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Structure Invariance for Uncertain Nonlinear Systems 

R. Castro-Linares and C. H. Moog 

work of [ 11 where the so-called generalized matching condition 
for a class of nonlinear systems is introduced. More recently, the 
robust output tracking problem was addressed in [I81 for a class 
of single-input single-output (SISO) nonlinear systems, of which the 

Absfract-A unified study of three control problems associated to multi- 
input multi-output nonlinear systems with uncertainties is presented, 
namely, input-state linearization by static state feedback, input-output 
decoupling by static state feedback and input-output decoupling by 
dynamic compensation. For each of these problems, geometric conditions 
which describe intrinsic structural invariance properties are given. 

I. INTRODUCTION 

During the last two decades, nonlinear control theory was very 
actively developed (see e.g., [14], [16], [20] and the references 
therein). In particular, geometric and algebraic methods have received 
considerable attention in the literature. Exact control problems such 
as linearization and decoupling of the closed-loop system have been 
studied in various ways, e.g., linearization of the closed-loop state 
equations [ 131, [ 151, linearization of the closed-loop input-output map 
[ 141, and input-output decoupling of the closed-loop system [9], [ 121. 

A major question arises when the model of the system contains 
uncertain elements such as constant or varying parameters that are 
not known or imperfectly known. Under such imperfect knowledge 
of the model, one tries to design a control such that the model can 
still achieve the desired closed-loop behavior. 

The matter of robustness of such control methods is often argued in 
some case studies. The idea for studying some classes of uncertainties 
in the system model is growing in the current literature since it aims 
to develop a general theory for robustness. To deal with uncertain 
nonlinear systems, two main approaches have been proposed in the 
literature: adaptive control and Lyapunov-based control. The first 
one is applied to systems with parameterized uncertainties (see e.g., 
[22]), while the second allows nonparameterized uncertainties. The 
Lyapunov-based approach relies on an explicit construction of a 
Lyapunov function from which a state feedback control is synthesized 
assuming bounds on the uncertainties. To obtain either stabilization 
or tracking, however, some assumptions were introduced regarding 
the structure of the uncertainties. That is to say that the uncertainties 
have to enter into the state equation in a certain way; such conditions 
are often referred to as matching conditions. 

Some studies have been carried out on the stability analysis of 
uncertain dynamical systems not satisfying matching conditions. In 
[21], it is pointed out that mismatched uncertainty may affect robust 
stability when the feedback linearizing method is applied. Such 
systems which contain mismatched uncertainties are not considered 
in the rest of this paper. 

In addition, several authors have contributed to the robust tracking 
problem for nonlinear systems with uncertainties. A multivariable 
tracking problem is studied in [IO], using a measurement of the 
tracking error which is a general function of the system's state and 
input; the resulting controller is robust in the sense that the tracking 
error is ultimately bounded in the presence of modeling errors which 
satisfy the matching conditions. A similar result is obtained in the 
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uncertainties may not satisfy the conventional matching condition. 
using a Lyapunov-based approach. 

In this note, we consider a multi-input multi-output (MIMO) 
nonlinear system in the presence of uncertainties, referred to as the 
uncertain system, described by 

( 1 )  

where s E W" is the state vector, 11 E RP is the input vector, y E R" 
is the output vector, f(s) and thep  columns gl(s) : . . .g , (  r )  of the 
matrix g ( x )  are meromorphic vector fields of s. and thep  components 
h l  (s). . . . . h p ( r )  of the vector h ( s )  are meromorphic functions of 
s. A f ( . r )  and the p columns Ag1 ( .r) .  . . . . A g P ( . r )  of the matrix 
Ag(s )  are also meromorphic vector fields of s which represent the 
disturbance and model uncertainties. 

The corresponding nonlinear system without uncertainty, called the 
nominal system, is then defined as 

s ~ :  .i. = f(s) + A f ( . r )  + ( g ( . r )  + Ag(n))i19 { y = h ( s )  

j. = f ( r )  + g ( r ) 7 r .  
y = h ( r )  

c: { 
i.e., A f ( a )  F 0 and Ag(s )  0 in (1). In the rest of the paper, dim 
D denotes the generic dimension of a meromorphic distribution D. 
i.e., its constant dimension on a suitable dense submanifold of R" . 

The goal of the note is to give a unified geometric study for 
three control problems associated to the uncertain nonlinear system 
F": input-state linearization by static state feedback, static state 
feedback decoupling, and decoupling under dynamic compensation. 
In particular, some geometric intrinsic conditions on the uncertainties 
are given for each problem. These conditions are innovative in the 
sense that they describe intrinsic structural invariance properties from 
the nominal system to the uncertain system. Under these conditions, 
robust trajectory tracking is studied in [3] when dynamic decoupling 
is considered. Equivalent results for input-state linearization and 
input-output decoupling by static state feedback can be found in 
the literature (see, for example, [ l] ,  [16], [181, [231). 

The note is organized as follows. In Section 11, we recall the input- 
state linearization problem by static state feedback and give geometric 
conditions so that the uncertain system in closed-loop form has a 
particular representation in a new set of coordinates. The same is 
done in Sections I11 and IV for the input-output decoupling problem 
by static state feedback and by dynamic compensation, respectively. 
Finally, a conclusion is offered in Section V. 

11. INPUT-STATE LINEARIZATION BY STATIC-STATE FEEDBACK 
Through this section we consider an uncertain system X p  and a 

nominal system without outputs, i.e., each system is just defined 
by the corresponding state equation. 

Given the vector fields f and the matrix g. the input-state lineariza- 
tion problem we address here consists in supposing the existence 
of a state-space coordinate transformation and a regular static state 
feedback defined on W". such that the nominal nonlinear system Y 
is equivalent to a linear controllable system 

( = A< + Bil (3) 

with A and B constant matrices of dimension n x 71 and n x m ,  
respectively, and 1 1  = col( 1 1 1 . .  . . . v P )  a new input. It is well known 
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that the sequence of distributions D k  = g + . . . + ndFg, 0 5 k 5 
I I  - 2 where B denotes the involutive closure of a distribution D ,  lies 
in the heart of the input-state linearization problem by regular static 
state feedback since the cardinality c k  of the controllability indexes 
equal to k associated to the linearized system is given by [19] 

So the system S is fully linearizable if and only if ~~~~ l i ck  = n. 
Let the coordinate transformation 

E = ( a ( . r )  (4) 

and the regular static state feedback 

I /  = Q ( . T )  + J ( . r ) r  ( 5 )  

with n ( . r )  a p x 1 vector and J(s) a 11 x 11 invertible matrix 
both defined on R" be a solution of the input-state linearization 
problem for the nominal system Y. It is well known [14], [20] 
that if such a solution exists there are p real-valued meromorphic 
functions of x.  0 ,  ( . r ) .  i = 1. .  . . . p which have relative degrees 
r l . .  . . . r l l .  with r1 +. . . + r p  = 1 1 .  and the decoupling matrix --l(.r) is 
invertible. Thus, we can set the state-space coordinate transformation 
(4) to be < = col(EI:...Ep) where [, = c ~ l ( < ~ ~ . . . . . < , . ~ , )  with 
E , ,  = LJ- 'o , ( . r ) .  i = l:...p. j = l : . . . r , .  Let us also define 
the sequence of distributions D p  associated to the uncertain system 
T p  as D r  = g + Ag + .  . . + ad!+,j ( y  + 19). 0 < - -  X. < 71 - 2. 
We then have the following result. 

Proposif ion 2.1: Assume that the nominal system Y without out- 
puts is input-state linearizable by regular static state feedback and 
state diffeomorphism <. Then the uncertain system Tp is input-state 
linearizable by regular static state feedback in the state coordinates < 
with unchanged controllability indexes, if and only if 

.r 

D~ = 0:. fork 2 0. (6) 

Proof (Suficiency): If (6) is fulfilled, then the relative degree 
of any meromorphic function ; ( . r )  is invariant under the considered 
uncertainties. Moreover, the strong accessibility distribution remains 
unchanged. Assume that (3) is given under a Brunovsky canonical 
form which consists of p blocks of dimension r2. for i = 1.. . . . p .  
Then, the uncertain system C r  fed back with ( 5 )  takes the following 
form in the coordinates E 

i, = A,<,  + b ,  L,, + C ' ,  ( E  1 + r i ,  ( E )  + .i, ( E )  I , .  i = 1. . . . . p ( 7 )  

with 

(Necessity): The necessity of (6) follows from the fact that the 
coordinates for the Brunovsky canonical form are unchanged as well 
as the controllability indexes. 

0 
Remark 2.2: Note that the system's property described in Propo- 

sition 2.1 is stronger than just input-state linearizability. The full 
characterization of the latter is not a structural problem as can be 
easily understood from the following example 

.i. = f(z) + g ( . ~ ) 7 ~  + A f ( x )  + A g ( . r ) u  

= [,(:.I + :] 71 + 
+ [ :] 0 1  0 0  

where the nominal linear system switches to the uncertain system 
which has a different structure though input-state linearity is main- 
tained. 

Remark 2.3: Note that the standard matching condition [l] ,  [4], 
[IO] implies iY(.r) = 0 and . J ( s )  = 0. thus ( d ~ $ ~ , ~ ~ - 1 .  g + A g )  = 0. 
and d < , ~  I g + Ag + . . . + cid?;,&(g + Ag). which is stronger 
than (6). The invariance of the relative degree r t  has also been 
considered in [ I ]  for a nonlinear system which has a single output. 

The closed-loop representation (7) can be written in a more concise 
form as 

= A< + B~~ + * ( E )  + ir(0 + . 3 ( ~ ) ~ !  (10) 

with 

The stabilization of nonlinear systems having the form (10) has been 
considered in the literature. For example, in [ 161 a Lyapunov analysis 
is made to study the effects of the perturbation terms which satisfy 
the matching conditions by means of an additional feedback control 

I S  = ~ ( z ) .  More recently, a methodology has been suggested in 
[23] to tackle this problem without requiring matching assumptions. 
There, single-input nonlinear systems without uncertainties in the 
input vector g are studied using a combination of sliding control ideas 
together with the recursive construction of a closed-loop Lyapunov 
function. 

111. INPUT-OUTPUT DECOUPLING BY STATIC-STATE FEEDBACK 
Let us now examine an uncertain system 1' (1) and a nominal 

system C (2) with outputs. We consider the existence of a regular 
static state feedback ( 5 )  such that the nominal feedback modified 
dynamics 

j. = f ( . r )  + g ( s ) u .  
y = h ( . r )  2: { 

with f ( x )  = f ( . r ) + g ( . r ) a ( . r )  andQ(x)  = g ( , r ) J ( . r ) .  is input-output 
decoupled, i.e., the 7th input 71, only affects the ith output y, and not 
the other outputs y,, j # i .  possibly after a relabeling of the input 
1'1. . . . , I ' ~ ? .  Such a problem is known as the input-output decoupling 
problem by regular static state feedback. 
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Assume that each output of the nominal system Y has relative The conditions given in Proposition 3.1 are also necessary; these 
can be verified by standard computations. The special case where 
L ' ~ ~  = 0, for 1 5 j 5 T ,  - 1. can be found in [17]. The necessary 
and sufficient condition then becomes 

degree T , .  2 = 1.. . . . p .  and that the decoupling matrix 

h l ( . r )  . . .  Lg,,,L?-'h1(s) 

L, ,L;P-lh,(s)  . . f L,,L;P-lh,(s) .If + span{Ag} E D'. 
=1(.r) = 

is right invertible. Then, the nominal system is input-output decou- 
plable by a standard decoupling feedback which has the form (5) (see, Proof Of Since the system can be 

decoupled, then D' = no:. Also y, = D ; l  and f = DTPL. On for example, [14], [20]). Also, the set of functions = L $ - ' h > ( x ) .  
the other hand, assumptions (14) and (15) yield i = 1 , .  . . . y .  j = 1.. . . . r t .  define a partial state-space coordinate 

transformation and we set, as in Section 11, E =  col(<^. . . . . <,) with 

E (  i ) be an (71 - r )  vector of meromorphic functions of s such that 

* = p  
- c1 = col(<,1:...Ez , ,) ,  and T = r1 + . . .  + r,. In addition, let 

C = (t .  r )  = @(a.) forms a local change of coordinates 
In the rest of the paper, the denvative of order k of the output y, 

along the trajectories of X is denoted y j k )  whereas its derivative of 
order k along the trajectories of C p  is denoted y!". Thus, we define 

D' = D" = 
Z = 1  

and the system C p  remains decouplable 

of y,' = span{dy,, d i t }  (I e ,  Y: = ydp) one gets, for 2' 
Since = y2 = h ,  (2). for 2 = 1.. . .p .  and from the invariance 

with w , ~  = L A J ~ ~ ( X )  and Et* = L f h , ( x ) .  More generally, for any 
j 5 r ,  - 1. one has for 0 5 k < T ,  - 1 while D', D * p  are the largest controlled 

invariant distributions contained in ker{dhl.. . . . dh,}  for Y and 
C p .  respectively. Also, D: and D:p denote the largest controlled 
invariant distributions cpntained in ker{ d h ,  }. for the nominal and 
uncertain systems. Let C' denote the uncertain dynamics obtained 
after decoupling the nominal system. Then we have 

Proposztion 3.1: Suppose the nominal system r is input-utput 
decouplable by regular static state feedback. Assume 

i 7 J  = < % ] + I  + u ' * J ( < t l >  < Z 2 . " . . < L J + 1 )  

where vZJ = LAfL;-'h,(.r) and cz 
component Of iL reads 

= L $ h , ( s ) .  The last 

iz 7 ,  = 11, + li z v * ( € ,  S) + At(<, T,.c<. F ,  
y," = y k P  , f o r O < k < r , - l . l < r < p  (14) + & ( E ,  m(E, E)t'  

and where now 

Then 
and i) the decoupling matrix of Sp is right invertible, and 

ii) with respect to the coordinates C = ( E .  E ) .  the uncertain 
dynamics eP is A t ( < ,  E )  = LA,L;'-'h,(x) I z = a - i ( E  E )  . 

with the pairs ( A t ,  b , )  in the Brunovsky canonical form (8), 
and t>z .  ci, and 9, given by 

- 
g(<. T ,  U )  = L,E.,J(.r) I r = m - i ( E  F) .I' + L A . ~ ( s )  I r = m - l ( E  z) 

+La,T.n(.r) I r = @ - i ( E  E ,  +LAg?. J(.r) I s = o - l ( E  . I '  

the representation (16) follows. 
remains completely 

unobservable at the output. Thus, for the purposes of stabilization we 
need that 2 remain bounded for bounded < and 71; i.e., we require 
that the internal dynamics 

b'* 7 8 - l ( < c l .  € 2 2 r l . . 1 < t  7 % )  

U'Z T i ( € .  E )  
0 

From (16) we can notice that the state vector 

T = ? ( E >  r, + a(€> r. 7 ' )  

0 
be bounded-input bounded-state (BIBS) stable. This question has 
received considerable attention dunng the last few years. For instance, 
in [ l ]  BIBS stability is guaranteed for an uncertain SISO nonlinear 
system, where 0; the MIMO case 
is treated in [8] using variable structure control. The same stability 

where ? ' z ~ ( < $  = LAfL"fl h z ( x )  E )  and aspect is considered in [I81 for the SISO case but talung into account 
.Iz(<, t) = LAqLTt - lh t (L)  lzxQ-i(E . the term i j .  

is chosen so that g(<, z. v )  
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Iv. INPUT-OUTPUT DECOUPLINC BY DYNAMIC COMPENSATION 

In this section we consider again an uncertain system Y p  and a 
nominal system Y with outputs, i.e., systems (1) and (2). We now 
look at more general control loops associated with the nominal system 
Y to achieve input-output decoupling. More precisely, given the 
nominal system we address the problem when there exists a dynamic 
compensator with state 2 

= -U(s. 2 )  + S ( r ,  Z ) I -  

I I  = F ( x .  2 )  + G(.r-  z ) ~  (17) 

where z = col(z1 :... 2,) E W q .  M :  W7'+4 -+ W. S: W"+, -+ 

W q x p .  F :  W"iq  + Rp and G :  W" x Wq 4 W p x p  are meromorphic 
mappings, and ( 1  = col( 1 ' 1 .  . . . . I ' ~  ) represents a new input, such that 
191 

d y j k )  E span{dr. d;. (~i,!. . . . . dr!k-l' 1. 
i = l;.. . p ,  k 2 1 (18) 

and 

c ~ y j ~ ~ + ~ '  span{d.r. d z } ,  i = 1.. . . . p .  (19) 

Precisely, (1 8) represents the noninteraction of the new inputs 
. . . . vP while (19) represents the output controllability condition. 

Next we address the structural invariance properties associated 
with the nominal and uncertain nonlinear systems under dynamic 
compensation. We first recall, from [5], [9], the definition of some 
invariant integers that are of interest to our purpose. Let us denote y(k' 
as the time derivative of order k of the output y along the trajectories 
of Y and y["] as the same derivative along the trajectories of Yp. 
As before, the relative degree associated to each output y, is denoted 
by r ,  while C k  is the number of zeros at infinity of order less than 
or equal to k ,  1 5 k 5 n. The essential order n,, of the output y, 
is defined by 

r i , t  = min{k 2 1 I dyjk) 

e span{d,r. d?j..  . . , d?y(k'-l'. cjys:),. dy("+". . . . . dy("))}. 

A differential dyl("), c!y!kl as above is said to be essential in 
{ d r .  d i . .  . . , c!y("'), respectively { d r ,  dj l . .  . . . c~y["]>. 

Now, we consider a nominal system Y which is right invertible. In 
this case there exist [12] a so-called Singh compensator (17) which 
decouples the nominal system. The decoupled nominal system ? d  

can be written as 

.rF = f- ( .re ) + g. ( s e  ) t i .  

{ y  = h( .r)  

wherex, = col(.r. 2 ) .  f . ( , r , )  = c o l ( f ( s ) + g ( r ) F ( . r _ ,  z ) .  M ( x , - z ) )  
andg,(.r ,)  = co l (g ( r )G( . r ,  2 ) .  A\-(.r. 2)). Sincer , (Xd)  = n 6 e ( E d ) ,  
i = l,....p [9], C = ( E .  E )  = @(.r, z )  defines a local change of 
coordinates with < =  col(<^ : . . . E p )  and E,  = co l (< , l . . . . .< , , ,~e )  
where(,, = L i r l k l ( . r f ) .  i = l:...p. j = 1;. . ,nze.  n ,  = 
n + . . . + 7+.  and E is an ( 1 1  + q - n ,  ) vector of meromorphic 
functions of s and z .  

Let 

.Y = span{dr}. 

y" = span{dy :... dy ' " ) .  

y k p  = spanidy..  . . . dy";] 1. 
y 1 y k ,  

yp  = y". 

for L 2 0, 

k>O 

L>O 

We thus have the following result. 

Proposition 4.1: Suppose the nominal system C is input-output 
decouplable by dynamic compensation. If 

U," = Y:p, for0 5 k 5 n,, - 1, 1 5 i 5 p (20) 

and 

, ~ n y = x n y ~  (21) 

then 
i) the structures at infinity of system 2; and system % d  are the 

ii) the uncertain dynamics 2; becomes, in the new coordinates 
same, and 

c = ( E .  i )  

r o  1 

where ~ J ~ ~ ( E ,  i )  = L A f e L ; ; ' h Z ( x e )  l z e = Q - ~ ( c  
and A A ( < ,  i )  = I r , = e - l ( E  

with = c o I ( A f ( r )  + A g ( r ) F ( r ,  z ) .  0 )  and 
A g F ( r e )  = col(Ag(x)G(.c. 2). 0). 

The conditions given in Proposition 4.1 are also necessary; these 
can be venfied by standard computations. For the special case where 
t i L J  = 0, for 1 5 J 5 n,, - 1, the necessary and sufficient condition 
becomes 

Af + span{Ag} I ,Y n y. 

Proof of Proposition 4.1: From the assumptions ,Y n Y k  = 
A' n y k P ,  for k 2 0, thus 

d i m S n y k  = d i m , Y n Y L P  

= p + ( P  - C1) + . . . + ( P  - C k )  

and the first statement follows. Since y,' = Ydp. one has 

where LZ = L f e h , ( z , )  and y t l  = LAl,h,(s , ) .  In a similar vein, 
we have, for any k = 2 , .  . . , nzc  - 1 
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Control Problem Invariance Condition 

Input-state linearization by 
static state feedback 

static state feedback 
D’ = D*p 

dynamic compensation 
x n y = x n yp 

Dk = D f ,  for  k > 0 

and 

The unobservable dynamics i takes the form 

i = fcr.  i ,  +a<, i, 7 ’ )  

where now 

and representation (22) follows. 
Remark 4.2: Note that the space ,.E‘ n y was first introduced in 

[2] for studying minimal dynamic compensation for input-output 
decoupling. 

Remark 4.3: Proposition 4.1 applies to a most general situation, 
the dynamic input-state linearization problem which consists in the 
search of so-called linearizing outputs. Assume that the problem has 
a solution for X, then there exists linearizing outputs jj and a dynamic 
compensator which decouples jj and fully linearizes the closed-loop 
system [ 7 ] .  If yf and X n 7 are invariant for k 2 0, where 
y ,  = span{djj,. . . . , dj j ! ” ) )  and 7 = Ck>O y , then the uncertain 
closed-loop system has the form (22). It is-unclear, however, if such 
conditions depend or not on the choice of the linearizing outputs; 
this remains an open problem. 

The study of the effects of the uncertainties to the resultant closed- 
loop system when considering an output tracking problem is camed 

-k -k 

out in [ 3 ] .  This is done by means of a Lyapunov-based approach 
recently reported in the literature [ 11, [ 111, [ 181. 

V. CONCLUSION 
In this note, three control problems associated with uncertain 

MIMO nonlinear systems were treated: input-state linearization by 
static state feedback, input-output decoupling by static state feedback, 
and input-output decoupling by dynamic compensation. For each 
problem, we give geometric conditions which prove to describe 
intrinsic structure invariance properties of the nominal and uncertain 
systems; these conditions are summarized in Table I. A study of 
the effects of the uncertainties for which uniform boundedness of 
signals is retained for the closed-loop system when using dynamic 
compensation may be found in [3] as an applicatiu,; of the results 
in Section IV. 
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