rank+(A) > r, can be approximated arbitrarily closely by nonneg-

ative tensors of strictly lower nonnegative rank, i.e.

inf{‖A − X‖E | rank+(X) ≤ r} > 0.

(d) No sequence (Xn)∞n=1 ⊂ R
d1×···×dk
+ , rank+(Xn) ≤ r, can converge to A ∈ R

d1×···×dk
+

with rank+(A) > r.

Proof. (a) ⇒ (b): Suppose Sr is closed. Since the set {X ∈ R
d1×···×dk
+ | ‖A − X‖ ≤ ‖A‖}

intersects Sr non-trivially (e.g. 0 is in both sets). Their intersection T = {X ∈ R
d1×···×dk
+ |

rank+(X) ≤ r, ‖A − X‖ ≤ ‖A‖} is a non-empty compact set. Now observe that

δ := inf{‖A − X‖ | X ∈ Sr} = inf{‖A − X‖ | X ∈ T }

since any X ′ ∈ Sr\T must have ‖A − X ′‖ > ‖A‖ while we know that δ ≤ ‖A‖. By the
compactness of T , there exists X∗ ∈ T such that ‖A − X∗‖ = δ. So the required infimum
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is attained by X∗ ∈ T ⊂ S. The remaining implications (b) ⇒ (c) ⇒ (d) ⇒ (a) are
obvious. �

In the language of [7, 36], this says that ‘nonnegative border rank’ coincides with non-
negative rank. An immediate corollary is that the E-norm in Theorem 6.1 and Proposition
6.2 may be replaced by any other norm. In fact we will see later that we may replace norms
with more general measures of proximity.

Corollary 6.3. Let A = Jaj1···jk
K ∈ R

d1×···×dk be nonnegative and ‖ · ‖ : R
d1×···×dk →

[0,∞) be an arbitrary norm. Then

inf
{

∥

∥

∥
A −

∑r

p=1
δp up ⊗ vp ⊗ · · · ⊗ zp

∥

∥

∥

∣

∣

∣
δ ∈ R

r
+,up ∈ ∆d1−1, . . . , zp ∈ ∆dk−1, p = 1, . . . , r

}

is attained.

Proof. This simply follows from the fact that all norms on finite dimensional spaces are

equivalent and so induce the same topology on R
d1×···×dk
+ . So Proposition 6.2 holds for

any norms. In particular, the statement (b) in Proposition 6.2 for an arbitrary norm ‖ · ‖
is exactly the result desired here. �

Corollary 6.3 implies that the parafac degeneracy discussed in Section 5 does not
happen for nonnegative approximations of nonnegative tensors. There is often a simplistic
view of parafac degeneracy as being synonymous to ‘between component cancellation’
and thus cannot happen for nonnegative tensor approximation since it is ‘purely additive
with no cancellation between parts’ [29, 34]. While it provides an approximate intuitive
picture, this point of view is flawed since parafac degeneracy is not the same as ‘between
component cancellation’. There is cancellation in nx ⊗ y ⊗ z − (n + 1

n
)x ⊗ y ⊗ z but

the sequence exhibits no parafac degeneracy. Conversely, the sequence of nonnegative
tensors

An =

[

0 1
1 1/n

∣

∣

∣

∣

1 1/n
1/n 1/n2

]

∈ R
2×2×2

may each be decomposed nonnegatively as

(18) An = A +
1

n
B +

1

n2
C

with A,B,C ∈ R
2×2×2 given by

A =

[

0 1
1 0

∣

∣

∣

∣

1 0
0 0

]

, B =

[

0 0
0 1

∣

∣

∣

∣

1 0
1 0

]

, C =

[

0 0
0 0

∣

∣

∣

∣

0 0
0 1

]

,

and each may in turn be decomposed into a sum of rank-1 terms. While there is no
‘between component cancellation’ among these rank-1 summands, it is known [12] that
the convergence

lim
n→∞

An = A

exhibits parafac degeneracy over R
2×2×2 or C

2×2×2, where there are decompositions
of An different from the one given in (18) exhibiting parafac degeneracy. That such
decompositions cannot happen over R

2×2×2
+ is precisely the statement of Proposition 6.2,

which we proved by way of Theorem 6.1.

7. Brègman divergences

In many applications, a norm may not be the most suitable measure of proximity. Other
measures based on entropy, margin, spectral separation, volume, etc, are often used as loss
functions in matrix and tensor approximations. Such measures may not even be a metric,
an example being the Brègman divergence [3, 14, 24], a class of proximity measures that
often have information theoretic or probabilistic interpretations. In the definition below,
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ri(Ω) denotes the relative interior of Ω, i.e. the interior of Ω regarded as a subset of its affine
hull; ‖ · ‖ is any arbitrary norm on R

d1×···×dk — again the choice of which is immaterial
since all norms induce the same topology on Ω.

Definition 7.1. Let ∅ 6= Ω ⊆ R
d1×···×dk be a closed convex set. Let ϕ : Ω → R be

continuously differentiable on ri(Ω) and strictly convex and continuous on Ω. The function
Dϕ : Ω × ri(Ω) → R defined by

Dϕ(A,B) = ϕ(A) − ϕ(B) − 〈∇ϕ(B), A − B〉

is a Brègman divergence if

(i) For any fixed A ∈ Ω, the sublevel set

Lα(A) = {X ∈ ri(Ω) | Dϕ(A,X) ≤ α}

is bounded for all α ∈ R.
(ii) Let (Xn)∞n=1 ⊂ ri(Ω) and A ∈ Ω. If

limn→∞‖A − Xn‖ = 0,

then

limn→∞ Dϕ(A,Xn) = 0.

(iii) Let (Xn)∞n=1 ⊂ ri(Ω), A ∈ Ω, and (An)∞n=1 ⊂ Ω. If

limn→∞‖A − Xn‖ = 0, lim supn→∞‖An‖ < ∞, limn→∞ Dϕ(An,Xn) = 0,

then

limn→∞‖An − Xn‖ = 0.

Note that Dϕ(A,B) ≥ 0 and that Dϕ(A,B) = 0 iff A = B by the strict convexity of ϕ.
However Dϕ need not satisfy the triangle inequality nor must it be symmetric in its two
arguments. So a Brègman divergence is not a metric in general.

Brègman divergences are particularly important in nonnegative matrix and tensor de-
compositions [29, 34]. In fact, one of the main novelty of nmf as introduced by Lee and
Seung [29] over the earlier studies in technometrics [9, 26, 33] is their use of the Kullback-
Leibler divergence [28] as a proximity measure4. The kl divergence is defined for non-
negative matrices in [29] but it is straightforward to extend the definition to nonnegative

tensors. For A ∈ R
d1×···×dk
+ and B ∈ ri(Rd1×···×dk

+ ), this is

DKL(A,B) =
∑d1,...,dk

j1,...,jk=1

[

aj1···jk
log

(aj1···jk

bj1···jk

)

− aj1···jk
+ bj1···jk

]

,

where 0 log 0 is taken to be 0, the limiting value. It comes from the following choice of ϕ,

ϕKL(A) =
∑d1,...,dk

j1,...,jk=1
aj1···jk

log aj1···jk
.

We note that Kullback and Liebler’s original definition [28] was in terms of probability
distributions. The version that we introduced here is a slight generalization. When A and
B are probability distributions as in Section 4, then ‖A‖E = ‖B‖E = 1 and our definition
reduces to the original one in [28],

DKL(A,B) =
∑d1,...,dk

j1,...,jk=1
aj1···jk

log
(aj1···jk

bj1···jk

)

.

In this case DKL(A,B) may also be interpreted as the relative entropy of the respective
distributions.

4This brought back memories of the many intense e-mail exchanges with Harshman, of which one was
about the novelty of nmf. His fervently argued messages will be missed.
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It is natural to ask if the following analogous nonnegative tensor approximation problem
for Brègman divergence will always have a solution:

(19) Xr ∈ argmin{Dϕ (A,X) | X ∈ ri(Ω), rank+(X) ≤ r}.

Clearly, the problem cannot be expected to have a solution in general since ri(Ω) is not
closed. For example let A = e ⊗ e ⊗ e ∈ R

2×2×2
+ where e = [1, 0]⊤, then

inf{DKL (A,X) | X ∈ ri(R2×2×2
+ ), rank+(X) ≤ 1} = 0

cannot be attained by any x⊗y⊗z ∈ ri(R2×2×2
+ ) since if we set xn = yn = zn = [1, n−1]⊤,

then as n → ∞,

DKL (A,xn ⊗ yn ⊗ zn) =
1

n3
→ 0.

This is simply a consequence of the way a Brègman divergence is defined and has nothing
to do with any peculiarities of tensor rank, unlike the example discussed in Section 5.
This difficulty may be avoided by posing the problem for any closed (but not necessarily
compact) subset of ri(Ω).

Proposition 7.2. Let Ω be a closed convex subset of R
d1×···×dk
+ and A ∈ Ω. Let Dϕ :

Ω × ri(Ω) → R be a Brègman divergence. Then

(20) inf{Dϕ (A,X) | X ∈ K, rank+(X) ≤ r}

is attained for any closed subset K ⊆ ri(Ω).

Proof. Recall that Sr := {X ∈ R
d1×···×dk
+ | rank+(X) ≤ r}. The statement is trivial if

rank+(A) ≤ r. So we will also assume that rank+(A) ≥ r + 1. Let µ be the infimum in
(20) and let α > µ. By (i) in Definition 7.1, the sublevel set Lα(A) is bounded and so its
subset

K ∩ Sr ∩ Lα(A) = {X ∈ K ∩ Sr | Dϕ(A,X) ≤ α}

must also be bounded. Note that K ∩ Sr is closed. Since ϕ is continuously differentiable
on ri(Ω), the function X 7→ Dϕ(A,X) is continuous and so K ∩ Sr ∩ Lα(A) is also closed.
Hence Dϕ(A,X) must attain µ on the compact set K ∩ Sr ∩ Lα(A). �

As one can see from the proof, Proposition 7.2 extends to any other measure of proximity
d(A,X) where the function X 7→ d(A,X) is continuous and coercive. Of course this is
just a restatement of the problem, the bulk of the work involved is usually to show that
the proximity function in question has those required properties.

8. Aside: norm-regularized and orthogonal approximations

We have often been asked about norm-regularized and orthogonal approximations of
tensors that are not necessarily nonnegative. These approximation problems are useful in
practice [10, 20, 32]. Nevertheless these always have optimal solutions for a much simpler
reason — they are continuous optimization problems over compact feasible set, so the
existence of a global minima is immediate from the extreme value theorem (note that
this is not the case for nonnegative tensor approximation). In the following, we will let
A ∈ R

d1×···×dr , not necessarily nonnegative.
Recall that O(n, r), the set of n × r matrices (r ≤ n) with orthonormal columns, is

compact in R
n×r. If we impose orthonormality constraints on the normalized loading

factors in (2), i.e. [u1, . . . ,ur] ∈ O(d1, r), . . . , [z1, . . . , zr] ∈ O(dk, r), then it follows that
|λp| ≤ ‖A‖2

F for p = 1, . . . , r, i.e. λ ∈ [−‖A‖F , ‖A‖F ]r ⊂ R
r. Since the parafac objective

is continuous and we are effectively minimizing over the compact feasible region

[−‖A‖F , ‖A‖F ]r × O(d1, r) × · · · × O(dk, r),

this shows that orthogonal parafac always has a globally optimal solution.
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Next, the regularization proposed in [32] is to add to the parafac objective terms
proportional to the 2-norm of each loading factor, i.e.

(21)
∥

∥

∥
A −

∑r

p=1
ap ⊗ bp ⊗ · · · ⊗ cp

∥

∥

∥

2

F
+ ρ

∑r

p=1
(‖ap‖

2
2 + ‖bp‖

2
2 + · · · + ‖cp‖

2
2).

From constrained optimization theory, we know that, under some regularity conditions,
minimizing a continuous function f(x1, . . . ,xk) under constraints ‖xi‖2 = ri, i = 1, . . . , k,

is equivalent to minimizing the functional f(x1, . . . ,xk) +
∑k

i=1 ρi‖xi‖
2
2 for appropriate

ρ1, . . . , ρk ∈ R. In a finite dimensional space, the sphere of radius ri is compact, and so
is the feasible set defined by ‖xi‖2 = ri, i = 1, . . . , k, and thus f must attain its extrema.
In the same vein, (21) is equivalent to an equality constrained optimization problem and
so norm-regularized parafac always has a globally optimal solution. This approach may
also be applied to regularizations other than the one discussed here.
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