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ABSTRACT 

Dry coating experiments were performed by using the Hybridizer (Nara). Large host silica gel 

(SG) particles (d50 = 55 µm) were coated with fine invited particles of magnesium stearate 

(MS, d50 = 4.6 µm) for different contents of MS in the mixture. The real MS mass fraction wI 

obtained after mechanical treatment has been determined thanks to calibration from TGA 

measurements. The surface structure and morphology of MS coatings were observed using 

Environmental Scanning Electron Microscopy (ESEM) and Atomic Force Microscopy (AFM) 

[26, 27]. 

AFM has been also used to measure the adhesion forces between particles. Interaction forces 

between the material attached to the cantilever (Magnesium Stearate MS) and the surface of 

the composite material (Silica Gel SG or Magnesium Stearate MS) have been determined at 

different surface locations. For different compositions wI of the mixture MS-SG, the numeric 

distribution and the mean value f of the forces fH obtained for MS-SG interactions or fI for 

MS-MS interactions have been established and the experimental curve showing the evolution 

of f versus wI has been derived. 
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Models of ordered structures have been developed, implying morphological hypotheses 

concerning large spherical or cylindrical host particles H and small invited spherical I. 

Different types of distribution of I materials onto the surface of H have been considered: for 

examples a discrete monolayer –or multilayers- of monosized particles I on the H surface. 

The coordinence of MS particles around SG particles has been estimated to calculate the free 

SG surface fraction through different modelling and to obtain the mean force f versus 

composition wI. The theoretical force values have been compared to experimental ones. The 

deviations have been discussed in terms of guest particle distributions on the surface of the 

large host particles and morphological hypotheses. 

 
PACS codes:   81.20.Ev: Powder processing 

               68.37. Ps: Atomic force microscopy (AFM) 

81.70. Pg: Thermal analysis 

  
 
Keywords: Powder mixtures, Dry coating, Hybridizer, Thermal analysis, AFM, Atomic 
interaction forces. 
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1. INTRODUCTION 
 
In a lot of industrial areas new applications or improvement of products functionalities require 

to modify the surface properties of powders. An interesting way to realize those modifications 

is the dry coating process. In such processes, powders with relatively large size (host 

particles: 1-500 µm) are mechanically coated with fine particles (invited particles: 0.1-50 

µm). Mechanical force applied to a mixture of fine and large particles can lead to ordered 

mixtures where guest particles are sufficiently small as to be held to the host surface by Van 

der Waals forces. The physical and physicochemical characteristics of the powders and the 

interactions between host and guest particles play an important role in factors that can affect 

the quality of end-product, as the physical and chemical stability and the powder ageing. 

In this study the coating experiments have been carried out in the Hybridizer NSH0 [1 - 3], a 

lab-scale device supplied by the company Nara Machinery. This apparatus has been used for 

various purposes to carry out dry coating experiments. Its applications cover a large and 

diversified palette of areas including pharmaceutical industries [4 - 7] for taste masking or 

bio-availability enhancement, and composite materials area [8, 9] for their mechanical or 

physical properties. It has been particularly described and studied by Honda and al [10 - 18], 

Dave and al. [19] Munjumbar [20] or more recently by Vilela and al. [21]. One of the 

important points that appeared in these works is the characterisation of the coated product in 

terms of quantity and quality of the coating. 

This work is dedicated to the characterisation of dry coatings, and the study of interaction 

forces between invited and host particles by AFM force surface measurements. The ability to 

study p article-particle interactions is now possible with the advent of the atomic force 

microscope. Before measuring the interaction force as a function of tip-sample separation, the 

methodology used involves a critical step which consists in attaching the fine particles onto 

the AFM cantilever [22 - 24]. 



   4 

2. PREPARING ORDERED MIXTURES OF PARTICLES 

2.1. Powders 

Silica gel powder (SG) supplied by Merck has been used as host particles for dry coating 

experiments. This powder exhibits a porous structure characterized by a very hydrophilic 

behaviour. Its particles are irregularly shaped with a notable surface roughness (Figure 1).  

Magnesium Stearate (MS) supplied by Chimiray has been used as guest particles in order to 

use its hydrophobic properties for changing the Silica gel surface behaviour. The MS appears 

as a fine, white, greasy and cohesive powder widely used in pharmaceutical formulation as 

lubricant. Observations by ESEM (Figure 2) show a wide particle size distribution and shape 

including spheroids, needle and plate like particles. 

Some physical properties of both powders are summarized in Table 1. The size ratio, equal to 

12, and the smallness of the MS size have been chosen to facilitate the adhesion of the guest 

particles on the host surface by means of Van der Walls forces. 

Figure 1: ESEM picture of SG 
 

 Figure 2: ESEM picture of MS 
 

Table 1. Some properties of the host and guest particles 
 

2.2. Coating process and operating parameters 
 
First, 30 g of mixtures of SG and MS have been prepared with different mass fraction w of 

MS. Then each premix has been introduced directly in the Hybridizer chamber (Figure 3). 

The rotor was activated at a speed of 4800 rpm during 5 min and the products then recovered 

in the collector using an air purge. The rotation speed has been chosen in order to avoid too 

much grinding of the host particles but high enough to achieve a good circulation of the 

powder and a sufficient surface coverage yield in the collector. 

During the coating process, host and guest particles are submitted to impacts between them, 

and with the rotor or the chamber walls (Figure 3). This treatment leads to the adhesion of the 

MS onto the SG surface. 
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Figure 3: Scheme of the Hybridizer process 
 

2.3. ESEM observations 
 
The uncoated and coated Silica gel particles were examined by environmental scanning 

electron microscopy (ESEM) to study the surface morphology. The ESEM images revealed 

that greater MS coverage can be observed on the surface of SG particles as the MS mass ratio 

w increased [25]. 

An example of coated particles observed with ESEM technique is presented in Figure 4. It let 

clearly appear the MS coating (dark zones) on the SG surface (white) in the case of an 

experiment carried out with w=15% before feeding the Hybridizer. 

Figure 4: ESEM observation of SG particle coated with MS (w=15%) 
 

2.4. Determination of the MS amount in the coated product 
 
After the hybridizer treatment, a part of the feed powder stayed stuck on the device walls. In 

particular, a significant deposit of MS in the Hybridizer was observed [26]. The real amount 

wI of MS in the SG-MS mixture has been quantified by using Differential Scanning 

Calorimetry coupled with Thermogravimetry (TG-DSC) in order to take into account a 

possible segregation of the particles and loss product during the process. 

The analysis has been performed under nitrogen flow for a temperature ranging between 20-

600 °C and heating rate of 5 °Cmin-1. 

Figure 5: TG-DSC curves of SG sample 
 

 Figure 6: TG-DSC curves of MS sample 
 

Figure 7: TG-DSC curves for w = 15% 
 
The TG-DSC curves of SG (Figure 5) exhibited a water loss (20°C – 200°C) followed by a 

gradual surface hydroxyl groups departure. As seen in Figure 6, the MS decomposition occurs 

between about 250°C and 580°C after a dehydration step, corresponding to the loss of the 

structural water followed by the anhydrous MS decomposition in CO2, CO, H2O. As a 

consequence, for each SG-MS mixture, two mass losses can be observed (Figure 7). 
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Figure 8: TG-DSC experimental relation between the mass lost (∆m/m0) and the introduced MS mass fraction 
(w) 

 
Figure 9: Real MS mass fraction (wI) deduced from calibration curve versus the introduced MS mass fraction 

(w) 
 
A calibration curve based (Figure 8) on well-known MS-SG mixtures prepared by simple 

stirring has been established by measuring the second mass loss (∆m/m0) [27]. The amount of 

remaining MS after Hybridizer dry coating experiments is deduced from the calibration curve 

by analysing the coated samples (Figure 9). 

2.5. Adhesion force measurements by AFM 
 
Atomic interaction forces between the MS attached to the cantilever [26, 27] and the surface 

of the composite material (SG or MS) have been determined at different locations of the 

surface. For different compositions w of the mixture MS-GS, the numeric distributions 

(Figure 10) of the adhesion forces between MS attached to the AFM tip (spring constant, 0.32 

Nm-1) and different samples have been established. The mean force (f), fH obtained for MS-

GS interactions or fI for MS-MS interactions have been determined and the experimental 

curve showing the evolution of f versus wI has been derived (Figure 11). 

Figure 10: Numeric distributions of adhesion force between MS and the surface of each sample 
 

Figure 11: Evolution of the mean adhesion force (f) versus the real MS mass ratio (wI) 
  
As observed in Figure 10 the adhesion forces for MS-MS interaction are in the range 40 nN -

150 nN with a mean value fI of 68 nN whereas MS – SG adhesion forces are in the range 0 nN 

- 20 nN with a mean value fH of 8 nN. 

In order to explain the evolution of the mean force f versus wI, different models of perfectly 

ordered coatings or partially ordered structures are considered. 

These models imply morphological hypotheses concerning large host particles H and small 

invited particles I in a mixture and different types of relative distribution of invited particles 

onto the surface of host ones. 
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3. MODELING ORDERED STRUCTURES OF PARTICLES 
 
The coordinence of small particles around host particles is estimated through different 

modelling and used to calculate the mean force f.  

 
3.1. Hypotheses 

 
a. Ordered structures are possible, which implies two conditions:  
 

The radius ratio kH of large host particles RH and that of small particles RI is large. 

The sizes of I and H remain in the domain of strong microscopic interactions, but are not 

small enough to consider the occurrence of strong agglomerations of I or H particles. 

b. Morphology: 
 

The invited as well as the host particles are supposed to be spherical, and monosized. 

Nevertheless a discussion on the effect of cylindrical shape should be engaged to take into 

account in particular the real host morphology. 

c. Distribution of I on H:  
 

Two models are considered, a perfectly ordered structure of I around H (POC model), or a 

more random distribution of I over the host surface (SOC model). 

In the first simple approach we consider a perfect discrete monolayer of monosized particles I 

on the N sites offered on the surface of the particle H. So surface fractions sI and sH should be 

easily evaluated. This description would be the simplest most reasonable model in case of 

poor content of I in mixtures. 

In fact this is a particular case of a more general distribution of particles I in several layers 

that will also be envisaged hereafter. In the second model, a host particle offers N surface 

sites to the invited particles added by the mechanical action of the mixer. Each layer of 

invited grains may contain j particles per host site (j € [0, ∞]). After having installed (p-1) 

particles at random among the N sites, in mono, bilayers,… a snapshot locating a new particle 

I among the sites -occupied or not- will make the number of free sites vary. The number qp of 
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free sites on the host after p snapshots is given by the equations (1,2) where N is the initial 

number of free sites (after p=0 snapshot), and qp-1 the number of free sites on the surface after 

having placed at random p-1 particles. Starting from a situation where qp-1 sites remain free 

after having injected p -1 particles, when putting one more invited grain, the new value for the 

number of free sites will be the preceding one minus the probability (qp-1/N) to place the new 

grain on a free site: 

N

q
qq 1p

1pp
−

− −=            (1) 

p

p N

1
1Nq 







 −=           (2) 

 
The free surface fraction sH can be deduced immediately in each case: 

For perfectly ordered systems which can be obtained for mixtures where the quantity of I is 

rather small to avoid interstitial and agglomeration effects sH is given by: 

 






 −=
N

p
1sH            (3) 

 
For semi-ordered systems the model available for intermediate contents of I in the mixture 

gives: 

p

H N

1
1s 




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

 −=           (4) 

 
For small contents of I equations (3) and (4) yield the same results. 
 

d. Behaviour of I – H mixtures:  
 

It is assumed that the probability for a particle I placed on the tip of the cantilever to 

encounter a free surface site is proportional to the available free surface fraction. If the 

particles I are placed at random on the surface of host grains, for a pointer made of I material 

analysing all the surface of a host particle, the probability to reach I-I interactions forces fI or 

I-H interactions forces fH will be proportional to the corresponding area analysed. This 

hypothesis implies to neglect lateral interactions I-H or I-I with respect to axial interaction. 
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Therefore on can write the equations (5) available for the SOC model, and anyway the 

relationship (6) always true for the two models: 

HHIjI fs)fs(f += ∑          (5) 

 

HHIH fs)fs(1f +−=          (6) 
 

3.2. Modeling the mean force of interaction 
 
 Now we are ready for determining the mean force that can be observed between the 

material attached to the cantilever- for instance I- and the material in front of it on the piece of 

surface being analysed – either H, either I-, as a function of the composition of the mixture 

(mass fraction). 

3.2.1. Evaluation of the sites number N on host surface 

For a perfect ordered cell a host grain is surrounded completely by a monolayer of N particles 

I in a compact 2D arrangement on the surface of H. The number N is equal to the maximum 

coordinence of a sphere H defined as the number of direct bonds established between a 

central particle H surrounded by I particles only. Suzuki et al., or Dodds [28, 29] have 

proposed a general solution to evaluate N. But whenever the size ratio kH is greater than 5, N 

can be evaluated very simply as follows. 

The approach consists in evaluating the area of the surface of contact between host and 

invited particles. By dividing this area available for deposing I particles by the effective area 

occupied by one particle I on the surface of contact the maximum coordinence is obtained, the 

effective area is the area of a grain I projected perpendicularly to the surface, divided by the 

packing fraction. For a 2D compact grain arrangement of I onto H particles, the packing 

fraction C2D will be that of a hexagonal structure. When considering a spherical geometry for 

both types of grains, this gives a sphere of contacts whose radius is equal to RH + RI: 

2
I

2
IH2D

R

)R(R4C
N

+
=          (7) 
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This value can be expressed as a function of the size ratio kH: 
 

2
H2D 1)(k4CN +=           (8) 

For a compact hexagonal structure: 
32

π
C 2D =  i.e. C2D= 0.906, whereas for a random 

arrangement 
12

π
C

2

2D =  i.e. C2D =0.82, and for a quadratic loose packing 
4

π
C 2D =  i.e. 

C2D = 0.785. 
 

3.2.2. Perfectly ordered structures 

For perfectly ordered monolayer systems, sH is given by equation (3) for a mixture in which p 

particles I are mixed with one particle H so that the numerical fraction of I can be written  

( )p1pn I +=             (9) 

The value of the number p of invited grains I on the surface of one host particle H as function  
 
of the radius ratio, the volumic mass and the mass fraction wI can be derived: 
 

)w(1

w

ρ

ρ
kp

I

I

I

H3
H −

=            (10) 

Then the expression (6) of the mean force becomes: 
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N
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N
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





 −+






=          (11) 

Now one can express the mean force versus wI:  
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


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







+
−

=       (12) 

 
p= N corresponds to the maximum of the coverage for perfectly ordered systems when p 

reaches its maximum limit value. Therefore the limit mass fraction wLI can be written as a 

function of the size ratio: 

3
H2

H2DI

H k
1)(k4Cρ

ρ
1

1
LIw

+
+

=
        (13) 
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When wI ≥ wLI then f reaches the constant value fI. 
 

3.2.3. Semi - ordered structures 

In this model, the systems are constituted of host particles H attracting at random small 

particles I. 

For a multilayer distribution, one gets (15) from relation (4): 

p (number of particles around a host in one or several layers) may be defined as a function of 

the mass fraction wI of I as given by (10): 

So the expression of the free surface fraction becomes: 

Iw1

Iw3
Hk

Iρ
Hρ

2
H2D
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1
1s

−
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
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+
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For small wI this function exhibits almost the same variations as those given by the function 

(12), but some deviations can be noticed for wI ≥ 5%. 

4. COMPARAISON BETWEEN EXPERIMENTAL RESULTS AND MODELING - 
DISCUSSION 

 
The curves f(wI) given by the models POC or SOC of Perfectly or Semi-Ordered Coatings 

have been compared to the experimental points (Figures 12 and 13). 

The theoretical curves have been calculated after having attributed values to the following 

parameters: ρH =2.07 g cm-3, ρI =1.04 g cm-3, kH = 12. 

For the POC model considering H and I spheres, the curves f(wI) in Figure 12 corresponds to 

the cases C2D = 0.906 (or C2D =0.82), from equation (12) with N= 612 (or N= 554) and 

wLI~0.15. The function exhibits an almost linear increase in the beginning as expected from 
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equation (11) when wI <<1, typically some percents. When wI > wLI a plateau is reached at 

wLI=0.15 (or 0.14) 

The curve (SOC model) on Figure 13 was obtained from equation (15) with two different 

values C2D = 0.906 or 0.82. 

One can see that the experimental points are not in good agreement with the theoretical curve 

calculated with (12 or 15) with spheres (Figure 12) in the case of perfectly ordered coatings. 

A better agreement can be observed in the case of SOC models (Figure 13). 

These deviations observed between experimental and theoretical curves f(wI) can be 

explained by different ways. 

Figure 12: Perfectly Ordered Coating: evaluation of the averaged force of interaction between MS attached to 
the tip of the cantilever and the surface of spherical (or cylindrical) host particles covered by spherical invited 
particles MS, for different surface packing fractions. 

 
Figure 13: Semi Ordered Coating: evaluation of the averaged force of interactions between MS attached to the 

tip of the cantilever and the surface of spherical (or cylindrical) host particles covered by spherical invited 
particles MS, for different surface packing fractions. 

 
5. MODELING DISCUSSION 
 

5.1. Effect of the 2D packing of invited particles on the limit of saturation  wLI can be 
evoked (POC models) 

 
A first study has been devoted to the effect of the choice of C2D for perfect structures. 

Choosing C2D = 0.906 gives the highest limit wLI at 15 % and curves nearer to the 

experimental one whereas for C2D =0.82, wLI =14 %. 

Going from a close compact surface structure to a random one i.e. decreasing C2D = 0.906 to 

0.82 will make wLI decrease by about 6 %. So the agreement between experimental and 

theoretical curves becomes better when choosing the highest value C2D=0.906. 

5.2. The role of the distribution of particles I over the host surface (SOC model) 
 

For less ordered systems, probably more real, with a random multi layers distribution of I on 

host (but always near the surface so that the system can be considered as partially ordered) the 

calculated curve fSOC(wI) remains nearer the experimental curve than the corresponding curve 
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fPOC(wI) for perfectly ordered systems, because the surface remains free in SOC systems, with 

more events of I-H type interaction forces. 

In addition one may consider also that the I-I axial attraction force is much stronger (68 nN) 

than the I-F axial attraction force (8 nN): this huge difference might orientate an I particle to 

be associated with another I particle on the host surface rather than to a free H site, less 

favourable from an energetic point of view, so that the postpone random distribution would 

become questionable. 

5.3. Effect of small lateral force interactions 
 

The hypothesis of small lateral force interactions between the material stuck on the tip and the 

surface on which interactions occur may also be discussed. This hypothesis implies to neglect 

lateral interactions I-H or I-H with respect to axial interaction. Effects due to an approach of 

the tip towards a locally non homogeneous surface (plan defects, local bad arrangements…) 

must lead to a larger distribution of f, fI or fH measurements, which is noticed in the forces 

distributions curves presenting a very large standard deviation. This should lead to modify the 

basic equation (6). 

5.4. Effect of host particle morphology 
 

A model of ordered structures, implying morphological hypotheses like spherical large host 

particles H and small invited spherical particles has been developed. But models supposing 

spherical particles should be modified if the shape of particles is far from the sphere. 

For instance the host particle seems to exhibit a shape not far from a cylindrical tablet. This 

real shape of host particles has been taken into account in new models POC-Cyl or SOC-Cyl. 

In this case N and p can be easily derived introducing the shape factors kcH= RcH/RI and tcH = 

RcH/eH: 



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k
1)
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2CN        (16) 
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)
I

w(1
I

w

cH
t

3
cH

k

I
4ρ

H
3ρ

p
−

=          (17) 

 
(3) and (4) can be rewritten to get the general formula f(wI) analogous to equations (12) and 

(15). 

To apply this new model one must pay attention to the fact that the host cylinder and the 

spherical one must present the same volume: this gives a relationship between the shape 

factors: 

3

3
cH

t4

H
k

cH
k =           (18) 

 
To apply these models the shape factors have been determined by measuring on SG images 

the mean radius RcH and thickness eH of SG particles considered as tablets: we have obtained 

a ratio tcH = 2. From (18) one can obtain kcH = 19.6. 

By equalling p to N an equation giving wLI for the new POC-type model can be derived for 

cylindrical host particles: 


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4ρ
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       (19) 

 
This yields N= 961 with C2D=0.82 or N=1061 for C2D=0.906 because the area of the surface 

offered to invited particles increases for the same mass of host particle. Anyway the limit does 

not move significantly: wLI = 0.165. The curve f (wI) is just slightly shifted towards the 

experimental points. 

In the same way this new SOC-type model with C2D =0.906 and cylinders as host particles 

yields the best agreement with experimental points. 

6. CONCLUSION 
 
Coating silica gel particles (SG) by small magnesium stearate particles (MS) has been 

realized, for different mass fraction w of MS with a treatment in a special mixer: the 
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hybridizer “NARA. The real content wI in the mixture after treatment has been determined by 

TGA-DSC experiments. From AFM measurements, the interaction forces between from one 

hand MS material stuck on the tip of the cantilever, and from another hand of the surface of a 

silica gel particle, either free or occupied by MS particles have been obtained. From the 

adhesion force distribution curve, a mean value of the force has been derived. 

Models to explain the evolution of this mean force versus the mass fraction have been 

proposed.  

Considering a random distribution of invited particles on the surface of silica gel tablets and a 

cylinder like morphology for SG particles and spherical like for MS particles leads to the best 

agreement between the experimental and model results. 

Nevertheless the deviations between theoretical curves and experimental ones could be also 

interpreted in terms of lateral interactions in MS-MS interaction forces.  

The linear law f(sH) introduced as the simplest approach of a mixing law as a function of a 

surface fraction could be considered as valid in a first approximation. 
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 Nomenclature 

C2D :  packing fraction of the invited particles on the surface of contact I-H 
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eH:  thickness of cylindrical host particles 
 
f:  mean force of interactions between Material M (attached on the cantilever) and the 

coated surface of a host particle 
 
fI:  mean force of interactions between Material M (on the cantilever) and the invited 

particles coating the surface of a host particle. 
 
fH:  mean force of interactions between Material M (on the cantilever) and the free surface 

of a host particle. 
 
kH:  size ratio of both spherical host and invited particles; kH= RH/RI 

 
kcH:  size ratio for cylindrical host particle and spherical invited particles; kcH = RcH/RI  

 
N:  initial number of free sites on host surface (after p=0 snapshot) , and also the 

maximum coordination number in an elementary cell composed of a particle H 
surrounded by small particles I only, forming a compact packing on the external 
surface of host particle H. 

 
nI:  numerical fraction of I  in the binary mixture I – H.  
 
p:  number of particles I placed at the surface among the N possible sites.  
 
qp:  number of free sites on the surface after having placed at random p invited particles on 

a host particle 
 
RI:  radius of small spherical invited particles. 
 
RH:  radius of large spherical host particles. 
 
RcH:  radius of large cylindrical host particles 
 
sIj:  surface fraction of a layer containing j invited particles per host site on the surface of 

host grains presenting N sites. 
 
sH:  free surface fraction on host particles; sH + ΣsIj =1 and sH= qp/N. 
 
tcH:  shape factor of host cylinder particles; tcH = RcH/eH 

 
w:  mass fraction of I in the I – H mixture before the hybridizer treatment. 
 
wI:  mass fraction of I in the I – H mixture after the hybridizer treatment. 
 
wLI:  limit mass fraction of I in the I – H mixture corresponding to a complete coverage in 

perfect ordered coatings. 
 
ρρρρI, ρρρρH: volume mass of I and H. 
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Figure Captions 

Figure 1:  ESEM picture of SG 
         
Figure 2:  ESEM picture of MS 
 
Figure 3:  Scheme of the Hybridizer process 
 
Figure 4:  ESEM observation of SG particle coated with MS (w=15%) 
 
Figure 5:  TG-DSC curves of SG sample 
 
Figure 6:  TG-DSC curves of MS sample 
 
Figure 7:  TG-DSC curves for w= 15% 
 
Figure 8:  TG-DSC experimental relation between the mass lost (∆m/m0) and the 

introduced MS mass fraction (w) 
 
Figure 9:  Real MS mass fraction (wI) deduced from calibration curve versus the 

introduced MS mass fraction (w) 
 
Figure 10:  Numeric distributions of adhesion force between MS and the surface of each 

sample 
 
Figure 11:  Evolution of the mean adhesion force (f) versus the real MS mass ratio (wI) 
 
Figure 12:  Perfectly Ordered Coating: evaluation of the averaged force of interaction 

between MS attached to the tip of the cantilever and the surface of spherical (or 
cylindrical) host particles covered by spherical invited particles MS, for 
different surface packing fractions. 

 
Figure 13:  Semi Ordered Coating: evaluation of the averaged force of interactions 

between MS attached to the tip of the cantilever and the surface of spherical (or 
cylindrical) host particles covered by spherical invited particles MS, for 
different surface packing fractions. 
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Figure 7 
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∆m/m0 = 0.85 w + 2.97
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Figure 8  
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Figure 12 
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Figure 13 
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Particles Size (d50) /µm 
(Mastersizer 

2000) 

Density (ρ) /g cm-3 
(Helium Pycnometer: 

Accupyc1330) 

Specific surface area (SBET) 
/m2g-1 

(Micromeritics ASAP 2010) 

SG 55 (dH) 2.07 (ρH) 475 

MS 4.6 (dI) 1.04 (ρI) 7.7 

 
Table 1. 
 
 
 
 


