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Introduction

The decomposition of a tensor into a minimal sum of outer products of vectors was first studied by Hitchcock [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF][START_REF] Hitchcock | Multiple invariants and generalized rank of a p-way matrix or tensor[END_REF] in 1927. The topic has a long and illustrious history in algebraic computational complexity theory (cf. [START_REF] Bürgisser | Algebraic complexity theory[END_REF] and the nearly 600 references in its bibliography) dating back to Strassen's celebrated result [START_REF] Strassen | Gaussian elimination is not optimal[END_REF]. It has also recently found renewed interests, coming most notably from algebraic statistics and quantum computing.

However the study of the corresponding approximation problem, i.e. the approximation of a tensor by a sum of outer products of vectors, probably first surfaced as data analytic models in psychometrics in the work of Harshman [START_REF] Harshman | Foundations of the parafac procedure: models and conditions for an explanatory multi-modal factor analysis[END_REF], who called his model parafac (for Parallel Factor Analysis), and the work of Carrol and Chang [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF], who called their model candecomp (for Canonical Decomposition).

The candecomp/parafac model, sometimes abbreviated as cp model, essentially asks for a solution to the following problem: given a tensor A ∈ R d 1 ו••×d k , find an optimal rank-r approximation to A, [START_REF] Bini | O(n 2.7799 ) complexity for n × n approximate matrix multiplication[END_REF] X r ∈ argmin rank(X)≤r A -X , Key words and phrases. Nonnegative tensors, nonnegative hypermatrices, nonnegative tensor decompositions, nonnegative tensor rank, probabilistic latent semantic indexing, candecomp, parafac, tensor norm, tensor Brègman divergence.

or, more precisely, find scalars λ p and unit vectors 1 u p , v p , . . . , z p , p = 1, . . . , r, that minimizes [START_REF] Bini | Approximate solutions for the bilinear form computational problem[END_REF] A -

r p=1 λ p u p ⊗ v p ⊗ • • • ⊗ z p .
The norm • here is arbitrary and we will discuss several natural choices in the next section. When k = 2, A becomes a matrix and a solution to the problem when • is unitarily invariant is given by the celebrated Eckart-Young theorem: X r may be taken to be

X r = r p=1 σ p u p ⊗ v p ,
where σ 1 ≥ • • • ≥ σ r are the first r singular values of A and u p , v p the corresponding left and right singular vectors. However when k ≥ 3 the problem becomes more subtle. In fact, a global minimizer of (2) may not even exist as soon as k ≥ 3; in which case the problem in ( 1) is ill-posed because the set of minimizers is empty. We refer the reader to Section 5 for examples and discussions. Nevertheless we will show that for nonnegative tensors the problem of finding a best nonnegative rank-r approximation always has a solution, i.e. (2) will always have a global minimum when A and u p , v p , . . . , z p are required to be nonnegative. Such nonnegativity arises naturally in applications. For example, in the context of chemometrics, sample concentration and spectral intensity often cannot assume negative values [START_REF] Bro | A fast non-negativity constrained least squares algorithm[END_REF][START_REF] Bro | Least squares algorithms under unimodality and non-negativity constraints[END_REF][START_REF] Carroll | Fitting of the latent class model via iteratively reweighted least squares candecomp with nonnegativity constraints[END_REF][START_REF] Krijnen | Contrastvrije oplossingen van het candecomp/parafacmodel[END_REF][START_REF] Paatero | A weighted non-negative least squares algorithm for three-way parafac factor analysis[END_REF][START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF]. Nonnegativity can also be motivated by the data analytic tenet [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF] that the way 'basis functions' combine to build 'target objects' is an exclusively additive process and should not involve any cancellations between the basis functions. For k = 2, this is the motivation behind nonnegative matrix factorization (nmf) [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF][START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF], essentially a decomposition of a nonnegative matrix A ∈ R m×n into a sum of outer-products of nonnegative vectors,

A = W H ⊤ = r p=1 w p ⊗ h p ,
or, in the noisy situation, the approximation of a nonnegative matrix by such a sum:

min W ≥0,H≥0 A -W H ⊤ = min wp≥0,hp≥0 A - r p=1 w p ⊗ h p .
The generalization of nmf to tensors of higher order yields a model known as nonnegative parafac [START_REF] Carroll | Fitting of the latent class model via iteratively reweighted least squares candecomp with nonnegativity constraints[END_REF][START_REF] Krijnen | Contrastvrije oplossingen van het candecomp/parafacmodel[END_REF][START_REF] Paatero | A weighted non-negative least squares algorithm for three-way parafac factor analysis[END_REF], which has also been studied more recently under the name nonnegative tensor factorization (ntf) [START_REF] Shashua | Non-negative tensor factorization with applications to statistics and computer vision[END_REF]. As we have just mentioned, a general tensor can fail to have a best low-rank approximation. So the first question that one should ask in a multilinear generalization of a bilinear model is whether the generalized problem would still have a solution -and this was the question that Harshman posed. More generally, we will show that nonnegative parafac always has a solution for any continuous measure of proximity satisfying some mild conditions, e.g. norms or Brègman divergences. These include the sum-of-squares loss and Kullback-Leibler divergence commonly used in nmf and ntf.

The following will be proved in Sections 6 and 7. Let

Ω 0 ⊆ Ω ⊆ R d 1 ו••×d k + be closed convex subsets. Let d : Ω × Ω 0 →
R be a norm or a Brègman divergence. For any nonnegative tensor A ∈ Ω and any given r ∈ N, a best nonnegative rank-r approximation always exist in the sense that the following infimum inf{d (A, X) | X ∈ Ω 0 , rank + (X) ≤ r} is attained by some nonnegative tensor X r ∈ Ω 0 , rank + (X r ) ≤ r. In particular, the nonnegative tensor approximation problem X r ∈ argmin rank + (X)≤r A -X 1 Whenever possible, we will use up, vp, . . . , zp instead of the more cumbersome u

(1) p , u (2) 
p , . . . , u (k) p to denote the vector factors in an outer product. It is to be understood that there are k vectors in "up, vp, . . . , zp," where k ≥ 3.

is well-posed. Here rank + (X) denotes the nonnegative rank of X and will be formally introduced in Section 4.

Tensors as hypermatrices

Let V 1 , . . . , V k be real vector spaces of dimensions d 1 , . . . , d k respectively. An element of the tensor product

V 1 ⊗ • • • ⊗ V k is called an order-k tensor. Up to a choice of bases on V 1 , . . . , V k , such a tensor may be represented by a d 1 × • • • × d k array of real numbers 2 , (3) A = a j 1 •••j k d 1 ,...,d k j 1 ,...,j k =1 ∈ R d 1 ו••×d k .
Gelfand, Kapranov, and Zelevinsky called such coordinate representations of abstract tensors hypermatrices [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF]. It is worth pointing out that an array is just a data structure but like matrices, hypermatrices are more than mere arrays of numerical values. They are equipped with algebraic operations arising from the algebraic structure of

V 1 ⊗ • • • ⊗ V k :
• Addition and Scalar Multiplication:

For a j 1 •••j k , b j 1 •••j k ∈ R d 1 ו••×d k and λ, µ ∈ R, (4) 
λ a j 1 •••j k + µ b j 1 •••j k = λa j 1 •••j k + µb j 1 •••j k ∈ R d 1 ו••×d k .
• Outer Product Decomposition:

Every A = a j 1 •••j k ∈ R d 1 ו••×d k may be decom- posed as (5) A = r p=1 λ p u p ⊗ v p ⊗ • • • ⊗ z p , a j 1 •••j k = r p=1 λ p u pj 1 v pj 2 • • • z pj k , with λ p ∈ R, u p = [u p1 , . . . , u pd 1 ] ⊤ ∈ R d 1 , . . . , z p = [z p1 , . . . , z pd k ] ⊤ ∈ R d k , p = 1, . . . , r.
The symbol ⊗ denotes the Segre outer product: For vectors x = [x 1 , . . . , x l ] ⊤ ∈ R l , y = [y 1 , . . . , y m ] ⊤ ∈ R m , z = [z 1 , . . . , z n ] ⊤ ∈ R n , the quantity x ⊗ y ⊗ z, is simply the 3hypermatrix x i y j z k l,m,n i,j,k=1 ∈ R l×m×n , with obvious generalization to an arbitrary number of vectors.

It follows from (4

) that R d 1 ו••×d k is a vector space of dimension d 1 • • • d k .
The existence of a decomposition (5) distinguishes R d 1 ו••×d k from being merely a vector space by endowing it with a tensor product structure. While as real vector spaces, R l×m×n (hypermatrices), R lm×n , R ln×m , R mn×l (matrices), and R lmn (vectors) are all isomorphic, the tensor product structure distinguishes them. Note that a different choice of bases on

V 1 , . . . , V k would lead to a different hypermatrix representation of elements in V 1 ⊗• • •⊗V k .
So strictly speaking, a tensor and a hypermatrix are different in the same way a linear operator and a matrix are different. Furthermore, just as a bilinear functional, a linear operator, and a dyad may all be represented by the same matrix, different types of tensors may be represented by the same hypermatrix if one disregards covariance and contravariance. Nonetheless the term 'tensor' has been widely used to mean a hypermatrix in the data analysis communities (including bioinformatics, computer vision, machine learning, neuroinformatics, pattern recognition, signal processing, technometrics), and we will refrain from being perverse and henceforth adopt this naming convention. For the more pedantic readers, it is understood that what we call a tensor in this article really means a hypermatrix.

A non-zero tensor that can be expressed as an outer product of vectors is called a rank-1 tensor. More generally, the rank of a tensor 2 The subscripts and superscripts will be dropped when the range of j1, . . . , j k is obvious or unimportant.

A = a j 1 •••j k d 1 ,...,d k j 1 ,...,j k =1 ∈ R d 1 ו••×d k , denoted
We use double brackets to delimit hypermatrices. rank(A), is defined as the minimum r for which A may be expressed as a sum of r rank-1 tensors [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF][START_REF] Hitchcock | Multiple invariants and generalized rank of a p-way matrix or tensor[END_REF], [START_REF] Bro | Least squares algorithms under unimodality and non-negativity constraints[END_REF] rank(A) := min r A = r p=1

λ p u p ⊗ v p ⊗ • • • ⊗ z p .
The definition of rank in [START_REF] Bro | Least squares algorithms under unimodality and non-negativity constraints[END_REF] agrees with the definition of matrix rank when applied to an order-2 tensor.

The Frobenius norm or F -norm of a tensor

A = a j 1 •••j k d 1 ,...,d k j 1 ,...,j k =1 ∈ R d 1 ו••×d k is defined by (7) A F = d 1 ,...,d k j 1 ,...,j k =1 |a j 1 •••j k | 2 1 2 .
The F -norm is by far the most popular choice of norms for tensors in data analytic applications. However when A is nonnegative valued, then there is a more natural norm that allows us to interpret the normalized values of A as probability distribution values, as we will see in the next section. With this in mind, we define the E-norm and G-norm by ( 8)

A E = d 1 ,...,d k i 1 ,...,i k =1 |a j 1 •••j k | and A G = max{|a j 1 •••j k | | j 1 = 1, . . . , d 1 ; . . . ; j k = 1, . . . , d k }.
Observe that the E-, F -, and G-norms of a tensor A are simply the l 1 -, l 2 -, and l ∞ -norms of A regarded as a vector of dimension

d 1 • • • d k .
Furthermore they are multiplicative on rank-1 tensors in the following sense:

u ⊗ v ⊗ • • • ⊗ z E = u 1 v 1 • • • z 1 , (9) 
u ⊗ v ⊗ • • • ⊗ z F = u 2 v 2 • • • z 2 , u ⊗ v ⊗ • • • ⊗ z G = u ∞ v ∞ • • • z ∞ .
The F -norm has the advantage of being induced by an inner product on

R d 1 ו••×d k , namely, (10) A, B = d 1 ,...,d k j 1 ,...,j k =1 a j 1 •••j k b j 1 •••j k .
As usual, it is straightforward to deduce a Cauchy-Schwarz inequality

| A, B | ≤ A F B F ,
and a Hölder inequality

| A, B | ≤ A E B G .
Many other norms may be defined on a space of tensors. For any 1 ≤ p ≤ ∞, one may define the l p -equivalent of ( 7), of which E-, F -, and G-norms are special cases. Another common class of tensor norms generalizes operator norms of matrices: For example if

A = a ijk ∈ R l×m×n and A(x, y, z) := l,m,n i,j,k=1
a ijk x i y j z j k denotes the associated trilinear functional, then A p,q,r := sup

x,y,z =0

|A(x, y, z)| x p y q z r defines a norm for any 1 ≤ p, q, r ≤ ∞. Nevertheless all these norms are equivalent (and thus induce the same topology) since the tensor product spaces here are finite-dimensional.

In particular, the results in this paper apply to any choice of norms since they pertain to the convergence of sequences of tensors.

The discussion in this section remains unchanged if R is replaced by C throughout (apart from a corresponding replacement of the Euclidean inner product in [START_REF] Comon | Independent component analysis: a new concept?[END_REF] by the Hermitian inner product) though a minor caveat is that the tensor rank as defined in [START_REF] Bro | Least squares algorithms under unimodality and non-negativity constraints[END_REF] depends on the choice of base fields (see [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF] for a discussion).

Nonnegative decomposition of nonnegative tensors

We will see that a finite collection of discrete random variables satisfying both the naïve Bayes hypothesis and the Ockham principle of parsimony have a joint probability distribution that, when regarded as a nonnegative tensor on the probability simplex, decomposes in a nonnegative rank-revealing manner that parallels the matrix singular value decomposition. This generalizes Hofmann's probabilistic variant [START_REF] Hofmann | Probabilistic Latent Semantic Indexing[END_REF] of latent semantic indexing (lsi), a well-known technique in natural language processing and information retrieval that Harshman played a role in developing [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF]. Nonnegative tensor decompositions were first studied in the context of parafac with nonnegativity constraints by the technometrics communities [START_REF] Bro | A fast non-negativity constrained least squares algorithm[END_REF][START_REF] Bro | Least squares algorithms under unimodality and non-negativity constraints[END_REF][START_REF] Carroll | Fitting of the latent class model via iteratively reweighted least squares candecomp with nonnegativity constraints[END_REF][START_REF] Krijnen | Contrastvrije oplossingen van het candecomp/parafacmodel[END_REF][START_REF] Paatero | A weighted non-negative least squares algorithm for three-way parafac factor analysis[END_REF]. The interpretation as a naïve Bayes decomposition of probability distributions into conditional distributions was due to Garcia, Stillman, and Sturmfels [START_REF] Garcia | Algebraic geometry of Bayesian networks[END_REF] and Sashua and Hazan [START_REF] Shashua | Non-negative tensor factorization with applications to statistics and computer vision[END_REF]. It is perhaps worth taking this opportunity to point out a minor detail that had somehow been neglected in [START_REF] Garcia | Algebraic geometry of Bayesian networks[END_REF][START_REF] Shashua | Non-negative tensor factorization with applications to statistics and computer vision[END_REF]: the naïve Bayes hypothesis is not sufficient to guarantee a nonnegative rank-revealing decomposition, one also needs the Ockham principle of parsimony, i.e. the hidden variable in question has to be minimally supported.

A tensor

A = a j 1 •••j k d 1 ,...,d k j 1 ,...,j k =1 ∈ R d 1 ו••×d k is nonnegative, denoted A ≥ 0, if all a j 1 •••j k ≥ 0. We will write R d 1 ו••×d k + := {A ∈ R d 1 ו••×d k | A ≥ 0}. For A ≥ 0, a nonnegative outer- product decomposition is one of the form (11) A = r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p
where δ p ≥ 0 and u p , v p , . . . , z p ≥ 0 for p = 1, . . . , r. It is clear that such a decomposition exists for any A ≥ 0. The minimal r for which such a decomposition is possible will be called the nonnegative rank. For A ≥ 0, this is denoted and defined via rank

+ (A) := min r A = r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p , δ p , u p , v p , . . . , z p ≥ 0 for all p .
Let ∆ d denote the unit d-simplex, i.e. the convex hull of the standard basis vectors in R d+1 . Explicitly,

∆ d := d+1 p=1 δ p e p ∈ R d+1 d+1 p=1 δ p = 1, δ 1 , . . . , δ d+1 ≥ 0 = {x ∈ R d+1 + | x 1 = 1}.
For nonnegative valued tensors, the E-norm has the advantage that (8) reduces to a simple sum of all entries. This simple observation leads to the following proposition stating that the decomposition in (11) may be realized over unit simplices if we normalize A by its E-norm.

Proposition 4.1. Let A ∈ R d 1 ו••×d k + be a nonnegative tensor with rank + (A) = r. Then there exist δ = [δ 1 , . . . , δ r ] ⊤ ∈ R r + , u p ∈ R d 1 -1 + , v p ∈ R d 2 -1 + , . . . , z p ∈ R d k -1 + , p = 1, . . . , r, where δ 1 = A E and u p 1 = v p 1 = • • • = z p 1 = 1, such that (12) A = r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p .
Proof. If A = 0, this is obvious. So we will suppose that A = 0. By the minimality of r = rank + (A), we know that u p , v p , . . . , z p in ( 12) are all nonzero and we may assume that

u p 1 = v p 1 = • • • = z p 1 = 1
since otherwise we may normalize

ûp = u p / u p 1 , vp = v p / v p 1 , . . . , ẑp = z p / z p 1 ,
and set δp =

δ p u p 1 v p 1 • • • z p 1 ,
and still have an equation of the form in [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF]. It remains to show that

δ 1 = A E .
Note that since all quantities involved are nonnegative,

A E = r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p E = r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p E .
By [START_REF] Carroll | Fitting of the latent class model via iteratively reweighted least squares candecomp with nonnegativity constraints[END_REF], the rhs can be further simplified to

r p=1 δ p u p 1 v p 1 • • • z p 1 = r p=1 δ p = δ 1 ,
as required.

Note that the conditions on the vectors imply that they lie in unit simplices of various dimensions:

(13) u 1 , . . . , u r ∈ ∆ d 1 -1 , v 1 , . . . , v r ∈ ∆ d 2 -1 , . . . , z 1 , . . . , z r ∈ ∆ d k -1 .
For k = 2, the above decomposition is best viewed as a parallel to the singular value decomposition of a matrix A ∈ R m×n , which is in particular an expression of the form

(14) A = r p=1 σ p u p ⊗ v p ,
where r = rank(A),

σ 2 = r p=1 |σ p | 2 1 2 = A F , and 
u p 2 = v p 2 = 1,
for all p = 1, . . . , r. Here σ = [σ 1 , . . . , σ r ] ⊤ ∈ R r is the vector of nonzero singular values of A. If A is normalized to have unit F -norm, then all quantities in (14) may be viewed as living in unit spheres of various dimensions:

A ∈ S mn-1 , σ ∈ S r-1 , u 1 , . . . , u r ∈ S m-1 , v 1 , . . . , v r ∈ S n-1 where S d-1 = {x ∈ R d | x 2 = 1}
is the unit sphere in R d . For k = 2, the nonnegative matrix decomposition in Proposition 4.1 is one where the unit spheres are replaced by unit simplices and the l 2 -and F -norms replaced by the l 1 -and E-norms. An obvious departure from the case of svd is that the vectors in ( 13) are not orthogonal. Henceforth when we use the terms ntf and nmf, we will mean a decomposition of the type in Proposition 4.1. For a nonnegative tensor with unit

E-norm, A ∈ ∆ d 1 •••d k -1 , the decomposition in Proposition 4.1 has a probabilistic interpretation.
Let U, V, . . . , Z be discrete random variables and q(u, v, . . . , z) = Pr(U = u, V = v, . . . , Z = z) be their joint probability distribution. Suppose U, V, . . . , Z satisfy the naïve Bayes hypothesis, i.e. they are conditionally independent upon a single hidden random variable Θ. Let q 1 (u | θ), q 2 (v | θ), . . . , q k (z | θ) denote respectively the marginal probability distributions of U, V, . . . , Z conditional on the event Θ = θ. Then the probability distributions must satisfy the relation [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF] q(u, v, . . . , z) =

r θ=1 δ(θ) q 1 (u | θ)q 2 (v | θ) • • • q k (z | θ)
where δ(θ) = Pr(Θ = θ). Since the discrete random variables U, V, . . . , Z may take d 1 , d 2 , . . . , d k possible values respectively, the Bayes rule in [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF] can be rewritten as the tensor decomposition in [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF], provided we 'store' the marginal distributions q 1 (u | θ), q 2 (v | θ), . . . , q k (z | θ) in the vectors u θ , v θ , . . . , z θ respectively. The requirement that r = rank + (A) corresponds to the Ockham principle of parsimony: that the model ( 15) be the simplest possible, i.e. the hidden variable Θ be minimally supported.

For the case k = 2, ( 15) is Hofmann's plsi [START_REF] Hofmann | Probabilistic Latent Semantic Indexing[END_REF], a probabilistic variant of latent semantic indexing [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF]. While it is known [START_REF] Gaussier | Relation between plsa and nmf and implications[END_REF] that the multiplicative updating rule for nmf with kl divergence in [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF] is equivalent to the use of em algorithm for maximum likelihood estimation of plsi in [START_REF] Hofmann | Probabilistic Latent Semantic Indexing[END_REF], this is about the equivalence of two algorithms (em and multiplicative updating) applied to two approximation problems (maximum likelihood of plsi and minimum kl divergence of nmf). Since the em algorithm and the nmf multiplicative updating rules are first-order methods that can at best converge to a stationary point, saying that these two algorithms are equivalent for their respective approximation problems does not imply that the respective models are equivalent. The preceding paragraph states that the probabilistic relational models behind plsi and ntf (and therefore nmf) are one and the same -a collection of random variables satisfying the naïve Bayes assumption with respect to a parsimonious hidden variable. This is a statement independent of approximation or computation.

Nonexistence of globally optimal solution for real and complex tensor approximations

A major difficulty that one should be aware of is that the problem of finding a best rank-r approximation for tensors of order 3 or higher has no solution in general. There exists

A ∈ R d 1 ו••×d k such that (16) inf A - r p=1 λ p u p ⊗ v p ⊗ • • • ⊗ z p
is not attained by any choice of λ p , u p , v p , . . . , z p , p = 1, . . . , r. It is also in general not possible to determine a priori if a given A ∈ R d 1 ו••×d k will fail to have a best rank-r approximation. This problem is more widespread than one might imagine. It has been shown in [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF] that examples of this failure happens over a wide range of dimensions, orders, ranks, and for any continuous measure of proximity (thus including all norms and Brègman divergence). Moreover such failures can occur with positive probability and in some cases with certainty, i.e. where the infimum in ( 16) is never attained. This phenomenon also extends to symmetric tensors [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF]. This poses some serious conceptual difficulties -if one cannot guarantee a solution a priori, then what is one trying to compute in instances where there are no solutions? We often get the answer "an approximate solution". But how could one approximate a solution that does not even exist in the first place? Conceptual issues aside, this also causes computational difficulties in practice. Forcing a solution in finite precision for a problem that does not have a solution is an ill-advised strategy since a well-posed problem near to an ill-posed one is, by definition, ill-conditioned and therefore hard to compute. This ill-conditioning manifests itself in iterative algorithms as summands that grew unbounded in magnitude but with the peculiar property that the sum remains bounded. This was first observed by Bini, Lotti, and Romani [START_REF] Bini | Approximate solutions for the bilinear form computational problem[END_REF] in the context of arbitrary precision approximations (where this phenomenon is desirable). Independently Harshman and his collaborators Kruskal and Lundy [START_REF] Kruskal | How 3-MFA data can cause degenerate parafac solutions, among other relationships[END_REF] also investigated this phenomenon, which they called parafac degeneracy, from the perspective of model fitting (where it is undesirable). In Theorem 6.1, we will prove the cheerful fact that one does not need to worry about parafac degeneracy when fitting a nonnegative parafac model.

The first published account of an explicitly constructed example of parafac degeneracy appeared in a study of the complexity of matrix multiplication by Bini, Capovani, Lotti, and Romani [START_REF] Bini | O(n 2.7799 ) complexity for n × n approximate matrix multiplication[END_REF]. However their discussion was for a context entirely different from data analysis/model fitting and was presented in notations somewhat unusual. Until today, many remain unconvinced that the construction in [START_REF] Bini | O(n 2.7799 ) complexity for n × n approximate matrix multiplication[END_REF] indeed provides an explicit example of parafac degeneracy and continue to credit the much later work of Paatero [START_REF] Paatero | Construction and analysis of degenerate parafac models[END_REF]. The truth is that such constructions are well-known in algebraic computational complexity; in addition to [START_REF] Bini | O(n 2.7799 ) complexity for n × n approximate matrix multiplication[END_REF], one may also find them in [START_REF] Bini | Approximate solutions for the bilinear form computational problem[END_REF][START_REF] Bürgisser | Algebraic complexity theory[END_REF][START_REF] Knuth | The art of computer programming, 2: seminumerical algorithms[END_REF], all predating [START_REF] Paatero | Construction and analysis of degenerate parafac models[END_REF]. As a small public service3 , we will translate the original construction of Bini, Capovani, Lotti, and Romani into notations more familiar to the technometrics communities.

In [START_REF] Bini | O(n 2.7799 ) complexity for n × n approximate matrix multiplication[END_REF], Bini, Capovani, Lotti, and Romani gave an algorithm that can approximate to arbitrary precision the product of two n × n matrices and requires only O(n 2.7799 ) scalar multiplications. The key to their construction is the following triplet of matrices which at first glance seem somewhat mysterious:

U =   1 0 1 0 1 0 0 0 ε ε 1 1 0 1 0   , V =     ε 0 0 -ε 0 0 -1 0 1 0 0 0 0 0 ε 1 -1 1 0 1     , W =     ε -1 ε -1 -ε -1 ε -1 0 0 0 0 1 0 0 0 -ε -1 0 ε -1 1 0 0 0 -1     .
We will show that these matrices may be used to construct a sequence of tensors exhibiting parafac degeneracy. We will assume that U has a 4th row of zeros and so U, V, W ∈ R 4×4 . As usual, u ij , v ij , w ij will denote the (i, j)th entry of the respective matrices. Let n ≥ 4 and x 1 , x 2 , x 3 , x 4 ∈ R n (or C n ) be linearly independent vectors. For ε > 0, define

A ε := 4 j=1 4 i=1 u ij x i ⊗ 4 i=1 v ij x i ⊗ 4 i=1 w ij x i .
Observe that

A ε = (x 1 + x 3 ) ⊗ (εx 1 + x 4 ) ⊗ (ε -1 x 1 + x 4 ) + x 3 ⊗ (-x 2 -x 4 ) ⊗ ε -1 x 1 + x 1 ⊗ x 4 ⊗ (-ε -1 x 1 -ε -1 x 3 ) + (εx 2 + x 3 ) ⊗ (-εx 1 + x 2 ) ⊗ (ε -1 x 1 + x 2 ) + (x 1 + εx 2 ) ⊗ (εx 3 + x 4 ) ⊗ (ε -1 x 3 -x 4 ).

It is straight forward to verify that

lim ε→0 A ε = A where A = x 1 ⊗ x 1 ⊗ x 1 + x 1 ⊗ x 3 ⊗ x 3 + x 2 ⊗ x 2 ⊗ x 1 + x 2 ⊗ x 4 ⊗ x 3 + x 3 ⊗ x 2 ⊗ x 2 + x 3 ⊗ x 4 ⊗ x 4 .
Note that the sequence A ε exhibits parafac degeneracy: as ε → 0, each of the summands becomes unbounded in magnitude but A ε remains bounded (and in fact converges to A).

Regardless of whether

x 1 , x 2 , x 3 , x 4 ∈ R n or C n , it is clear that for all ε > 0, rank(A ε ) ≤ 5.
Furthermore, one may show that rank(A) = 6 over C and therefore rank(A) ≥ 6 over R (cf. remarks at the end of Section 3). In either case, A is an instance in R n×n×n or C n×n×n where the approximation problem in (1) has no solution for r = 5 -since inf rank(X)≤5 A -X = 0 and rank(A) ≥ 6 together imply that argmin rank(X)≤5 A -X = ∅.

Hence the construction in [1] also yields an explicit example of a best rank-r approximation problem (over R and C) that has no solution.

Existence of globally optimal solution for nonnegative tensor approximations

As we have mentioned in Section 2, nonnegativity constraints are often natural in the use of parafac. Empirical evidence from Bro's chemometrics studies revealed that parafac degeneracy was never observed when fitting nonnegative-valued data with a nonnegative parafac model. This then led Harshman to conjecture that this is always the case. The text of his e-mail had been reproduced in [START_REF] Lim | Optimal solutions to nonnegative parafac /multilinear nmf always exist[END_REF].

The conjectured result involves demonstrating the existence of global minima over a non-compact feasible region and is thus not immediate. Nevertheless the proof is still straightforward by the following observation: If a continuous real-valued function has a non-empty compact sublevel set, then it has to attain its infimum -a consequence of the extreme value theorem. This is essentially what we will show in the following proof for the nonnegative parafac loss function (in fact, we will show that all sublevel sets of the function are compact). We will use the E-norm in our proof for simplicity, the result for other norms then follows from the equivalence of all norms on finite-dimensional spaces. Essentially the same proof, but in terms of the more customary F -norm, appeared in [START_REF] Lim | Optimal solutions to nonnegative parafac /multilinear nmf always exist[END_REF]. We will follow the notations in Section 4.

Theorem 6.1. Let A ∈ R d 1 ו••×d k be nonnegative. Then inf A - r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p E δ ∈ R r + , u p ∈ ∆ d 1 -1 , . . . , z p ∈ ∆ d k -1 , p = 1, . . . , r is attained. Proof. Recall that R n + = {x ∈ R n | x ≥ 0} and ∆ n-1 = {x ∈ R n + | x 1 = 1}. We define the function f : R r × (R d 1 × • • • × R d k ) r → R by (17) f (T ) := A - r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p E
where we let T = (δ 1 , . . . , δ r ; u 1 , v 1 , . . . , z 1 ; . . . ; u r , v r , . . . , z r ) denote the argument of f . Let D be the following subset of R r × (R

d 1 × • • • × R d k ) r = R r(1+d 1 +•••+d k ) , D := R r + × (∆ d 1 -1 × • • • × ∆ d k -1 ) r .
Note that D is closed but unbounded. Let the infimum in question be µ := inf{f (T ) | T ∈ D}. We will show that the sublevel set of f restricted to D,

E α = {T ∈ D | f (T ) ≤ α}
is compact for all α > µ and thus the infimum of f on D must be attained. The set

E α = D ∩ f -1 (-∞, α]
is closed since f is continuous (by the continuity of norm). It remains to show that E α is bounded. Suppose the contrary. Then there exists a sequence

(T n ) ∞ n=1 ⊂ D with T n 1 → ∞ but f (T n ) ≤ α for all n. Clearly, T n 1 → ∞ implies that δ (n)
q → ∞ for at least one q ∈ {1, . . . , r}. Note that

f (T ) ≥ A E - r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p E .
is attained by X * ∈ T ⊂ S. The remaining implications (b) ⇒ (c) ⇒ (d) ⇒ (a) are obvious.

In the language of [START_REF] Bürgisser | Algebraic complexity theory[END_REF][START_REF] Strassen | Gaussian elimination is not optimal[END_REF], this says that 'nonnegative border rank' coincides with nonnegative rank. An immediate corollary is that the E-norm in Theorem 6.1 and Proposition 6.2 may be replaced by any other norm. In fact we will see later that we may replace norms with more general measures of proximity.

Corollary 6.3. Let A = a j 1 •••j k ∈ R d 1 ו••×d k be nonnegative and • : R d 1 ו••×d k → [0, ∞) be an arbitrary norm. Then inf A - r p=1 δ p u p ⊗ v p ⊗ • • • ⊗ z p δ ∈ R r + , u p ∈ ∆ d 1 -1 , . . . , z p ∈ ∆ d k -1 , p = 1, . . . , r is attained. 
Proof. This simply follows from the fact that all norms on finite dimensional spaces are equivalent and so induce the same topology on

R d 1 ו••×d k +
. So Proposition 6.2 holds for any norms. In particular, the statement (b) in Proposition 6.2 for an arbitrary norm • is exactly the result desired here. Corollary 6.3 implies that the parafac degeneracy discussed in Section 5 does not happen for nonnegative approximations of nonnegative tensors. There is often a simplistic view of parafac degeneracy as being synonymous to 'between component cancellation' and thus cannot happen for nonnegative tensor approximation since it is 'purely additive with no cancellation between parts' [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF][START_REF] Shashua | Non-negative tensor factorization with applications to statistics and computer vision[END_REF]. While it provides an approximate intuitive picture, this point of view is flawed since parafac degeneracy is not the same as 'between component cancellation'. There is cancellation in nx ⊗ y ⊗ z -(n + 1 n )x ⊗ y ⊗ z but the sequence exhibits no parafac degeneracy. Conversely, the sequence of nonnegative tensors

A n = 0 1 1 1/n 1 1/n 1/n 1/n 2 ∈ R 2×2×2
may each be decomposed nonnegatively as [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF] A

n = A + 1 n B + 1 n 2 C with A, B, C ∈ R 2×2×2 given by A = 0 1 1 0 1 0 0 0 , B = 0 0 0 1 1 0 1 0 , C = 0 0 0 0 0 0 0 1 ,
and each may in turn be decomposed into a sum of rank-1 terms. While there is no 'between component cancellation' among these rank-1 summands, it is known [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF] that the convergence lim n→∞ A n = A exhibits parafac degeneracy over R 2×2×2 or C 2×2×2 , where there are decompositions of A n different from the one given in [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF] exhibiting parafac degeneracy. That such decompositions cannot happen over R 2×2×2 + is precisely the statement of Proposition 6.2, which we proved by way of Theorem 6.1.

Brègman divergences

In many applications, a norm may not be the most suitable measure of proximity. Other measures based on entropy, margin, spectral separation, volume, etc, are often used as loss functions in matrix and tensor approximations. Such measures may not even be a metric, an example being the Brègman divergence [START_REF] Brègman | A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming[END_REF][START_REF] Dhillon | Matrix nearness problems using Brègman divergences[END_REF][START_REF] Iusem | Bregman distance," and "Bregman function[END_REF], a class of proximity measures that often have information theoretic or probabilistic interpretations. In the definition below, ri(Ω) denotes the relative interior of Ω, i.e. the interior of Ω regarded as a subset of its affine hull; • is any arbitrary norm on R d 1 ו••×d k -again the choice of which is immaterial since all norms induce the same topology on Ω. Definition 7.1. Let ∅ = Ω ⊆ R d 1 ו••×d k be a closed convex set. Let ϕ : Ω → R be continuously differentiable on ri(Ω) and strictly convex and continuous on Ω. The function

D ϕ : Ω × ri(Ω) → R defined by D ϕ (A, B) = ϕ(A) -ϕ(B) -∇ϕ(B), A -B is a Brègman divergence if (i) For any fixed A ∈ Ω, the sublevel set L α (A) = {X ∈ ri(Ω) | D ϕ (A, X) ≤ α} is bounded for all α ∈ R. (ii) Let (X n ) ∞ n=1 ⊂ ri(Ω) and A ∈ Ω. If lim n→∞ A -X n = 0, then lim n→∞ D ϕ (A, X n ) = 0. (iii) Let (X n ) ∞ n=1 ⊂ ri(Ω), A ∈ Ω, and (A n ) ∞ n=1 ⊂ Ω. If lim n→∞ A -X n = 0, lim sup n→∞ A n < ∞, lim n→∞ D ϕ (A n , X n ) = 0, then lim n→∞ A n -X n = 0.
Note that D ϕ (A, B) ≥ 0 and that D ϕ (A, B) = 0 iff A = B by the strict convexity of ϕ. However D ϕ need not satisfy the triangle inequality nor must it be symmetric in its two arguments. So a Brègman divergence is not a metric in general.

Brègman divergences are particularly important in nonnegative matrix and tensor decompositions [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF][START_REF] Shashua | Non-negative tensor factorization with applications to statistics and computer vision[END_REF]. In fact, one of the main novelty of nmf as introduced by Lee and Seung [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF] over the earlier studies in technometrics [START_REF] Carroll | Fitting of the latent class model via iteratively reweighted least squares candecomp with nonnegativity constraints[END_REF][START_REF] Krijnen | Contrastvrije oplossingen van het candecomp/parafacmodel[END_REF][START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF] is their use of the Kullback-Leibler divergence [START_REF] Kullback | On information and sufficiency[END_REF] as a proximity measure4 . The kl divergence is defined for nonnegative matrices in [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF] but it is straightforward to extend the definition to nonnegative tensors. For A

∈ R d 1 ו••×d k + and B ∈ ri(R d 1 ו••×d k + ), this is D KL (A, B) = d 1 ,...,d k j 1 ,...,j k =1 a j 1 •••j k log a j 1 •••j k b j 1 •••j k -a j 1 •••j k + b j 1 •••j k ,
where 0 log 0 is taken to be 0, the limiting value. It comes from the following choice of ϕ,

ϕ KL (A) = d 1 ,...,d k j 1 ,...,j k =1 a j 1 •••j k log a j 1 •••j k .
We note that Kullback and Liebler's original definition [START_REF] Kullback | On information and sufficiency[END_REF] was in terms of probability distributions. The version that we introduced here is a slight generalization. When A and B are probability distributions as in Section 4, then A E = B E = 1 and our definition reduces to the original one in [START_REF] Kullback | On information and sufficiency[END_REF],

D KL (A, B) = d 1 ,...,d k j 1 ,...,j k =1 a j 1 •••j k log a j 1 •••j k b j 1 •••j k .
In this case D KL (A, B) may also be interpreted as the relative entropy of the respective distributions.

It is natural to ask if the following analogous nonnegative tensor approximation problem for Brègman divergence will always have a solution:

(19) X r ∈ argmin{D ϕ (A, X) | X ∈ ri(Ω), rank + (X) ≤ r}.
Clearly, the problem cannot be expected to have a solution in general since ri(Ω) is not closed. ) since if we set x n = y n = z n = [1, n -1 ] ⊤ , then as n → ∞, D KL (A, x n ⊗ y n ⊗ z n ) = 1 n 3 → 0. This is simply a consequence of the way a Brègman divergence is defined and has nothing to do with any peculiarities of tensor rank, unlike the example discussed in Section 5. This difficulty may be avoided by posing the problem for any closed (but not necessarily compact) subset of ri(Ω). Proof. Recall that S r :

= {X ∈ R d 1 ו••×d k + | rank + (X) ≤ r}.
The statement is trivial if rank + (A) ≤ r. So we will also assume that rank + (A) ≥ r + 1. Let µ be the infimum in [START_REF] Harshman | Data preprocessing and the extended parafac model[END_REF] and let α > µ. By (i) in Definition 7.1, the sublevel set L α (A) is bounded and so its subset K ∩ S r ∩ L α (A) = {X ∈ K ∩ S r | D ϕ (A, X) ≤ α} must also be bounded. Note that K ∩ S r is closed. Since ϕ is continuously differentiable on ri(Ω), the function X → D ϕ (A, X) is continuous and so K ∩ S r ∩ L α (A) is also closed. Hence D ϕ (A, X) must attain µ on the compact set K ∩ S r ∩ L α (A).

As one can see from the proof, Proposition 7.2 extends to any other measure of proximity d(A, X) where the function X → d(A, X) continuous and coercive. Of course this is just a restatement of the problem, the bulk of the work involved is usually to show that the proximity function in question has those required properties.

Aside: norm-regularized and orthogonal approximations

We have often been asked about norm-regularized and orthogonal approximations of tensors that are not necessarily nonnegative. These approximation problems are useful in practice [START_REF] Comon | Independent component analysis: a new concept?[END_REF][START_REF] Harshman | Data preprocessing and the extended parafac model[END_REF][START_REF] Paatero | Construction and analysis of degenerate parafac models[END_REF]. Nevertheless these always have optimal solutions for a much simpler reason -they are continuous optimization problems over compact feasible set, so the existence of a global minima is immediate from the extreme value theorem (note that this is not the case for nonnegative tensor approximation). In the following, we will let A ∈ R d 1 ו••×dr , not necessarily nonnegative.

Recall that O(n, r), the set of n × r matrices (r ≤ n) with orthonormal columns, is compact in R n×r . If we impose orthonormality constraints on the normalized loading factors in (2), i. 

  For example let A = e ⊗ e ⊗ e ∈ R 2×2×2 + where e = [1, 0] ⊤ , then inf{D KL (A, X) | X ∈ ri(R 2×2×2 + ), rank + (X) ≤ 1} = 0 cannot be attained by any x ⊗ y ⊗ z ∈ ri(R 2×2×2 +
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 72 Let Ω be a closed convex subset of R d 1 ו••×d k + and A ∈ Ω. Let D ϕ : Ω × ri(Ω) → R be a Brègman divergence. Then

( 20 )

 20 inf{D ϕ (A, X) | X ∈ K, rank + (X) ≤ r}is attained for any closed subset K ⊆ ri(Ω).

  e. [u 1 , . . . , u r ] ∈ O(d 1 , r), . . . , [z 1 , . . . , z r ] ∈ O(d k , r), then it follows that |λ p | ≤ A 2 F for p = 1, . . . , r, i.e. λ ∈ [-A F , A F ] r ⊂ R r .Since the parafac objective is continuous and we are effectively minimizing over the compact feasible region[-A F , A F ] r × O(d 1 , r) × • • • × O(d k , r),this shows that orthogonal parafac always has a globally optimal solution.

And also to fulfill, belatedly, an overdued promise made to Richard when he was preparing his bibliography on parafac degeneracy.

This brought back memories of the many intense e-mail exchanges with Harshman, of which one was about the novelty of nmf. His fervently argued messages will be missed.
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Since all terms involved in the approximant are nonnegative, we have

where the last two equalities follow from [START_REF] Carroll | Fitting of the latent class model via iteratively reweighted least squares candecomp with nonnegativity constraints[END_REF] and

The proof essentially shows that the function f is coercive -a real-valued function f is said to be coercive for minimization if lim x →+∞ f (x) = +∞ [START_REF] Brinkhuis | Optimization: insights and applications[END_REF]. This is a standard condition often used to guarantee that a continuous function on a noncompact domain attains its global minimum and is equivalent to saying that f has bounded sublevel sets. A minor point to note is that had we instead optimized over a sum of rank-1 terms u ⊗ v ⊗ • • • ⊗ z, the proof would fail because the vectors u, v, . . . , z may be scaled by non-zero positive scalars that product to 1, i.e.

So for example (nx) ⊗ y ⊗ (z/n) can have diverging loading factors even while the outerproduct remains fixed. We avoided this by requiring that u, v, . . . , z be unit vectors and having a δ that records the magnitude.

The following proposition provides four useful characterizations of the statement that the function rank + : R d 1 ו••×d k + → R is upper semicontinuous. This is the nonnegative rank equivalent of a similar result in [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF]. 

can be approximated arbitrarily closely by nonnegative tensors of strictly lower nonnegative rank, i.e.

since any X ′ ∈ S r \T must have A -X ′ > A while we know that δ ≤ A . By the compactness of T , there exists X * ∈ T such that A -X * = δ. So the required infimum Next, the regularization proposed in [START_REF] Paatero | Construction and analysis of degenerate parafac models[END_REF] is to add to the parafac objective terms proportional to the 2-norm of each loading factor, i.e. [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF] A -

2 ).

From constrained optimization theory, we know that, under some regularity conditions, minimizing a continuous function f (x 1 , . . . , x k ) under constraints x i 2 = r i , i = 1, . . . , k, is equivalent to minimizing the functional f (x 1 , . . . ,

2 for appropriate ρ 1 , . . . , ρ k ∈ R. In a finite dimensional space, the sphere of radius r i is compact, and so is the feasible set defined by x i 2 = r i , i = 1, . . . , k, and thus f must attain its extrema. In the same vein, ( 21) is equivalent to an equality constrained optimization problem and so norm-regularized parafac always has a globally optimal solution. This approach may also be applied to regularizations other than the one discussed here.