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GAUSS IMAGES OF HYPERBOLIC CUSPS
WITH CONVEX POLYHEDRAL BOUNDARY

FRANÇOIS FILLASTRE AND IVAN IZMESTIEV

Abstract. We prove that a 3–dimensional hyperbolic cusp with convex poly-
hedral boundary is uniquely determined by its Gauss image. Furthermore, any
spherical metric on the torus with cone singularities of negative curvature and
all closed contractible geodesics of length greater than 2π is the metric of the

Gauss image of some convex polyhedral cusp. This result is an analog of the
Rivin-Hodgson theorem characterizing compact convex hyperbolic polyhedra
in terms of their Gauss images.

The proof uses a variational method. Namely, a cusp with a given Gauss

image is identified with a critical point of a functional on the space of cusps with
cone-type singularities along a family of half-lines. The functional is shown to
be concave and to attain maximum at an interior point of its domain. As a
byproduct, we prove rigidity statements with respect to the Gauss image for

cusps with or without cone-type singularities.
In a special case, our theorem is equivalent to existence of a circle pattern

on the torus, with prescribed combinatorics and intersection angles. This is
the genus one case of a theorem by Thurston. In fact, our theorem extends

Thurston’s theorem in the same way as Rivin-Hodgson’s theorem extends An-
dreev’s theorem on compact convex polyhedra with non-obtuse dihedral angles.

The functional used in the proof is the sum of a volume term and curvature

term. We show that, in the situation of Thurston’s theorem, it is the potential
for the combinatorial Ricci flow considered by Chow and Luo.

Our theorem represents the last special case of a general statement about
isometric immersions of compact surfaces.

Primary. 57M50 Secondary. 52A55, 52C26
Keywords. Hyperbolic cusp; convex polyhedral boundary; Gauss image; Rivin-

Hodgson theorem; circle pattern.

1. Introduction

1.1. Rivin-Hodgson and Andreev theorems. In [Riv86] and [RH93], the fol-
lowing theorem was proved.

Theorem 1.1 (Rivin-Hodgson). Let g be a spherical cone metric on the sphere S2

such that the following two conditions hold:
(1) All cone angles of (S2, g) are greater than 2π.
(2) All closed geodesics on (S2, g) have lengths greater than 2π.

Then there exists a compact convex hyperbolic polyhedron P such that the Gauss
image of ∂P is isometric to (S2, g). Furthermore, P is unique up to isometry.
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2 FRANÇOIS FILLASTRE AND IVAN IZMESTIEV

A spherical cone metric is locally modelled on the standard spherical metric of
curvature 1, away from a finite set of cone points. A cone point is said to have
cone angle θ if it has a neighborhood isometric to an angle of size θ ̸= 2π with
identified sides. For example, gluing S2 from a collection of spherical polygons
defines a spherical cone metric with cone points at those vertices where the sum of
the adjacent angles is different from 2π.

Now let P be a compact convex hyperbolic polyhedron. To define the Gauss
image of ∂P , one first defines the Gauss image of a vertex v of P as a spherical
polygon polar dual to the link of v in P . Then, the Gauss images of all vertices
of P are glued side-to-side to form the Gauss image of ∂P . For more details, see
Section 2.1.

In [RH93], it is also shown that the Gauss image of the boundary of a compact
convex hyperbolic polyhedron satisfies the two conditions of Theorem 1.1. Thus,
Theorem 1.1 characterizes compact convex hyperbolic polyhedra in terms of the
intrinsic metrics of the Gauss images of their boundaries.

As shown in [Hod92], Theorem 1.1 implies Andreev’s theorem [And70] on com-
pact hyperbolic polyhedra with non-obtuse dihedral angles. For brevity, we cite
here the version for acute dihedral angles.

Theorem 1.2 (Andreev). Let C be a cellular subdivision of S2 combinatorially
equivalent to a compact convex polyhedron with trivalent vertices other than the
tetrahedron. Call three edges e, f , g of C a proper cutset, if they are pairwise
disjoint and if there exists a simple closed curve on S2 that intersects each of them
exactly once.

Let φ : e → φe be a map from the edge set of C to the interval (0, π
2 ) such that

the following two conditions hold.
(1) If e, f , g are three edges incident to a vertex, then φe + φf + φg > π.
(2) If e, f , g form a proper cutset, then φe + φf + φg < π.

Then there exists a compact convex hyperbolic polyhedron combinatorially equivalent
to C and with dihedral angles φ.

To understand the relation between Theorems 1.1 and 1.2, note that the edge
lengths of the Gauss image of a vertex v are determined by the values of dihedral
angles at the edges incident to v. Since C in Theorem 1.2 is trivalent, its dual C∗

is a triangulation of S2, and the map φ determines the lengths of the edges of this
triangulation. Theorem 1.2 can be proved by applying Theorem 1.1 to the spherical
cone metric obtained in this way.

Note that in Theorem 1.1 the combinatorics of the polyhedron P is not given,
and cannot a priori be derived from the metric g.

1.2. Analogy with the Minkowski theorem. Cone points of the Gauss image
of ∂P naturally correspond to the faces of P . Besides, for a point with cone angle θi,
the area of the corresponding face is θi − 2π. Thus the metric of the Gauss image
determines the number of faces of P and their areas in a straightforward way.

Let us see what happens in the Euclidean limit. Consider a family Pt of convex
hyperbolic polyhedra shrinking to a point so that their rescaled limit is a convex
Euclidean polyhedron Q. Let gt be the metric of the Gauss image of ∂Pt. It is
easy to see that gt converges to the metric of the Gauss image of Q, which is just
the standard metric on the unit sphere. Thus, from the first sight, in the limit all
information is lost.
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However, the cone points of the metrics gt converge to a collection of points on
S2 ⊂ R3, namely to the unit normals of the faces of Q. Besides, although the angle
excesses of the cone points of gt tend to zero, their ratios tend to the ratios of the
face areas of Q. Thus, in the Euclidean limit, we are left with the directions of the
face normals of a Euclidean polyhedron and with the face areas up to a common
factor. There is a classical theorem saying that the polyhedron can be recovered
from this information.

Theorem 1.3 (Minkowski). Let ν1, . . . , νn be non-coplanar unit vectors in R3, and
let F1, . . . , Fn be positive real numbers such that

(1)
n∑

i=1

Fiνi = 0.

Then there exists a compact convex Euclidean polyhedron Q with outer face nor-
mals νi and face areas Fi. Besides, Q is unique up to isometry.

Note that the equation (1) is always fulfilled when ν and F arise as a limit of
spherical cone metrics, see [BI08, Lemma 4.12].

Thus Theorem 1.1 can be viewed as a hyperbolic analog of Theorem 1.3 (there
are also other analogs, see [Ale05, Section 7.6.4]). However, there is a substantial
difference between the proofs of Theorems 1.1 and 1.3. The idea in [RH93] is to
consider the space Pn of compact convex polyhedra with n faces, the space Mn of
spherical cone metrics with n cone points satisfying the conditions of the theorem,
and the map Γ: Pn → Mn associating to a polyhedron the Gauss image of its
boundary. Then some topological properties of the map Γ are proved that imply
that Γ is a homeomorphism. We call this kind of argument Alexandrov’s method,
as it was extensively used by A. D. Alexandrov. While Theorem 1.3 can also be
proved by Alexandrov’s method, see [Ale05, Section 7.1], more often it is proved by
a variational method as outlined in the next paragraph.

Let Q(ν) be the space of all convex Euclidean polyhedra with outer face nor-
mals ν1, . . . , νn. A polyhedron from Q(ν) is uniquely determined by its heights
h1, . . . , hn, where hi is the (signed) distance of the plane of the i-th face from the
origin. Let

vol : Q(ν) → R
be the function that associates to a polyhedron Q(h) its volume. Then we have

(2)
∂ vol(Q(h))

∂hi
= area(Qi(h)),

where Qi(h) is the i-th face of the polyhedron Q(h). Thus, every critical point of
the function

(3) vol : Q(ν) ∩
{ n∑

i=1

hiFi = 1
}
→ R

satisfies area(Qi(h)) = const · Fi and provides a solution to the problem, up to a
scaling. One can show that the domain of (3) is convex and that the function is
concave and achieves its maximum in the interior. Thus the solution exists and is
unique.

Unlike the Alexandrov method, the variational method is constructive, as it
amounts to finding a critical point of a functional. Also, the functional appearing
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in a variational method usually has a geometric interpretation, which throws more
light on the problem and can lead to further insights.

1.3. Results of the present paper. In this paper, we adapt the variational ap-
proach used in the proof of Theorem 1.3 to prove an analog of Theorem 1.1 for
spherical cone metrics on the torus.

Theorem A. Let g be a spherical cone metric on the torus T2 such that the fol-
lowing two conditions hold:

(1) All cone angles of (T2, g) are greater than 2π.
(2) All contractible closed geodesics on (T2, g) have lengths greater than 2π.

Then there exists a convex polyhedral cusp M such that the Gauss image of ∂M is
isometric to (T2, g). Furthermore, M is unique up to isometry.

A convex polyhedral cusp is a complete hyperbolic manifold of finite volume
homeomorphic to T2 × [0,+∞) and with convex polyhedral boundary, see Sec-
tion 2.1. In the same spirit, a compact convex hyperbolic polyhedron is a hyperbolic
manifold homeomorphic to a 3–ball and with convex polyhedral boundary.

To prove Theorem A, we introduce the notion of a convex polyhedral cusp with
coparticles, which is basically a convex polyhedral cusp with singular locus a union
of half-lines orthogonal to the boundary. For a convex polyhedral cusp with co-
particles, the Gauss image still can be defined. The space M∗(g) of all cusps with
coparticles with the Gauss image (T2, g) is an analog of the space Q(ν) from Section
1.2. Similarly to a polyhedron from Q(ν), a cusp from M∗(g) is also determined by
its collection of truncated heights {hi}. We define a function V on M∗(g) through
the formula

V (M(h)) = −2 vol(M(h)) +
∑

hiκi,

where κi is the curvature (angle deficit) of the i-th coparticle. One can show that

(4)
∂V (M(h))

∂hi
= κi,

so that the critical points of V are cusps without coparticles. We show that the
domain M∗(g) is contractible (although not convex) and that the function V is
concave. From an analysis of the behavior of V at the boundary of M∗(g) and at
the infinity we conclude that V has a unique critical point in the interior of M∗(g).
Thus a cusp with a given Gauss image exists and is unique.

Because of (4), the Hessian of the function V is the Jacobian of the map h 7→ κ.
Therefore V can be used to study infinitesimal rigidity of cusps with coparticles.

Theorem B. Convex polyhedral cusps are infinitesimally rigid with respect to their
Gauss images. Convex polyhedral cusps with coparticles are locally rigid.

Infinitesimal rigidity of convex polyhedral cusps with respect to their Gauss
images is also proved in [Fil08], with a different method.

It is conceivable that Theorem A can also be proved by an adaptation of the
method used by Rivin and Hodgson. The proof would be close to those in [Sch04,
Fil09]. However, one of the steps would be to prove the local rigidity of convex
polyhedral cusps with respect to their Gauss images. The only way we can do
that is by showing non-degeneracy of a matrix which is in fact the Hessian of our
function V or of the function from [FI09]. See also [Fil08].
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In the opposite direction, a variational proof of Theorem 1.1 is not straigthfor-
ward. In place of cusps with coparticles one would consider cone manifolds homeo-
morphic to the 3–ball whose singular locus is a union of segments with a common
endpoint in the interior, the other endpoints in the faces of the polyhedron. An
analog of function V is not hard to find. The problem is that V will almost surely
have signature (1, n − 1). In the proof of the Minkowski Theorem, this problem
is solved by restricting the volume function to a hyperplane. One could try to do
the same in the Rivin-Hodgson theorem. Alternatively, one could try to consider
polyhedra with singular locus a union of segments ending at a boundary vertex.

We have chosen the term “cusp with coparticles” in analogy with “cusp with
particles” from our paper [FI09]. Both are derived from “manifold with particles”
which is the term in the physics literature for 3-dimensional anti-de Sitter manifolds
with conical singularities along time-like lines. In the recent years, manifolds with
particles have found interesting applications in the geometry of low-dimensional
manifolds, [BS06, KS07, MS09, BBS09].

1.4. Related results. Let us return to the Rivin-Hodgson Theorem. The Gauss
image of the boundary of a polyhedron P has a more straightforward definition
as the boundary of the polar dual P ∗. The polar dual to a convex hyperbolic
polyhedron is a convex polyhedron in the de Sitter space. The de Sitter space
is the one-sheeted hyperboloid in the Minkowski space, and the polarity between
convex polyhedra in H3 and dS3 is established via the Minkowski scalar product,
see Section 7.3.

Thus Theorem 1.1 can be reformulated as follows.

Theorem 1.1'. Let g be a spherical cone metric on the sphere S2 such that the
following two conditions hold:

(1) All cone angles of (S2, g) are greater than 2π.
(2) All closed geodesics on (S2, g) have lengths greater than 2π.

Then (S2, g) can be isometrically embedded in the de Sitter space as a convex poly-
hedral surface. This embedding is unique up to isometry, in the class of surfaces
that don’t bound a ball in dS3.

In this form, the Rivin-Hodgson theorem resembles the following theorem of
Alexandrov, [Ale42, Ale05].

Theorem 1.4 (Alexandrov). Let g be a Euclidean cone metric on the sphere S2

such that all of its cone angles are less than 2π. Then (S2, g) can be isometrically
embedded in R3 as a convex polyhedral surface. The embedding is unique up to
isometry.

Equivalently, there exists a unique compact convex Euclidean polyhedron P whose
boundary is isometric to (S2, g).

Theorems 1.1, 1.4, and A are special cases of a general statement which says
roughly the following.

Let S be a closed surface of an arbitrary genus, and let g be a cone metric on S
of constant curvature with either all cone angles greater or all less than 2π. Then
the metric g can be extended to a (Riemannian or Lorentzian) metric of constant
curvature inside a manifold of a certain topological type (ball or cusp in the above
examples) with convex boundary S. This result can be viewed as a geometrization
with boundary conditions. Another equivalent formulation is that the universal
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cover of (S, g) can be embedded as a convex polyhedral surface invariant under an
appropriate action of the group π1(S).

In a precise form, the general statement is formulated as Problem 1 in [FI09].
Other special cases are the main theorems of [Fil07, Fil09, FI09]. Theorem A deals
with the last remaining case.

Alexandrov proved Theorem 1.4 by what we call Alexandrov’s method, see the
second paragraph after Theorem 1.3. In his book [Ale05], Alexandrov asked whether
Theorem 1.4 can be proved through a variational approach, similarly to Minkowski’s
theorem. This was finally done in [BI08]. The functional used in [BI08] is the
discrete Hilbert-Einstein functional on the space of certain singular polyhedra with
a fixed metric on the boundary, and is in a sense dual to the volume functional used
in the proof of Minkowski’s theorem.

In [FI09], the discrete Hilbert-Einstein functional is used to characterize convex
polyhedral cusps in terms of their boundary metrics, that is to resolve the case of
genus one, hyperbolic metric, and cone angles less than 2π of the general statement
mentioned above. The function V used in the present paper can also be interpreted
as the discrete Hilbert-Einstein functional of the polar dual “cusp with particles” in
the de Sitter space, see Section 7.3.

Andreev’s Theorem 1.2 can be reformulated in terms of circle patterns on the
sphere with non-obtuse intersection angles. In this form, it was extended by
Thurston to circle patterns on the torus and on the higher genus surfaces, [Thu97a,
Theorem 13.7.1]. Thus, our Theorem A generalizes the torus case of Thurston’s the-
orem in the same direction as Rivin-Hodgson’s Theorem 1.1 generalizes Andreev’s
theorem. For more details, see Section 7.2.

Theorems on convex embeddings of convex polyhedral metrics have smooth
analogs. The most renowned is the Weyl problem that asks whether S2 with a Rie-
mannian metric of positive Gauss curvature can be embedded in R3 as the boundary
of a convex body. The Weyl problem was solved through PDE in [Lew38, Nir53],
and through polyhedral approximation in [Ale42, Pog73].

The metric on the Gauss image of a smooth immersed surface is the third fun-
damental form of the surface. A smooth analog of the Rivin-Hodgson theorem was
proved in [Sch94, Sch96] and later generalized in [Sch06]. The theorem in [Sch06]
proves, for a compact hyperbolizable 3–manifold with boundary, the existence of a
hyperbolic metric with a prescribed third fundamental form of the boundary. For
a related result see [LS00]. The work [Sch06] deals only with compact manifolds.
Its extension to cusped manifolds would imply a smooth analog of Theorem A.

A polyhedral analog of the theorem from [Sch06] is an open problem.

1.5. Plan of the paper. Convex polyhedral cusps and their Gauss images are de-
fined and discussed in detail in Section 2. In Section 3, we define convex polyhedral
cusps with coparticles.

The space M∗ of all convex polyhedral cusps with coparticles with a given Gauss
image is studied in Section 4. The main results here are Proposition 4.12 stating
that a cusp is uniquely determined by its heights {hi}, Proposition 4.15 describing
M∗ through a system of inequalities on {hi}, and Proposition 4.17 showing that
M∗ is a contractible manifold with corners.

In Section 5, we define the function V on the space M∗. We apply the Schläfli
formula to compute its partial derivatives. This reduces Theorem A to the state-
ment that V has a unique critical point in M∗. Also we prove the concavity of V
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that, with some additional effort, implies local rigidity of convex polyhedral cusps
with coparticles, Theorem B.

Section 6 contains the proof of Theorem A. The principal task here is to analyze
the behavior of V at the boundary of M∗ and at the infinity. That done, Morse
theory on manifolds with corners can be applied. The existence and uniqueness of
a critical point for V follows by counting the indices of all critical points.

In Subsection 7.1, an analog of Andreev’s Theorem 1.2 for convex polyhedral
cusps is stated, Theorem C. It follows from Theorem A as a special case, but under
assumptions of Theorem C some parts of the proof are simplified. We also discuss
connections with circle patterns on the torus. Subsection 7.3 puts Theorem A and
its proof in the context of the de Sitter geometry.

Finally, Appendix A contains some formulas used in the main text.

1.6. Acknowledgements. We are grateful to Jean-Marc Schlenker for bringing
this problem to our attention and for the constant interest to our work. We thank
Boris Springborn who derived the explicit formula for the function V .

Parts of the work were done during the first author’s visits to the TU Berlin
and the second author’s visit to the University of Cergy–Pontoise. Final touches
to the text were given during the second author’s stay at the Kyushu University in
Fukuoka. We thank all three institutions for their hospitality.

2. Definitions and preliminaries

2.1. Convex polyhedral cusps and their Gauss images. Let T2 denote the
2–dimensional torus.

Definition 2.1. A hyperbolic cusp with boundary is a complete hyperbolic manifold
of finite volume homeomorphic to T2 × [0, +∞). We say that a cusp has convex
polyhedral boundary if at every boundary point it is locally isometric to a convex
polyhedral cone in H3.

For brevity, we refer to hyperbolic cusps with convex polyhedral boundary as
convex polyhedral cusps.

In an obvious manner one can define vertices, edges, and faces of a convex poly-
hedral cusp M . A priori, an edge can be a loop, and a face can be non-simply
connected. The universal cover M̃ embeds in H3 as a convex parabolic polyhedron:
the convex hull of finitely many orbits of a Z2-action on H3 by parabolic isometries,
see Figure 1. A face of M lifts to a face of M̃ . Since every face of M̃ is a convex
hyperbolic polygon, every face of M is also a convex hyperbolic polygon. Thus the
interior of a face of a convex polyhedral cusp is simply connected, although there
can be identifications on the boundary. For more details see [FI09, Section 2.1].

By taking the Z2–quotient of H3 we obtain a complete hyperbolic manifold N in
which the convex polyhedral cusp M is embedded isometrically. Let v be a vertex
of M . Those vectors in TvN that are tangent to curves γ : [0, ε) → M form the
tangent cone CvM . Clearly, CvM is a convex polyhedral cone in TvN . The polar
dual (CvM)◦ of CvM is defined as

(CvM)◦ := {x ∈ TvN | ⟨x, y⟩ ≤ 0 for all y ∈ CvM}.

Geometrically, (CvM)◦ is a cone positively spanned by the outward normals at v
to the faces of CvM .
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Figure 1. A convex parabolic polyhedron in the Klein model.

Definition 2.2. The convex spherical polygon

Πv := {x ∈ (CvM)◦ | ∥x∥ = 1}
is called the Gauss image of the vertex v.

If v and w are two vertices of M joined by an edge, then the parallel transport
along this edge maps a side of Πv isometrically to a side of Πw. Since faces of M
are simply connected, after performing all the gluings we obtain a surface homeo-
morphic to the torus T2. Away from the vertices of the polygons, this surface is
locally isometric to the unit sphere; the vertices become cone points.

Definition 2.3. The spherical cone-surface glued from the Gauss images of the
vertices of M is called the Gauss image of ∂M .

For brevity, we sometimes say ‘Gauss image of M ’.
The cell structure

⋃
v Πv of the Gauss image is dual to the face structure of ∂M :

a vertex v of M gives rise to a face Πv, an edge vw of M gives rise to a dual edge
shared by the faces Πv and Πw, and a face Fi of M gives rise to a vertex i where
the outward unit normals to the face Fi at all of its vertices are glued together.

Definition 2.4. The cell decomposition
⋃

v Πv of the Gauss image is called the
dual tesselation associated with M .

For brevity, we will often say ‘the dual tesselation of M ’.
The length of an edge in the dual tesselation equals π minus the dihedral angle

at the corresponding edge of the cusp. An angle of a polygon Πv equals π minus
the corresponding plane angle at the vertex v. See Figure 2.

In Theorem A, we need to recover a convex polyhedral cusp M from its Gauss
image. Note that only the intrinsic metric of the Gauss image is given but not the
dual tesselation. Thus we know the number of faces of M but don’t know which
pairs of faces are adjacent and what are the dihedral angles between them.

However, we can compute the areas of faces. Denote by θi the cone angle at a
vertex i of the Gauss image. Since the angle of Πv at i is equal to the exterior angle
of Fi at v, we have

(5) θi = 2π + area(Fi).

Example 2.5 (One-vertex cusps). Consider an action of Z2 on H3 by parabolic
isometries fixing the point o ∈ ∂H3. Choose an arbitrary point in H3 and denote by
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π − α

Πv

γ

π − γ

α

v

Fi

i

Figure 2. Complementary angles in a convex polyhedral cone and
its Gauss image.

P the convex hull of its orbit. The orbit is a lattice in a horosphere H centered at o.
The boundary of P projected from o down to H gives a Z2-invariant tesselation of
H with the lattice as the vertex set. The convexity of P implies that H is tessellated
either by rectangles or by copies of an acute-angled triangle. Let abcd be a rectangle
or the union of two triangles abc and acd of the tesselation. See Figure 3 left, where
the tesselation is projected to ∂H3. The convex parabolic polyhedron depicted on
Figure 1 is also the convex hull of a single orbit, and has quadrilateral faces.

c

b

d

a

Figure 3. A one-vertex convex polyhedral cusp in the Poincaré
model and its Gauss image.

The convex hull of the points a, b, c, d, and o, with o removed, is the fundamental
domain for the Z2–action on P . Thus the convex hyperbolic cusp P/Z2 is isometric
to the semi-ideal convex hyperbolic polyhedron oabcd with oab glued isometrically
to odc and obc glued isometrically to oad. The points a, b, c, d are identified to a
single vertex v of the cusp M .

The Gauss image Πv of the vertex v is either a quadrilateral, if abcd is a rectangle,
or a hexagon, if abcd is a parallelogram subdivided by the diagonal ac. In both cases,
the pairs of opposite edges of Πv have equal length and are glued together to yield
the Gauss image of ∂M . The dual tesselation has either one hexagonal face and
two trivalent vertices or one quadrangular face and one four-valent vertex.

2.2. Closed geodesics.

Definition 2.6. A geodesic on a spherical cone-surface is a locally length minimiz-
ing curve.
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At a regular point a geodesic is locally a great circle; if a geodesic passes through
a cone point, it spans angles of at least π on both sides.

Lemma 2.7. If (T2, g) is the Gauss image of a convex polyhedral cusp M , then
every contractible closed geodesic on (T2, g) has length greater than 2π.

Proof. Consider the convex parabolic polyhedron P = M̃ . Clearly, the Gauss image
of ∂P is the universal cover of (T2, g). Thus, for every contractible closed geodesic
γ on (T2, g) there is a closed geodesic γ̃ of the same length on the Gauss image
of ∂P . By [RH93, Proposition 3.6], every closed geodesic on the Gauss image of a
compact convex polyhedron in H3 has length greater than 2π. Although P is not
compact, the curve γ̃ runs through the Gauss images of a finite number of vertices
of P :

γ̃ ⊂
n⋃

i=1

Πvi .

Let P ′ be the convex hull of the points {vi}n
i=1 and of all of their neighbors in P .

Then the Gauss images of vi with respect to P ′ are the same as with respect to
P . Therefore, γ̃ can be viewed as a geodesic on the Gauss image of ∂P ′, and has
length greater than 2π. ¤

Example 2.5 shows that the Gauss image of a convex polyhedral cusp can contain
non-contractible closed geodesics of length less than 2π.

Lemma 2.7 and equation (5) show that assumptions of Theorem A are necessary
for a metric g to be the metric of the Gauss image of a convex polyhedral cusp. In
the sequel we always assume that (T2, g) satisfies those assumptions. Condition on
the lengths of geodesics is used in Section 2.3 and plays a crucial role in Section 6.4.

2.3. Geodesic tesselations and triangulations. As noted in Section 2.1, the
intrinsic metric g of the Gauss image of a convex polyhedral cusp does not tell us
much about the dual tesselation. Therefore, in the process of proving Theorem A,
we will consider all possible tesselations of (T2, g).

Let us call a geodesic arc joining two cone points regular if its interior does not
pass through cone points.

Definition 2.8. A tesselation of (T2, g) is a decomposition into vertices, edges,
and faces, where

• vertices are exactly the cone points of g;
• edges are simple regular geodesic arcs of lengths less than π with mutually

disjoint interiors;
• faces are connected components of T2 minus the union of vertices and edges.

A tesselation is called a triangulation if all faces are triangles.

A face of a tesselation can be non-simply connected. In particular, there is always
a tesselation without edges, whose only face is the complement of T2 to the set of
cone points. Edges are allowed to be loops, and there can be multiple edges. Thus
a triangulation is not required to be a simplicial complex.

The dual tesselation of a convex polyhedral cusp can be refined to a triangulation
by subdividing every polygon Πv into triangles by diagonals.

Lemma 2.9. For every compact spherical cone surface, the lengths of regular
geodesics with endpoints at singularities form a discrete subset of R.
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Proof. This lemma is an analog of [ILTC01, Corollary 1] that deals with Euclidean
cone surfaces. The argument in the proof of [ILTC01, Proposition 1] shows that
the number of regular geodesics whose length is less than L and is not a multiple
of π, and whose endpoints are given cone points i and j, is finite. Since there are
only finitely many cone points, it follows that the set of lengths is discrete. ¤
Lemma 2.10. Every compact spherical cone surface has only a finite number of
triangulations in the sense of Definition 2.8.

Proof. Again, by the argument in the proof of [ILTC01, Proposition 1], the number
of regular geodesic arcs of length less than π between cone points is finite. It follows
that the number of triangulations if finite. ¤
Lemma 2.11. A spherical cone-surface (S, g) can be triangulated in the sense of
Definition 2.8 if and only if for every point x ∈ S there exists a cone point i at
distance less than π from x.

Proof. (See also [Thu98, Proposition 3.1] and [Riv05, Section 3].)
If (S, g) admits a triangulation, then every point x ∈ S lies at distance less than

π from every vertex of a triangle containing x.
For the opposite direction, let us describe the Delaunay tesselation of (S, g).

Define the Voronoi cell of a cone point i as

Vi = {x ∈ S | dist (x, i) ≤ dist (x, j) for all cone points j}.
It is not hard to show that the interior of a Voronoi cell is an open disk, and the
boundary is a polygonal curve. The geodesic segments of the boundary are called
Voronoi edges. Let x be an interior point of a Voronoi edge e. Then x has exactly
two shortest arcs to cone points (these might be arcs joining x with two different
cone points, or two different arcs to one point). Thus, if ℓx < π is the length of
the two shortest arcs, then (S, g) contains an immersed open disk Dx of radius ℓx

centered at x. The disk can overlap if, for example, the cone angle at one of the
cone points closest to x is less than π. Develop Dx on the sphere and consider the
geodesic arc that joins the images of the cone points on its boundary. The image
of this arc on (S, g) is the Delaunay edge dual to the Voronoi edge e.

Endpoints of Voronoi edges are called Voronoi vertices. Let x be a Voronoi
vertice. Let xi1, . . . , xin, in this cyclic order, be the shortest arcs from x to cone
points of (S, g). Then n ≥ 3. Note that some of the vertices i1, . . . , in may coincide,
but the arcs are different. Again, denote by ℓx < π the common length of these
arcs and consider the immersed open disk Dx of radius ℓx centered at x. The cone
points i1, . . . , in lie on the boundary of Dx. The Voronoi edges starting from x
go along the bisectors of the angles isxis+1 (note that one of these angles can be
bigger than π). The dual Delaunay edges bound a spherical polygon inscribed in
Dx. This polygon is called a Delaunay cell.

Thus, the Delaunay edges cut the surface (S, g) into Delaunay cells which are
inscribed in disks and thus are convex polygons. After subdividing each Delaunay
cell into triangles by diagonals, we obtain a triangulation of (S, g). ¤
Corollary 2.12. The spherical cone surface (T2, g) can be triangulated, and this
in only finitely many ways.

Proof. Let us show that for every point x ∈ (T2, g) there exists a cone point i at
distance less than π from x. Assume the converse, and let x be a point that lies at
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a distance at least π from all cone points. Let γ be a closed curve that bounds the
disk of radius π centered at x. Then γ is a contractible curve of length 2π. If it
does not go through cone points, then at every point it is locally a great circle. If
i is a cone point on γ, then one of the angles spanned by γ at i equals π, and the
other is larger than π because the cone angle at i is larger than 2π. Thus γ is in
any case a closed contractible geodesic of length 2π. This contradicts the second
assumption of Theorem A.

Thus by Lemma 2.11 the cone surface (T2, g) can be triangulated. The finiteness
of the number of the triangulations follows from Lemma 2.10. ¤

The next example shows that the condition on the lengths of closed geodesics is
not necessary for the existence of a triangulation.

Example 2.13 (A triangulable cone-surface with a short contractible closed geo-
desic). Consider a combinatorial triangulation of the torus such that every vertex
has degree at least four. Remove one of the triangles from the triangulation and
glue on its place an octahedron with one face removed. This yields a combinato-
rial triangulation of the torus with all vertices of degree at least four and with a
closed contractible path γ consisting of three edges. Realize every triangle as an
equilateral spherical one with angles greater than π

2 . Then every vertex becomes a
cone point with angle greater than 2π. Since the side lengths of the triangles are
less than 2π

3 , the path γ has length less than 2π. Besides, γ is a geodesic because
it spans angles greater than 3π

2 on both sides.

Sometimes the Gauss image of a convex polyhedral cusp has only one triangula-
tion, which implies that the dual tesselation is determined by the intrinsic metric
of the Gauss image.

Example 2.14 (Cone-surface with a unique triangulation). Consider an arbitrary
combinatorial triangulation T of the torus. Let ℓ be a map from the edge set of T to
the interval [π

2 , π) such that for every triangle of T there exists a spherical triangle
with side lenghts given by ℓ. Let (T2, g) be the corresponding spherical cone-surface.
As shown in [Hod92, Proposition 2.4], the only geodesic arcs of length less than π
between cone points on (T2, g) are the edges of T . It follows that T is the unique
triangulation of (T2, g).

Conditions that the triangulation T needs to fulfill in order that (T2, g) satisfies
the assumptions of Theorem A are discussed in Section 7.1. As in this special case
the metric g determines the tesselation uniquely, Theorem A can be reformulated
in the spirit of Andreev’s theorem or in terms of circle patterns.

3. Cusps with coparticles

We now want to extend the notion of a convex polyhedral cusp. A cusp will be
allowed to have singular lines (so called coparticles) in the interior, in such a way
that the Gauss image of its boundary still can be defined. A cusp with coparticles
is composed from building blocks. Let us first provide a decomposition of a usual
convex polyhedral cusp into such blocks.

Let M̃ ⊂ H3 be the universal cover of a convex polyhedral cusp M , and let
o ∈ ∂H3 be the lift of the apex of the cusp. Assume that the polyhedron M̃ is
simple, that is, each vertex of M̃ is shared by exactly three edges and three faces.
Then the hyperbolic planes through o orthogonal to the edges cut M̃ into polyhedra
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combinatorially isomorphic to the cube with one ideal vertex. We call these pieces
bricks. The decomposition of M̃ into bricks descends to M .

There are two points that make the above picture more complicated, and because
of which we need to proceed in this section rather formally.

First, if the plane through o orthogonal to an edge of M̃ misses the edge and inter-
sects its extension, then there appears a brick whose boundary has self-intersections.
The decomposition of M̃ into bricks is meant then in an algebraic sense, some parts
of some bricks counted with the minus sign.

Second, M̃ can be non-simple. In order to obtain a decomposition into bricks
we proceed as follows. We resolve each vertex v of degree higher than three into
a trivalent tree. Every new edge has zero length and separates two faces incident
to v. We view this edge as lying on the intersection line of the planes spanned by
these faces. The decomposition of M̃ must be performed with respect to all edges,
including zero ones.

A cusp with coparticles is composed from a set of bricks in a similar way, with
the difference that the dihedral angles of bricks around a semi-ideal edge can sum
up to an angle other than 2π. We require that the links of bricks at their ideal
vertices form a torus and induce on it a Euclidean cone metric modulo scaling (this
is the analog of the completeness of a convex polyhedral cusp).

One is tempted to define a convex polyhedral cusp with coparticles as a hy-
perbolic cone-manifold with properties similar to those in Definition 2.1 and with
singular lines orthogonal to the faces. This would be too restrictive because the
foot of the perpendicular to a face can lie outside the face; in this case the complex
of bricks is an abstract object that does not give rise to a cone-manifold. However,
the polar dual of a convex polyhedral cusp with coparticles is always a de Sitter
cone-manifold, see Section 7.3.

3.1. Corners. Corners are simpler than bricks and allow to avoid difficulties that
arise when the boundary of a brick intersects itself.

Definition 3.1. A co-oriented plane is a plane L ⊂ H3 together with a choice of a
positive half-space L+ from the two half-spaces bounded by L. The other half-space
is called negative and denoted by L−.

Definition 3.2. A corner (L1, L2, L3; o) consists of three co-oriented planes L1,
L2, L3 in H3 that have exactly one common point in H3, and of a point o ∈ ∂H3

that lies on the positive side of each of the planes L1, L2, L3. A corner is considered
up to an isometry of H3.

Basically, a corner consists of the ideal vertex of a brick and of the planes of its
three compact faces.

Let v be the intersection point of L1, L2, and L3. The Gauss image of v with
respect to the cone L+

1 ∩ L+
2 ∩ L+

3 is called the Gauss image of the corner.

Definition 3.3. A truncated corner is a corner (L1, L2, L3; o) together with a horo-
sphere H centered at o. The numbers

hi := dist (H,Li),

are called the heights of the truncated corner.
Here dist (H,Li) is the signed length of the common perpendicular between H

and Li; the length is positive if H ∩ Li = ∅.
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Figure 4 shows examples of two-dimensional truncated corners in the Klein pro-
jective model of H2.

L1

o h2

h1

h2

h1

L2

L1

o

L2

Figure 4. Two-dimensional truncated corners. On the right hand
side, the height h2 is negative.

Lemma 3.4. Let (123) be a spherical triangle with vertices 1, 2, 3, and let (h1, h2, h3)
be a triple of real numbers. Then there exists a unique truncated corner with Gauss
image (123) and respective heights h1, h2, h3.

Proof. The triangle (123) determines the triple (L1, L2, L3) up to an isometry of
H3. We need to show that there is a unique horosphere at the given distances from
these three planes. We will prove this using the hyperbolic-de Sitter duality briefly
described in 7.3.

Hyperbolic half-spaces are identified with points of the de Sitter space by duality
with respect to the Minkowski scalar product. Let wi, i = 1, 2, 3, be the point dual
to the half-space L−

i :

L−
i = {x ∈ H3 | ⟨wi, x⟩ ≤ 0}.

Similarly, horospheres are identified with points in the upper half of the light cone:

(6) Hu = {p ∈ H3 | ⟨p, u⟩ = −1}

is the horosphere associated with the vector u. It is not hard to show that

dist (Hu, Li) = log⟨u,wi⟩.

(Note that ⟨u,wi⟩ > 0 iff the center of the horosphere lies on the positive side of Li.)
Thus the conditions dist (Hu, Li) = hi are equivalent to a non-degenerate system
of three linear equations for four coordinates of the point u. The solution set is a
time-like line not passing through the origin. Such a line has a unique intersection
with the upper half of the light cone. The lemma is proved. ¤

Lemma 3.5. Changing the truncation of a corner is equivalent to adding a constant
to all of its heights:

h′
i = hi + c for all i ∈ {1, 2, 3}.

Proof. This follows from the fact that the set of concentric horospheres forms an
equidistant family. ¤
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3.2. Gluing cusps from corners. Consider two spherical triangles (123) and
(124) glued along the edge (12). Any quadruple of real numbers (h1, h2, h3, h4)
determines two truncated corners. The corners can be fitted together so that they
have a common truncating horosphere and common planes L1 and L2. There are
two ways to do this; we choose that one where the co-orientations of the planes L3

and L4 induce different orientations on the line L1 ∩ L2.
Denote by ℓ12 the signed length of the segment of the line L1 ∩ L2 between the

planes L3 and L4. The length is taken to be positive if the segment lies on the
positive sides of L3 and L4, and negative if it lies on the negative side of both. See
Figure 5, where we have ℓ12 > 0.

L2

2 2

3

L1

L4

4 1 1

L3

ℓ12

Figure 5. Fitting two corners together produces an edge.

Definition 3.6. Let T be a geodesic triangulation of (T2, g) and let

h : i 7→ hi

be an arbitrary map from the set of cone points of g to R.
For each triangle ijk of T , construct the truncated corner with Gauss image ijk

and heights hi, hj, hk. For each pair of adjacent triangles ijk and ijl of T , fit the
corresponding corners and denote by ℓij the length of the appearing edge.

If ℓij ≥ 0 for all edges ij of T , then the pair (T, h) is called a triangulated
truncated convex polyhedral cusp with coparticles with Gauss image (T2, g).

For brevity, we will say cusp instead of convex polyhedral cusp with coparticles.
We are now coming to the main definitions of this section; we start by introducing
an equivalence relation on the set of triangulated truncated cusps.

Definition 3.7. A truncated cusp is an equivalence class of triangulated truncated
cusps, where two pairs (T, h) and (T ′, h′) are equivalent if their heights are the same
and their triangulations coincide up to edges with zero ℓ-length:

(7) (T, h) ∼ (T ′, h′) ⇐⇒


h = h′;
ij ∈ T, ij /∈ T ′ ⇒ ℓij = 0;
ij ∈ T ′, ij /∈ T ⇒ ℓ′ij = 0.

Definition 3.8. Let (T, h) be a triangulated truncated cusp. The tesselation of
(T2, g) obtained from T by erasing all edges ij such that ℓij = 0 is called the dual
tesselation of (T, h).

The dual tesselation of a truncated cusp M is defined as the dual tesselation of
an arbitrary representative (T, h) of M .
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Lemma 3.9. The dual tesselation of a truncated cusp is well-defined.

Note that (T, h) ∼ (T ′, h′) implies only that T is a subdivision of the dual
tesselation of (T ′, h) and vice versa. The proof of Lemma 3.9 will be given in
Section 4.1.

Lemma 3.10. Let M be a truncated cusp. Then, for every edge ij of the dual
tesselation of M , the length ℓij does not depend on the choice of a representative
(T, h) of M .

Rather discouraging, this lemma is not obvious. It is obvious, if the faces ad-
jacent to the edge ij are convex polygons: in this case the corners emerging from
an arbitrary triangulation of a face fit all together to form a “non-simple corner”
independent of the triangulation. The length ℓij results from fitting two non-simple
corners. But in general, a face of the dual tesselation can be non-convex and even
non-simply connected. We postpone the proof of Lemma 3.10 to Section 4.1.

Definition 3.11. A convex polyhedral cusp with coparticles with Gauss image
(T2, g) is an equivalence class of triangulated truncated cusps with Gauss image
(T2, g) under an equivalence relation generated by (7) and

(8) (T, h) ∼ (T ′, h′) ⇐⇒
{

T = T ′;
h′

i = hi + c for all i.

By Lemma 3.5, changing all heights by the same constant corresponds to a
simultaneous change of all truncating horospheres. Therefore, by Lemmas 3.9 and
3.10, a convex polyhedral cusp with coparticles has a well-defined dual tesselation,
and well-defined edge lengths ℓij .

To prevent a confusion, let us stress that ℓij is the length of an edge of the
cusp and has nothing to do with the length of the edge ij in the dual tesselation.
In particular, ℓij can be any positive real number, whereas the edges of the dual
tesselation have lengths less than π.

3.3. Curvatures of a cusp. Consider a truncated corner (L1, L2, L3; H). Let o
be the center of the horosphere H. For each i ∈ {1, 2, 3}, drop a perpendicular from
the center of H to Li and denote by qi its intersection point with H.

Definition 3.12. The Euclidean triangle with vertices q1, q2, q3 in H is called the
link of the truncated corner (L1, L2, L3; H).

When two truncated corners are fitted, their links become glued along a side.

Definition 3.13. Let M be a truncated cusp represented by a pair (T, h). By
gluing the links of all truncated corners arising from (T, h) we obtain a torus with
a Euclidean cone metric that we call the link of M .

Lemma 3.14. The link of a truncated cusp does not depend on the choice of a
triangulation.

This lemma will be proved in Section 4.1.
The points {qi} of the link of M are in a one-to-one correspondence with the

cone points {i} of g.

Definition 3.15. Let M be a truncated cusp with Gauss image (T2, g). For every
cone point i of g, denote by ωi the total angle around the point qi in the link of M .
The numbers

κi = 2π − ωi
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are called the curvatures of the truncated cusp M .

A change of the truncation of M results in a scaling of the link of M . Therefore
a convex polyhedral cusp with coparticles has also well-defined curvatures.

Lemma 3.16. For every convex polyhedral cusp with coparticles, the sum of the
curvatures of coparticles vanishes:

(9)
∑

i

κi = 0.

Proof. Due to χ(T2) = 0, every triangulation of the torus has twice as many vertices
as faces. In the triangulation of the link of M , the angle sum in every triangle is π,
therefore the average angle around the vertex is 2π. The lemma follows. ¤

As one can expect, making all curvatures zero is equivalent to finding a convex
polyhedral cusp with a given Gauss image.

Lemma 3.17. Convex polyhedral cusps with Gauss image (T2, g) are in a one-to-
one correspondence with convex polyhedral cusps with coparticles with Gauss image
(T2, g) and all curvatures zero.

Proof. Let M be a convex polyhedral cusp. Truncate M and represent it as a
complex of corners. Clearly, all curvatures of thus obtained convex polyhedral cusp
with coparticles are zero. Changing the truncation or decomposition produces a
cusp with coparticles equivalent in the sense of (7) and (8).

In the other direction, choose any representative (T, h) of a convex polyhedral
cusp with coparticles with zero curvatures. Due to ωi = 2π, the corners around
the vertex i can all be fitted together. We obtain a co-oriented plane Li and a set
of co-oriented planes that cut in Li a convex polygon Fi. The apex o lies on the
positive side of all of the planes. This associates with each i a semi-ideal pyramid
with apex o and base Fi. These pyramids are glued into a hyperbolic manifold
which is complete because the gluing restricts to their truncations. The manifold
has a convex polyhedral boundary, the topology of T2× [0, +∞), and finite volume.
Thus it is a convex polyhedral cusp. ¤

4. The space of cusps with coparticles

Everywhere in this section we mean by a cusp a convex polyhedral cusp with
coparticles with Gauss image (T2, g).

4.1. Support function of a truncated cusp. Let C = (L1, L2, L3; H) be a
truncated corner with vertex v = L1 ∩ L2 ∩ L3 and Gauss image ∆, see definitions
in Section 3.1.

Definition 4.1. The support function

h̃∆ : ∆ → R

of a truncated corner C is defined as follows. For a point x ∈ ∆ ⊂ TvH3, denote
by Lx the plane through v with normal x. Put

h̃∆(x) = dist (H,Lx),

where dist (H,Lx) is the signed length of the common perpendicular between H and
Lx; the length is positive if H ∩ Lx = ∅.
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A triangulated truncated cusp (T, h) is a complex of truncated corners, see Def-
inition 3.6.

Definition 4.2. The support function of a triangulated truncated cusp (T, h) is a
function

h̃T : T2 → R

that restricts to h̃∆ on each triangle ∆ of T .

It is easy to see that the function h̃T is well-defined on the edges of T . In
particular,

h̃T (i) = hi

for every cone point i of g.
We are now going to characterize the support functions of triangulated truncated

cusps and show that they are invariant under the equivalence relation (7). The
identification of truncated cusps with their support functions is a helpful tool that
will be used several times in this section.

Lemma 4.3. The support function of a truncated corner with Gauss image ∆ ⊂ S2

has the form

(10) h̃∆(x) = log cos dist (x, a) + b,

where a ∈ S2, b ∈ R.

Proof. By the hyperbolic-de Sitter duality (see Section 7.3), planes through the
point v ∈ H3 correspond to the points on the dual de Sitter plane v∗. Namely, the
point dual to the plane Lx is its normal vector x, see the proof of Lemma 7.2. We
have

(11) h̃∆(x) = dist (H,Lx) = log⟨u, x⟩,

where u is a light-like vector in the Minkowski space R3,1 associated with the
horosphere H through (6). The de Sitter plane v∗ is a 2–sphere, and x 7→ ⟨u, x⟩
is the restriction of a linear function to a 2–sphere. Thus ⟨u, x⟩ is a multiple of
cos dist (x, a) for some point a ∈ v∗, where dist is the distance with respect to the
intrinsic metric on v∗. Equation (10) follows. ¤

Definition 4.4. A function on a subset of S2 is called support-like if it has the
form (10). A function on T2 is called piecewise support-like or a PS function if it
is support-like on every triangle of some triangulation T of (T2, g).

Definition 4.5. Let f : T2 → R be a function which is smooth on every triangle of
a triangulation T . Function f is called Q-convex if for every edge e of T and for
every geodesic arc γ that intersects e, the left derivative of f |γ at the intersection
point with e is less than or equal to its right derivative.

Lemma 4.6. The support function of a triangulated truncated cusp (T, h) is a
Q-convex PS function.

Proof. The support function is PS by definition. Let us show that it is Q-convex.
Let ijk and ijl be two adjacent triangles of T , and let γ be a geodesic arc that

intersects the edge ij. The function h̃ijk can be extended in a support-like way to
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some neighborhood of the edge ij in the triangle ijl. Let x ∈ γ be a point in this
neighborhood. It suffices to prove the inequality

(12) h̃ijk(x) ≤ h̃ijl(x).

Fit the corners corresponding to the triangles ijk and ijl. Let v = Li ∩ Lj ∩ Lk

and w = Li ∩ Lj ∩ Ll be their vertices. By definition,

h̃ijl(x) = dist (H,Lx),

where Lx is the plane through w with normal x. It is easy to see that

h̃ijk(x) = dist (H,L′
x),

where L′
x is the parallel translate of Lx along vw. Due to ℓij ≥ 0, the plane L′

x lies
between the center of the horosphere H and the plane Lx. This implies

dist (H,L′
x) ≤ dist (H,Lx).

Thus the inequality (12) holds, and the lemma is proved. ¤

We see that the sign of inequality between the left and the right derivatives of
f |γ at the intersection point of γ with ij does not depend on the choice of geodesic
γ. Therefore it makes sense to speak about PS functions convex across ij or smooth
across ij.

Corollary 4.7. The faces of the dual tesselation of (T, h) are the maximal subsets
of T2 on which the function h̃T is smooth.

Proof. The argument in the proof of Lemma 4.6 shows that ℓij = 0 if and only if
h̃T is smooth across ij. ¤

Proposition 4.8. Truncated cusps with Gauss image (T2, g) are in a one-to-one
correspondence with Q-convex PS functions on (T2, g). The bijection is established
by associating to a truncated cusp the support function of any of its triangulations.

Proof. First, let us show that every Q-convex PS function is the support function
of a triangulated truncated cusp. Let f be a Q-convex PS function. Choose a trian-
gulation T such that f is support-like on the triangles of T . Let h be the restriction
of f to the set of cone points of the metric g. This yields a complex of corners
(T, h). The Q-convexity of f implies ℓij ≥ 0 for every edge ij ∈ T , by reversing
the argument in the proof of Lemma 4.6. Thus the pair (T, h) is a triangulated
truncated cusp. Since a support-like function on a triangle is determined by its
values at the vertices, f is the support function of (T, h).

Next, let us show that the support functions of triangulated truncated cusps
(T, h) and (T ′, h′) are equal if and only if (T, h) and (T ′, h′) are equivalent in the
sense of (7).

Assume h̃T = h̃′
T ′ = f . Then h = h′ since both are restrictions of f to the set

of cone points of g. If ij ∈ T and ij /∈ T ′, then the latter implies that f is smooth
across the geodesic ij. Thus ℓij = 0. Similarly, ij ∈ T ′ and ij /∈ T also implies
ℓij = 0. Therefore (T, h) ∼ (T ′, h′).

In the inverse direction, let (T, h) ∼ (T ′, h). Let R be the dual tesselation of
(T, h). Then, by the remark after Lemma 3.9, T ′ is a subdivision of R. By Corollary
4.7, function h̃T is support-like on every face of R, therefore it is support-like on
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every triangle of T ′. Function h̃T ′ is also support-like on every triangle of T ′ and
takes the same values at the vertices as h̃T . Thus h̃T = h̃T ′ . ¤

Example 4.9 (A cusp with coparticles with a non-simply connected face in the
dual tesselation). Consider a triangulation of the torus shown on Figure 6, left.
Equip each triangle with a spherical metric so that all of the four edges v1v2 have
the same length and so that v1 and v2 become cone points with angles greater than
2π. Define a support-like function on each triangle by taking each time the vertex
v1 as the point a in the formula (10) and taking always the same number for b.
It is easy to see that the PS function on the torus obtained in this way is smooth
across the four v1v2 edges and convex across the two v1v1 edges. Thus the dual
tesselation of the corresponding cusp has one face which is a punctured square.

v1

v2

v2

v2

v2

Figure 6. Constructing a cusp with a non-simply connected face
in the dual tesselation.

Proof of Lemma 3.9. Follows from Corollary 4.7 and Proposition 4.8. ¤

Proofs of Lemmas 3.10 and 3.14. Let (T, h) ∼ (T ′, h). Denote by R their common
dual tesselation. Let S be a geodesic triangulation of (T2, g) with vertices not
necessarily at the cone points such that S is a common subdivision of T and T ′

and every edge of R is also an edge of S. (To obtain S, subdivide by diagonals the
intersection ∆∩∆′ of every pair of triangles of T and T ′.) Let h be the restriction of
the function h̃T = h̃T ′ to the vertex set of S. The pair (S, h) determines a complex
of truncated corners.

For every edge ij of S, denote by ℓS
ij the edge length obtained from fitting the

corresponding corners of (S, h). It is easy to see that

ℓS
ij = ℓij

for all ij ∈ R. Since, in a similar way, ℓS
ij = ℓ′ij , Lemma 3.10 is proved.

To prove Lemma 3.14, consider a triangle ∆ of T and its triangulation S|∆
restricted from S. The corners that correspond to the triangles of S|∆ can be fitted
all together and all of their planes pass through one point. From this it is clear that
the link of (S|∆, h) is isometric to the link of the corner (∆, h). It follows that the
link of (S, h) is isometric to the link of (T, h) and, in a similar way, to the link of
(T ′, h). Thus the links of (T, h) and of (T ′, h) coincide. ¤
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4.2. Heights define the cusp. The following construction allows to reduce the
study of Q-convex PS functions to the study of convex piecewise linear functions.

Definition 4.10. The cone over (T2, g) is a singular Riemannian manifold

cone(T2, g) = (T2 × [0,+∞))/(T2 × {0})
with the metric t2g + dt2 at (x, t).

The cone of a function f : (T2, g) → R is the function

cone f : cone(T2, g) → R,

(x, t) 7→ tf(x).

The map x 7→ (x, 1) embeds (T2, g) isometrically into cone(T2, g) so that (cone f)|(T2,g) = f .

With the apex T2 × {0} removed, the cone over (T2, g) becomes an incomplete
Euclidean cone-manifold. Every geodesic triangulation of (T2, g) gives rise to a
subdivision of cone(T2, g) into simplicial cones, which we also call a triangulation
of cone(T2, g).

Lemma 4.11. The map
f 7→ cone exp f

establishes a bijection between Q-convex PS functions on (T2, g) and positive convex
PL functions on cone(T2, g).

We say that a function on cone(T2, g) is positive, if it is positive everywhere
except the apex. By a PL function we mean a function which is linear on every
cone of some triangulation of cone(T2, g).

Proof. The exponent of a support-like function on a spherical triangle ∆ has the
form r cos dist (x, a). The same form has the restriction to ∆ of a linear function
on cone∆. The Q-convexity of f is equivalent to the Q-convexity of exp f which is
equivalent to the convexity of cone exp f . ¤

Proposition 4.12. A truncated cusp is uniquely determined by its heights.

Proof. By Proposition 4.8 and Lemma 4.11, it suffices to show that every function
h on the set of cone points of (T2, g) admits at most one extension to a convex
PL function on cone(T2, g). This can be proved by a standard argument, see for
example [Izm08, Lemma 3.8]. ¤

Definition 4.13. Denote by M∗(g) the set of all convex polyhedral cusps with
coparticles whose boundary has Gauss image (T2, g).

Denote by M∗
tr(g) the set of all truncated convex polyhedral cusps with coparticles

and with Gauss image (T2, g) of the boundary.

As the metric g on T2 is fixed, we omit it from the notation and write simply
M∗ and M∗

tr.
Denote by Σ ⊂ T2 the set of cone points of the metric g. By Proposition 4.12,

we can identify M∗
tr with a subset of RΣ by putting

M∗
tr = {h : Σ → R |h has a Q-convex PS extension to (T2, g)}.

Since a change of truncation adds a constant to every height (Lemma 3.5), the
space M∗ can be identified either with a section of M∗

tr:

M∗ = M∗
tr ∩ {

∑
hi = 0} ⊂ RΣ,
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or with a quotient of M∗
tr:

M∗ = M∗
tr/L ⊂ RΣ/L,

where L is the 1-dimensional linear subspace of RΣ spanned by the vector (1, 1, . . . , 1).

4.3. Description of the space of cusps. Here the space M∗
tr ⊂ RΣ is represented

as the solution set of a system of inequalities. From this we extract some information
on the topology and geometry of M∗

tr and M∗.

Definition 4.14. A spherical quadrilateral is a (not necessarily convex) subset of
S2 bounded by four arcs of big circles and contained in the interior of a hemisphere.

A quadrilateral in (T2, g) is a region bounded by four geodesic arcs with endpoints
at cone points of g and whose development on S2 is a spherical quadrilateral.

Some pairs of vertices or edges of a quadrilateral in (T2, g) can coincide. For
example, take a spherical quadrilateral with opposite pairs of sides equal in length
and glue a torus (T2, g) from it. The sides of the quadrilateral become two geodesic
loops. These two loops, each ran twice, bound a quadrilateral in (T2, g).

Let ikjl be a quadrilateral in (T2, g) with an angle at least π at the vertex i.
Then it is easy to see that its angle at j is less than π. Therefore, in the spherical
development, the quadrilateral ikjl is contained in the triangle jkl, see Figure 7.
Given three real numbers hj , hk, hl, let h̃jkl be a support-like function on the
quadrilateral ikjl that takes values hj , hk, hl at the vertices j, k, l, respectively.

j

k
i

l

Figure 7. Every quadrilateral ikjl in (T2, g) with an angle at
least π at the vertex i gives rise to an inequality (13).

Proposition 4.15. The space M∗
tr ⊂ RΣ is the solution set of the system

(13) hi ≤ h̃jkl(i)

that contains one inequality for every quadrilateral ikjl in (T2, g) with an angle at
least π at the vertex i.

Proof. Although the proof can be carried out in terms of h, it is easier to work with
the function

e := cone exp h,

see Definition 4.10. Thus, we have to show that a function

e : Σ → (0, +∞);
i 7→ ei

admits a convex PL extension

ẽ : cone(T2, g) → (0, +∞)
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if and only if it satisfies the inequalities

(14) ei ≤ ẽjkl(i)

for all quadrilaterals ikjl with an angle at least π at i. Here ẽjkl is a linear function
on cone(ikjl) that takes the values ej , ek, el at j, k, l, respectively. As always, we
develop cone(ikjl) in R3.

Let us prove the necessity of (14). Assume that the function ẽ exists. Then the
functions ẽ and ẽjkl on cone(ikjl) agree at the points j, k, l. On the other hand, ẽ
is convex piecewise linear, and ẽjkl is linear. This implies

ẽ(i) ≤ ẽjkl(i).

Since ẽ(i) = ei, the inequality (14) holds.
Let us prove the sufficiency of (14). For any triangulation T of (T2, g), denote

by
ẽT : cone(T2, g) → (0, +∞)

the PL extension of e with respect to T . Call an edge ij of T bad if the function ẽT

is strictly concave across cone(ij). We have to show that there exists a triangulation
such that all its edges are good.

A triangulation with good edges can be found using the flip algorithm. To
begin with, we take an arbitrary triangulation T0 of (T2, g). There is one, due to
Lemma 2.11.

Flip algorithm. If the triangulation T0 has bad edges, then let ij be one of them,
and let ijk and ijl be the triangles adjacent to ij. If the union of the triangles ijk
and ijl contains a geodesic arc kl in its interior, and this arc has length less than
π, then replace the edge ij by the edge kl. This operation is called a flip.

Denote the new triangulation by T1. If T1 has bad edges, then choose one of them
and flip it, if possible. Denote the new triangulation by T2, and proceed further.

In order to show that the flip algorithm outputs a triangulation with good edges,
it suffices to prove the following two claims.

Claim 1. Any bad edge can be flipped.

Claim 2. The flip algorithm terminates.

Let us prove Claim 1. There are three reasons why an edge ij can be impossible
to flip; we eliminate each of them by contradiction.

First, assume that ijl is the same triangle as ijk. Then in the triangle ijk either
the edge ij is glued to ik or ji glued to jk. Thus either i or j has cone angle less
than π, which contradicts the assumptions of Theorem A.

Second, assume that the arc kl inside the union of the triangles ijk and ijl has
length at least π. Let p be the point on this arc at distance π from k. We can
determine whether the edge ij is good or bad by comparing the numbers ẽijk(p)
and ẽijl(p). We have

ẽijk(p) = −ek < 0.

On the other hand,
ẽijl(p) > 0,

because the point p lies in the triangle ijl. It follows that the function ẽT0(p) is
strictly convex across cone(ij). Thus the edge ij is good.
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Third, assume that the union of the triangles ijk and ijl does not contain a
geodesic arc kl in its interior. Then it is easy to show that ikjl is a quadrilateral
in (T2, g) with one of the angles at i and j at least π. Let it be the angle at i.
But then the inequality (14) implies that the function ẽT0 is convex across cone(ij).
Thus the edge ij is good.

To prove Claim 2, note that flipping a bad edge increases the function ẽT point-
wise. Since, by Lemma 2.10, the number of triangulations of (T2, g) is finite, the
algorithm terminates. ¤
Example 4.16. If (T2, g) is as in Example 2.14, then (T2, g) contains no quadri-
laterals. Thus the system (13) is empty, and we have M∗

tr = RΣ.

Proposition 4.17. The spaces M∗
tr and M∗ are diffeomorphic to convex polyhedra

of dimensions |Σ| and |Σ| − 1, respectively, with some faces removed.
The space M∗ ⊂ RΣ/L can be non-convex and unbounded.

By definition, a convex polyhedron is an intersection of finitely many closed half-
spaces. A convex polyhedron with some faces removed is an intersection of closed
and open half-spaces.

By a diffeomorphism between M∗
tr ⊂ RΣ and P ⊂ RΣ we mean a diffeomorphism

f : RΣ → U ⊂ RΣ

such that f(M∗
tr) = P.

Proof. The diffeomorphism

exp: RΣ → (0, +∞)Σ,(15)

h 7→ e = (ehi)i∈Σ,

maps M∗
tr onto a subset of RΣ that is the solution set of the system

ei ≤ ẽjkl(i),(16)
ei > 0,(17)

where (16) is taken for every quadrilateral ikjl (see Definition 4.14) with an angle
at least π at i. As ẽjkl(i) is a linear function of ej , ek, and el, the system consists of
linear inequalities. Thus expM∗

tr is a convex polyhedron with some faces removed.
Let us show that the point (1, 1, . . . , 1) ∈ RΣ lies in the interior of expM∗

tr. For
this we need to show that each of the inequalities (16) is strict when

ei = ej = ek = el = 1

is substituted. The development of cone(ikjl) in R3 is a polyhedral cone spanned
by four rays lying inside a half-space. The points i, j, k, l lie on the spanning rays
at the unit distance from the apex; the ray of i is contained in the convex hull of
the other three rays. The level set {ẽjkl = 1} is a plane through the points j, k, and
l. This plane intersects the i-ray at a point whose distance to apex is less than 1.
Therefore ẽjkl(i) < 1. Thus (1, 1, . . . , 1) is an interior point of the space expM∗

tr,
and we have

dim expM∗
tr = |Σ|.

Thus we have shown that the space M∗
tr is diffeomorphic to a convex polyhedron

of dimension |Σ| with some faces removed.
As for the space M∗, we use its representation in the form

M∗ = M∗
tr ∩ {

∑
hi = 0} .
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We have
M∗ ≈ expM∗

tr ∩ {
∏

ei = 1} ≈ expM∗
tr ∩ {

∑
ei = 1} ,

where the last diffeomorphism takes place because expM∗
tr is a subset of (0, +∞)Σ

and is invariant under positive scaling. It follows that M∗ is diffeomorphic to a
convex polyhedron with some faces removed. The polyhedron has dimension |Σ|−1
because the hyperplane {

∑
ei = 1} contains an interior point 1

|Σ| (1, 1, . . . , 1) of
expM∗

tr.
Now let us proceed to the second half of Proposition 4.17. In Example 4.16,

we have M∗ = RΣ/L, thus M∗ in this case is unbounded provided |Σ| ≥ 2. The
convexity of M∗ is equivalent to the convexity of M∗

tr. Let us show that M∗
tr is

not convex always when it is a proper subset of RΣ, that is always when the set of
inequalities (13) is non-empty. From

h̃jkl = log ẽjkl

it follows easily that

(18) h̃jkl(i) = log(aehj + behk + cehl)

with a ≥ 0, b > 0, c > 0 (we have a = 0 if and only if the angle at i in ikjl equals
π). A simple computation shows that the matrix of the second partial derivatives
of (18) with respect to hj , hk, hl is positive semidefinite and non-degenerate. Thus
h̃jkl(i) is convex and non-linear. Let (h0) ∈ ∂M∗

tr be a point where only one of
inequalities (13) holds as an equality. Then the space M∗

tr is non-convex near h0.
To construct an example of M∗ that is non-convex and unbounded at the same

time, one can add a singularity of a small negative curvature inside one of the
triangles of Example 2.14. ¤
Remark 4.18. The point (0, 0, . . . , 0) ∈ M∗

tr corresponds to a truncated cusp with
equal heights, that is a cusp circumscribed around a horoball (with coparticles). It
is not hard to see that the dual tesselation of such a cusp is the Delaunay tesselation
constructed in the proof of Lemma 2.11.

Remark 4.19. If the metric g has a single cone point i, then the spaces M∗
tr and

M∗ become a real line R1 and a point R0, respectively. By (9) we have κi = 0
for all cusps with coparticles with Gauss image (T2, g). Thus the point into which
degenerates the space M∗ is a unique convex polyhedral cusp with the given Gauss
image. Its dual tesselation is the Delaunay tesselation of (T2, g). The cusp itself
has a unique face which is either a quadrilateral or a hexagon, and one, respectively,
two vertices.

4.4. Properties of faces of the dual tesselation. The next lemma will be used
in Section 6.3.

Lemma 4.20. A cusp M is an interior point of M∗ if and only if all faces of its
dual tesselation are strictly convex spherical polygons.

In particular, if κi = 0 for all i, then M is an interior point of M∗.

Proof. Assume that M lies on the boundary of M∗. Then any truncation Mtr of
M lies on the boundary of M∗

tr. Let h ∈ RΣ be the heights of Mtr. By Proposition
4.15, one of the inequalities (13) holds as equality for h. It follows that the support
function h̃ of Mtr is smooth on some quadrilateral ikjl with an angle at least π
at i. Since the faces of the dual tesselation are regions of smoothness of the support
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function, there is a face that contains the quadrilateral ijkl. Then this face is not
a strictly convex polygon.

In the opposite direction, let F be a face with an angle at least π at a vertex i.
(The vertex i might as well be an isolated vertex surrounded by the face F , in this
case the angle at i is even bigger than 2π.) Since the domain of a support-like
function is a hemisphere, the development of F is contained in a hemisphere. One
can show that there are vertices j, k, l of F such that the quadrilateral ikjl is
contained in F and has an angle at least π at i. It follows that we have an equality
in (13), thus M lies on the boundary of M∗.

By Lemma 3.17, if κi = 0 for all i, then M is a convex polyhedral cusp without
coparticles. The dual tesselation of a convex polyhedral cusp consists of the Gauss
images of the vertices which are convex spherical polygons. Thus M lies in the
interior of M∗. ¤

Now we will investigate non-simply connected faces of the dual tesselation. The
next two lemmas will be needed only in the proof of Theorem B.

Let F be a face of the dual tesselation. Recall that the support function h̃ : F → R
of a truncated cusp with coparticles has locally the form

(19) x 7→ log cos dist (x, a) + b.

It follows that for every small open set U ⊂ F the composition of the function
exp(h̃) with an embedding U → S2 → R3 is the restriction of a linear function.

Let Π: F̃ → F be the universal covering map, and let D : F̃ → S2 be the
developing map. By the previous paragraph, we have

(20) exp(h̃ ◦ Π) = f ◦ D,

where f : S2 → R is the restriction of a linear function R3 → R. Let us call the
point grad f

∥ grad f∥ the pole of f . The pole corresponds to the point a in the formula

(19). Note that due to the positivity of the left hand side of (20) the set D(F̃ )
is contained in a hemisphere centered at the pole of f . Also, the position of the
pole determines the function f up to a constant factor, and the function h̃ up to a
constant summand.

For every covering transformation φg : F̃ → F̃ , there is a unique transformation
ψg ∈ SO(3) such that

(21) D ◦ φg = ψg ◦ D.

The map
π1(F ) → SO(2),

g 7→ ψg

is called the holonomy of F .

Lemma 4.21. If a face F of the dual tesselation has a non-trivial holonomy, then
the support function on F is determined uniquely up to a constant summand.

Proof. Let ψg be a non-trivial orthogonal transformation. It follows from (20) and
(21) that the function f is invariant on the orbit of x ∈ S2 under the action of ψg,
for all x ∈ D(F̃ ). Since D(F̃ ) has a non-empty interior, one can easily show that
the pole of f is one of the fixed points of the map ψg. As the hemisphere centered
at the pole contains D(F̃ ), the pole is uniquely determined. And a support function
h̃ is determined by the pole uniquely up to a constant summand. ¤
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By the boundary of a face F we mean the complement F̂ \ F , where F̂ is the
completion of F (rather than taking F \ F , where F ⊂ T2 is the closure of F ).
Therefore the boundary of F consists of cone points and closed polygonal curves.

Lemma 4.22. If a face F of the dual tesselation has a trivial holonomy, then
at least one of its boundary components contains three non-collinear vertices. In
particular, the support function on F is uniquely determined by its values at this
boundary component.

Proof. If the holonomy of F is trivial, then the developing map D : F̃ → S2 descends
to a map D : F → S2. If the boundary of F consists of cone points only, then
F = T2 \ Σ, and D can be extended to a branched covering T2 → S2. But this
contradicts to the fact that D(F ) is contained in a hemisphere.

The set D(F ) ⊂ S2 is bounded by a finite collection of polygonal curves (which
need not be the images of the boundary components of F , since those images can
intersect each other and themselves). Since D(F ) is contained inside a hemisphere,
it has a vertex with an angle less than π. Then this vertex is the image of a vertex
j of a boundary component K of F . It follows that j and its neighbors i and k on
K are all different and don’t lie on a big circle when mapped to S2. The lemma is
proved. ¤

5. A concave function V

5.1. Smooth functions on M∗ and Whitney’s extension theorem. Recall
that we identify the spaces M∗

tr and M∗ with subsets of Euclidean spaces RΣ and
R|Σ|−1, see the end of Section 4.2.

Definition 5.1. Let X be a closed subset of Rn. A function f : X → R is said to
belong to Cm(X) if there exist an open set Y ⊃ X and a function g ∈ Cm(Y ) such
that f = g|X .

Lemma 5.2. A function f : M∗ → R is of class Cm if and only if f ◦pr is of class
Cm on M∗

tr. Here pr: RΣ → RΣ/L is the projection along the one-dimensional
space spanned by (1, 1, . . . , 1).

Proof. If g is a smooth extension of f , then g ◦ pr is a smooth extension of f ◦ pr.
Conversely, if g extends f ◦ pr smoothly, then identify M∗ with a section of M∗

tr

by a hyperplane and consider the restriction of g. ¤

We will need the following smoothness criterion which is a special case of the
Whitney extension theorem, [Whi34, KP99].

Proposition 5.3. Let X be a closed subset of RΣ. A function f : X → R is of
class C2 if and only if there exist functions fi and fij on X such that the following
three conditions hold:

(22) f(h + x) = f(h) +
∑
i∈Σ

fi(h)xi +
∑

i,j∈Σ

fij(h)
2

xixj + R3(h, x),

where

lim
∥x∥→0

R3(h, x)
∥x∥2

= 0

holds uniformly on compact subsets of X;
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for all i ∈ Σ,

(23) fi(h + x) = fi(h) +
∑
j∈Σ

fij(h)xj + R2(h, x),

where

lim
∥x∥→0

R2(h, x)
∥x∥

= 0

holds uniformly on compact subsets of X;

(24) for all i, j ∈ Σ, the function fij is continuous.

5.2. Schläfli formula for bricks. Let M be a convex polyhedral cusp with co-
particles. Choose a triangulation T of its dual tesselation and represent M as a
complex of corners. For a corner (Li, Lj , Lk; o), ijk ∈ T , let pi be the foot of the
perpendicular dropped from o to Li, and let pij be the foot of the perpendicular
dropped from pi to the line Li ∩Lj . Define similarly p· and p·· for all other indices
and pairs of indices. Note that pij = pji. Call the polyhedron with vertices o, pi,
pj , pk, pij , pjk, pki, v = Li ∩ Lj ∩ Lk a brick and denote it by Bijk. See Figure
8, left. A brick is combinatorially equivalent to a cube, but its boundary can have
self-intersections (see the discussion at the beginning of Section 3).

Recall that hi, hj , hk are lengths of truncated edges of the brick Bijk. Denote
the lengths of the other edges by

hij := dist (pi, pij),
hijk := dist (pij , v),

see Figure 8, right. The distances are signed, according to whether the point pi,
respectively pij , lies on the positive or on the negative side of the plane Lj , respec-
tively Lk. Finally, let αij , γjk

i be the length of the side ij and the value of the angle
at the vertex i in the Gauss image of the corner. These are related to planar and
dihedral angles of the brick at the vertex v, see Figure 8.

A convenient way to look at a brick is to represent it as an algebraic sum of six
orthoschemes with an ideal vertex: opipijv and so on.

Lj

π − αij

ωjk
i

Lk Lk

Lj

Li Li

pi

hik

hi

π − γij
k

v

H

hij

pik

pij

hijk

o

Figure 8. Angles and lengths in a brick.
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Definition 5.4. The volume of a brick is the algebraic sum of the volumes of its
constituting orthoschemes.

Denote by ωjk
i the (appropriately chosen) dihedral angle at the edge opi of the

brick Bijk. That is, ωjk
i is the angle at the vertex qi in the link of the brick at o,

see Section 3.3. We have

(25) ωjk
i + ωik

j + ωij
k = π,

(26) ωi =
∑

ijk∈T

ωjk
i .

Lemma 5.5. For a brick Bijk with a fixed Gauss image, we have

(27) d vol(Bijk) = −1
2
(hidωjk

i + hjdωik
j + hkdωij

k ),

where hi, hj, hk are heights with respect to an arbitrary truncation.

Proof. The Schläfli formula for a compact 3-dimensional hyperbolic polyhedron P
says

d vol(P ) = −1
2

∑
e

ℓedθe.

The sum is over all edges of the polyhedron, ℓe is the length of the edge e, θe is
the dihedral angle at e. If P has one or several ideal vertices, then by [Mil94, page
294], [Riv94, Theorem 14.5] the same formula holds with ℓe denoting the truncated
length of e with respect to arbitrary truncations.

Dihedral angles at the edges vpij , vpjk, vpki of the brick Bijk are determined by
its Gauss image, therefore constant. Dihedral angles at the 6 edges pipij , . . . , pkpkj

are equal to π
2 , also constant. Hence the Schläfli formula for Bijk yields (27).

If the brick has self-intersecting boundary, then (27) follows from summing up
the Schläfli formulas for its constituting orthoschemes. ¤

5.3. Definition of V .

Definition 5.6. Let M be a convex polyhedral cusp with coparticles. Put

(28) V (M) = −2 vol(M) +
∑
i∈Σ

hiκi.

Here vol(M) is defined as the sum of volumes of bricks, hi are heights with respect
to an arbitrary truncation of M , and κi = 2π−ωi are curvatures of the coparticles.

Lemma 5.7. V (M) is well-defined.

Proof. Let us show that both summands on the right hand side of (28) are well-
defined.

The decomposition of M into bricks depends on the choice of a triangulation T
that subdivides the dual tesselation. To show that vol(M) is well-defined, cut the
bricks into orthoschemes. Then for every edge ℓij of zero length there are two equal
orthoschemes whose volumes are counted with opposite signs. After eliminating
all of such pairs, their remains a set of orthoschemes which is independent of the
choice of triangulation T .

A change of truncation results in adding a constant to all of hi. Due to (9), this
does not change the sum

∑
i hiκi. ¤
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Proposition 5.8. The function V defined by (28) belongs to C2(M∗). Moreover,

(29)
∂V

∂hi
= κi

holds everywhere in M∗.

Let us explain the meaning of ∂V
∂hi

at the boundary points of M∗. By Proposition
4.17, the set M∗ is diffeomorphic to a convex full-dimensional polyhedron with some
faces removed. Thus, every point x ∈ M∗ possesses a full-dimensional tangent cone
CxM∗. From an analog of Proposition 5.3 for C1–functions, it follows that for every
f ∈ C1(M∗) and ξ ∈ CxM∗, the directional derivative ∂f

∂ξ (x) is well-defined and
depends linearly on ξ. By linearity, this allows to define ∂f

∂ξ (x) for all ξ ∈ R|Σ|−1.
The expression ∂V

∂hi
denotes the directional derivative with respect to ei + L, where

ei is the ith basis vector of RΣ.

Proof of Proposition 5.8. We will prove that

Ṽ = V ◦ pr ∈ C2(M∗
tr).

By Lemma 5.2, this implies V ∈ C2(M∗). For (29), it suffices to show that in an
expansion of Ṽ according to Proposition 5.3, Ṽi can be put equal to κi.

Consider the decomposition

(30) M∗
tr =

⋃
T

M∗,T
tr ,

where M∗,T
tr denotes the set of truncated cusps that have a representative of the

form (T, h). In other words, M belongs to M∗,T
tr if the dual tesselation of its

boundary can be refined to the triangulation T .
By Lemma 5.10, the restriction of Ṽ to M∗,T

tr is of class C∞ for all T . We will
show that these C∞-patches fit together in a C2-way.

Denote the second partial derivatives (33), (34) of Ṽ on M∗,T
tr by Ṽ T

ij . We claim
that

(31) Ṽ T
ij (h) = Ṽ T ′

ij (h)

holds for all i, j ∈ Σ if h ∈ M∗,T
tr ∩ M∗,T ′

tr . If ij ∈ T and ij ∈ T ′, then similarly
to the proof of Lemma 3.10 in Section 4.1 one can show that hijk and hijl are
well-defined (although the vertices k and l opposite to the edge ij can differ for T
and T ′). Thus (31) holds in this case. If ij ∈ T but ij /∈ T ′, then we have

hijk + hijl = ℓij = 0.

Therefore tanhhijk + tanhhijl = 0 which implies

Ṽ T
ij (h) = 0 = Ṽ T ′

ij (h).

Finally, the equality Ṽ T
ii (h) = Ṽ T ′

ii (h) follows from the equalities (31) for j ̸= i due
to (34).

It follows that the formulas (33) and (34) define continuous functions Ṽij on
M∗,T

tr . The functions Ṽi = κi are well-defined and continuous due to Lemma
3.14. Therefore at any point h ∈ M∗

tr that belongs to several of M∗,T
tr , the Taylor

expansions of Ṽ and κi on M∗,T
tr up to quadratic and linear terms respectively

fit together to expansions that satisfy conditions of Proposition 5.3. The uniform
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convergence of remainders follows from the finiteness of the decomposition (30), see
Lemma 2.10. Thus Ṽ is of class C2 on M∗

tr with partial derivatives κi. ¤
Remark 5.9. In general, V is not of class C3.

Lemma 5.10. For every triangulation T of (T2, g), the function Ṽ is of class C∞

on M∗,T
tr . Furthermore, an extension of Ṽ to a neighborhood of M∗,T

tr can be chosen
so that its partial derivatives are

(32)
∂Ṽ

∂hi
= κi;

(33)
∂2Ṽ

∂hi∂hj
=

{
tanh hijk+tanh hijl

sin αij cosh hij cosh hji
for i ̸= j and ij ∈ T ;

0 for i ̸= j and ij /∈ T ;

(34)
∂2Ṽ

∂h2
i

= −
∑
j ̸=i

∂2Ṽ

∂hi∂hj
.

Remark 5.11. In the case when the vertices i and j are joined by several edges,
on the right hand side of the formula (33) one should take the sum over all edges
between i and j. It can be shown that loop edges don’t have any effect on the
computation of derivatives.

Proof of Lemma 5.10. The volume of a cusp M is the algebraic sum of the volumes
of constituting orthoschemes. The volume of such an orthoscheme is a C∞-function
of its dihedral angles, see [AVS93, Sections 3.3 and 3.4 of Chapter 7]. The dihedral
angles of the orthoscheme opipijv on Figure 8 can be expressed through edge lengths
hi, hij , hijk using formulas of hyperbolic and spherical trigonometry. As a result,
the volume of each orthoscheme is a C∞-function of h. Similarly, κi for each i is a
C∞-function of h.

Note that the formulas for the volumes of orthoschemes and for κi make sense
for any values of h, not only for those contained in M∗,T

tr . This automatically gives
a C∞-extension of Ṽ to a neighborhood of M∗,T

tr .
To prove the formula (32), sum up the equations (27) over all bricks coming from

triangulation T . We obtain

d vol(M) =
1
2

∑
i∈Σ

hidκi.

It follows that for the constructed extension of Ṽ on a neighborhood of M∗,T
tr we

have
dṼ (M) = −2 · d vol(M) +

∑
i∈Σ

hidκi +
∑
i∈Σ

κidhi =
∑
i∈Σ

κidhi,

which implies (32).
Formulas (33) follow from (63). Formula (34) follows from the invariance of κi

under the change of truncation: κi(h + c1) = κi(h). ¤

Remark 5.12. The space M∗,T
tr can have dimension less than |Σ|. Therefore

partial derivatives of Ṽ on M∗,T
tr are not well-defined, but depend on an extension

of Ṽ to a neighborhood of M∗,T
tr . The formulas of Lemma 5.10 hold for the “most

natural” extension.
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5.4. The Hessian of V and rigidity of cusps. The following is a folklore lemma.

Lemma 5.13. Let A = (aij)n
i,j=1 be a symmetric n × n matrix such that

aij ≤ 0 for i ̸= j;

aii =
∑
j ̸=i

aij .

Then the quadratic form
∑

i,j aijxixj is positive semidefinite.
Define the underlying graph of A as a graph on the vertex set {1, . . . , n} where

i and j are joined by an edge if aij ̸= 0. Then the kernel of A consists of vectors
x such that xi is constant over every connected component of the underlying graph
of A.

Proof. We have ∑
i,j

aijxixj = −
∑
i<j

aij(xi − xj)2 ≥ 0 for all x.

Thus the quadratic form is positively semidefinite.
A vector x lies in the kernel iff xi = xj for all i and j such that aij ̸= 0 that is

for all i and j joined by an edge of the underlying graph. This implies the second
assertion of the lemma. ¤
Proposition 5.14. The function V is concave. Its Hessian at a cusp with copar-
ticles M is negative definite if and only if the graph of the dual tesselation of M is
connected.

Proof. It suffices to show that Ṽ is concave and has Hessian of corank 1 if and only
if the graph of the dual tesselation is connected.

First and second partial derivatives of Ṽ are given by formulas (29), (33), and
(34). From

hijk + hijl = ℓij ≥ 0,

it follows that tanhhijk + tanhhijl ≥ 0. Thus we have

(35)
∂2Ṽ

∂hi∂hj
≥ 0 for i ̸= j.

Due to this and (34), the Hessian matrix of −Ṽ satisfies the assumptions of Lemma
5.13. Thus Ṽ is a concave function.

The inequality in (35) is strict if and only if ℓij > 0. Therefore the underlying
graph of

(
∂2

eV
∂hi∂hj

)
is the graph of the dual tesselation of M . Thus the kernel of the

Hessian consists of the multiples of (1, 1, . . . , 1) if and only if the graph of the dual
tesselation is connected. ¤
Definition 5.15. A convex polyhedral cusp with coparticles M is called infinitesi-
mally rigid if the matrix

(
∂κi

∂hj

)
has corank 1.

In other words, a cusp is infinitesimally rigid if any non-trivial first-order change
of its heights, the Gauss image of the cusp being fixed, leads to a non-zero first-order
change of its curvatures.

Due to (32), Proposition 5.14 implies that M is infinitesimally rigid if and only
if the graph of its dual tesselation is connected. Example 4.9 shows that there exist
infinitesimally flexible cusps with coparticles.
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For cusps without coparticles, there is a different notion of infinitesimal rigidity.
A convex polyhedral cusp M is called infinitesimally rigid with respect to its Gauss
image, if any first-order change of the hyperbolic metric inside M leads to a non-
zero first order change of the metric of the Gauss image. It can be shown that a
convex polyhedral cusp M is infinitesimally rigid in this sense if and only if it is
infinitesimally rigid in the sense of Definition 5.15, that is as a cusp with coparticles
with fixed Gauss image.

Definition 5.16. A convex polyhedral cusp with coparticles M is called locally
rigid if for any smooth family of cusps M(t), t ∈ [0, 1] such that

• M(0) = M ;
• all M(t) have the same Gauss image;
• for all i ∈ Σ, the curvatures κi(t) of M(t) are constant,

the cusp M(t) is isometric to M(0) for all t.

Recall that Theorem B in Section 1.3 states that cusps without coparticles are
infinitesimally rigid, and cusps with coparticles are locally rigid.

Proof of Theorem B. As noted in Section 2.1, faces of the dual tesselation of a
cusp without coparticles are convex polygons. Therefore the 1–skeleton of the dual
tesselation is connected, and the corank of ( ∂2

eV
∂hi∂hj

) at a critical point equals 1 by
Proposition 5.14. Thus, cusps without coparticles are infinitesimally rigid.

Now let M(t) be a smooth family of cusps with coparticles with Gauss image
(T2, g).

Let G(t) be the 1–skeleton of the dual tesselation of ∂M(t). Since ℓij > 0 is an
open condition, the map t 7→ G(t) is lower semi-continuous:

(36) ∀t0 ∃ε > 0 such that G(t) ⊃ G(t0) ∀t ∈ (t0 − ε, t0 + ε).

Let (a, b) ⊂ [0, 1]. Choose t0 ∈ (a, b) so that the number of edges of G(t0) is maximal
over all t ∈ (a, b). Then (36) implies G(t) = G(t0) for all t ∈ (t0 − ε, t0 + ε). By
Lemma 5.17, this implies M(t) = M(t0) for all t ∈ (t0 − ε, t0 + ε).

Since the interval (a, b) can be chosen arbitrarily, M(t) is constant on every
connected component of a dense open subset of [0, 1]. It follows that M(t) is
constant over all of [0, 1]. ¤
Lemma 5.17. Let M(t), t ∈ (t0 − ε, t0 + ε) be a smooth family of cusps with the
same Gauss images, same curvatures, and same dual tesselations. Then all of M(t)
are isometric.

Proof. Choose truncations of all of M(t) so that the heights hi(t) depend smoothly
on t. We have to show that

(37) hi(t) − hj(t) = const

holds for all i and j.
Let G be the graph of the dual tesselation. By Lemma 5.13, applied to the

Hessian of Ṽ , we have ḣi(t) = ḣj(t) and consequently (37) whenever i and j belong
to the same connected component of G. If we prove that (37) also holds when i
and j lie in different components of G but on the boundary of the same face F of
the dual tesselation, then (37) holds for all i and j.

Thus let F be a non-simply connected face of M(t). Now we apply Lemmas
4.21 and 4.22. Recall that the support function h̃(t) of the truncation of M(t) is
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smooth on the face F , and that we have h̃(t)(i) = hi(t) for all cone points i. If the
holonomy of F is non-trivial, then by Lemma 4.21 the restriction of h̃(t) to F is
determined uniquely up to a constant summand. Thus in this case (37) holds for i
and j on the boundary of F . If the holonomy of F is trivial, then by Lemma 4.22
there exists a component K of the boundary of F such that the values of h̃(t) at
the vertices of K determine h̃(t)|F uniquely. Besides, adding a constant to h̃(t)|K
adds a constant to h̃(t)|F . Thus (37) holds for all i and j on the boundary of F . ¤

6. Proof of the main theorem

6.1. Morse theory on manifolds with corners. A convex polyhedral cone is an
intersection of finitely many half-spaces whose boundary hyperplanes pass through
the origin.

Definition 6.1. A manifold with corners is a topological manifold X equipped with
an atlas {(Uα, φα)}, where Uα is an open subset of X, and φα is a homeomorphism
from Uα to an open subset of a convex polyhedral cone. The transition maps between
pairs of charts are assumed to be C∞.

Remark 6.2. Quite often one considers a more restricted class of manifolds with
corners, namely those locally modelled on a simple convex polyhedral cone [0, +∞)n.

Any convex polyhedron, and any convex polyhedron with some faces removed,
is a manifold with corners. Thus, by Proposition 4.17, the spaces M∗ and M∗

tr are
manifolds with corners.

It is possible to define the tangent space TxX at every point x of a manifold with
corners X. If X is smoothly embedded in a smooth manifold M , then TxX can be
identified with TxM . This suffices for our needs, since M∗ and M∗

tr are realized as
subsets of Euclidean spaces. Any C1–function on X has a well-defined differential
dfx ∈ (TxX)∗ at every point x ∈ X.

The tangent cone CxX ⊂ TxX consists of the vectors tangent to smooth curves
in X. The cone CxX is a convex polyhedral cone in the vector space TxX.

The k–dimensional stratum of X consists of all points that are mapped by some
φα into the interior of a k-dimensional face of a polyhedral cone. The k–dimensional
stratum is a smooth k–manifold, and a manifold with corners is a disjoint union of
its strata. The tangent space TxS to a stratum S is the maximal linear subspace
of the cone CxX.

Definition 6.3. Let f : X → R be a C1–function on a manifold with corners X.
A point x ∈ X is called a critical point of f , if

∂f

∂ξ
(x) ≥ 0 for every ξ ∈ CxX.

If x is an interior point of X, then it is critical if and only if the differential of f
vanishes at x. On the contrary, if x is a boundary point, then the vanishing of dfx

is sufficient but not necessary for x to be critical. Also note that if x is a critical
point of function f , then x is not necessarily a critical point of −f .

Definition 6.4. A critical point x of a C2–function f : X → R is called non-
degenerate, if the following two conditions hold:

(1) the Hessian of f |S is non-degenerate at x, where S is the stratum of X
containing x;
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(2) ∂f
∂ξ > 0 holds for every vector ξ ∈ CxX not tangent to the stratum S.

The index of a non-degenerate critical point x is the index of x viewed as a critical
point of f |S. That is, the index of x is the number of negative eigenvalues of the
Hessian of f |S.

If x is a boundary point of X such that dfx = 0, then x is a degenerate critical
point.

A function f ∈ C2(X) is called a Morse function, if all of its critical points are
non-degenerate.

Similarly to the classical Morse theory, the following theorems hold.

Theorem 6.5 ([Far04, Appendix B, Theorem B.4.]). Let X be a manifold with
corners, and let f ∈ C1(X). Suppose that the set f−1([a, b]) ⊂ X is compact and
contains no critical points of f . Then Ma = f−1((−∞, a]) is a deformation retract
of M b = f−1((−∞, b]).

In [Far04], only simple manifolds with corners (those modelled on [0,+∞)n)
are considered. Nevertheless, the proof of Theorem 6.5 given there works also for
general manifolds with corners.

Theorem 6.6 ([Far04, Appendix B, Theorem B.5.]). Let X be a manifold with
corners, and let f ∈ C2(X). Suppose that the set f−1([a, b]) ⊂ X is compact and
contains a single critical point p which lies in its interior, is non-degenerate, and
has index λ. Then the manifold M b = f−1((−∞, b]) is homotopy equivalent to
Ma ∪ eλ, the result of gluing a cell of dimension λ to Ma = f−1((−∞, a]).

Corollary 6.7 ([Far04, Appendix B, Corollary B.6.]). Let f ∈ C2(X) be a Morse
function on a compact manifold with corners. Then X is homotopy equivalent to a
CW-complex with cells of each dimension λ in one-to-one correspondence with the
critical points of f of index λ.

Theorem 6.6 is proved in [Far04] for Morse-Bott functions on simple manifolds
with corners (i. e. function with non-degenerate critical submanifolds). Being
restricted to Morse functions, the argument from [Far04] works also for general
manifolds with corners.

Note also that we will use only a very light version of Theorem 6.6, namely when
the index of a critical point is equal to 0.

6.2. Proof of Theorem A. By Proposition 5.8 and Lemma 3.17, convex polyhe-
dral cusps with Gauss image (T2, g) are in one-to-one correspondence with those
points in M∗ where the differential of function V vanishes. Therefore to establish
Theorem A it suffices to prove the following proposition.

Proposition 6.8. The function −V has a unique critical point (in the sense of
Definition 6.3), and this point lies in the interior of M∗.

Proof. For any d > 0, put

Qd = {h ∈ RΣ | |hi − hj | ≤ d for all i, j ∈ Σ},
and denote by [Qd] the projection of Qd on RΣ/L.

By Proposition 6.16 applied to d(h) = D, the restriction −V |M∗∩[QD] has no
critical points on the boundary. Thus if we show that −V |M∗∩[QD] has a unique
critical point h0, then h0 is also critical for the function −V on M∗. Besides, h0
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lies in the interior of M∗. Proposition 6.16 also implies that the function −V has
no critical points outside [QD]. Thus h0 is the unique critical point of −V .

So, let us consider the restriction of −V to M∗ ∩ [QD]. By Lemma 6.9, the
space M∗ ∩ [QD] ⊂ RΣ/L is a compact full-dimensional manifold with corners
homeomorphic to a ball. Every interior critical point of −V corresponds to a cusp
without coparticles, by Lemma 3.17. Since the graph of the dual tesselation of a
cusp without coparticles is connected, Proposition 5.14 implies that the Hessian of
−V at every interior critical point is positive definite. Thus −V |M∗∩[QD] is a Morse
function on a compact contractible manifold with corners, and all critical points
of −V |M∗∩[QD] have index 0. By Corollary 6.7, the critical point is unique. The
proposition is proved. ¤
Lemma 6.9. For all d > 0, the space M∗ ∩ [Qd] ⊂ RΣ/L is diffeomorphic to a
compact convex polyhedron of dimension |Σ| − 1.

Proof. Consider the space M∗
tr∩Qd. As in the proof of Proposition 4.17, consider its

image exp(M∗
tr∩Qd) under the diffeomorphism (15). The set exp(M∗

tr∩Qd) ⊂ RΣ

is the solution set of a system of linear inequalities (16), (17), and

(38) ei ≤ Cej for all i, j ∈ Σ,

where C = ed > 1. It is easy to see that in the presence of (38) the inequalities
(17) can be replaced by e ̸= (0, 0, . . . , 0). Thus exp(M∗

tr ∩ Qd) is a closed convex
polyhedral cone contained in (0, +∞)Σ, with the apex removed. The space M∗∩[Qd]
is diffeomorphic to the section of exp(M∗

tr ∩ Qd) by the hyperplane {
∑

hi = 1}.
Thus M∗ ∩ [Qd] is diffeomorphic to a compact convex polyhedron. Since the point
(1, 1, . . . , 1) lies in the interior of M∗

tr∩Qd, the dimension of dim(M∗∩ [Qd]) equals
|Σ| − 1. ¤
6.3. Behavior of V on the boundary. The next proposition will be used in the
proof of Proposition 6.16.

Proposition 6.10. Function −V has no critical points on the boundary of M∗.

Proof. Let M = [h] be a convex polyhedral cusp with coparticles such that M ∈ ∂M∗.
Here h ∈ RΣ is the vector of heights of a truncation of M , and [h] = h+L ∈ RΣ/L.
By Lemma 4.20, the dual tesselation of M has at least one face which is not a
strictly convex polygon. Let us say that a face F of the dual tesselation is concave
at i, if either F has an angle at least π at i or i is an isolated vertex lying in the
closure of F . Consider the set

I = {i ∈ Σ | there is a face concave at i}
and the vector ξ with components

(39) ξi =
{

−1, for i ∈ I;
0, for i /∈ I.

By Lemma 6.11, we have
κi < 0 for all i ∈ I.

Due to this and to
∑

i κi = 0, the set I is a proper subset of Σ. Since I is also
non-empty, the vector ξ has a non-zero projection [ξ] on RΣ/L.

We have
∂V

∂[ξ]
= −

∑
i∈I

κi > 0.
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If we show that [ξ] ∈ C[h]M∗, then this will imply that [h] is not a critical point of
−V in the sense of Definition 6.3.

In order to prove that [ξ] ∈ C[h]M∗, it suffices to show that the point [h]+t[ξ] ∈ RΣ/L
belongs to M∗ for all sufficiently small positive t. Recall that M∗ is the quotient
by L of the solution set of the system

(40) hi ≤ h̃jkl(i),

one equation for every quadrilateral ikjl with an angle at least π at i, see Proposition
4.15. Let us see what happens to the inequalities (40) when we add tξi to each of
hi. If an inequality (40) is strict, then it remains strict for all sufficiently small t.
If (40) holds as equality, then by the argument in the first paragraph of the proof
of Lemma 4.20 there is a face of the dual tesselation with an angle at least π at i.
Thus (39) implies ξi = −1 and

(41) ξj ≥ ξi, ξk ≥ ξi, ξl ≥ ξi.

Recall the following two properties of the function h̃jkl(i) (see (18)). First, it is a
monotone increasing function of hj , hk, hl. Second, when a constant is added to
each of hj , hk, hl, then h̃jkl(i) increases by the same constant. Thus (41) implies
that the inequality (40) remains valid when tξ is added to h. Thus [ξ] ∈ C[h]M∗

and the proposition is proved. ¤
Lemma 6.11. Let M be a cusp with coparticles, and let i be such that κi ≥ 0.
Then in the dual tesselation, all faces adjacent to i have angles less than π at i.

Proof. Let us study the geometry of the i-th face Fi of the cusp M . Choose a
triangulated truncation (T, h) of M (for definitions, see Section 3.2). The truncated
corners corresponding to the triangles from the star of i are glued cyclically around
the i-th coparticle. Their faces orthogonal to the coparticle are glued cyclically to
form the face Fi.

Let 1, 2, . . . , n, in this cyclic order, be the vertices adjacent to i. Simplify the
notations from Section 5.2 by putting

γj,j+1 := γj,j+1
i ,

gj := hij ,
gj,j±1 := hi,j,j±1,

see Figure 9. The edges of the face Fi have lengths

ℓij = gj,j−1 + gj,j+1,

and for every j the inequality ℓij ≥ 0 holds. Recall that the dual tesselation is
obtained from the triangulation T by erasing all edges jk such that ℓjk = 0. Thus
we need to prove that if in the middle of Figure 9 we have ωi ≤ 2π, then at the left
of Figure 9, after erasing all edges with ℓij = 0, all angles at i are still less than π.

In the middle of Figure 9 we depicted a very nice situation. In general, the
quadrilaterals the face Fi is glued from can be self-intersecting, and the cone point
can lie outside the face. The following definitions provide a formal basis.

Definition 6.12. A 2–corner in H2 consists of a point (the vertex of the corner)
and two intersecting co-oriented lines (boundary lines of the corner). The angle
between the boundary lines measured respecting their co-orientation and the signed
distances from the vertex to the boundary lines are called the parameters of the
2–corner.
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γ1n

γ12

ωi

γ23
g1g2

γj,j+1

ωj,j+1

gj,j+1 gj+1,j

gj gj+1

1

n
γ1n

2

γ12

γ23

i

Figure 9. The face Fi (middle) is made up of several 2–corners
(right) whose geometry is determined by the star of i in the dual
tesselation (left) and by support parameters gj .

The face Fi is made up of corners with parameters (γj,j+1; gj , gj+1), see Figure 9,
right.

Definition 6.13. Draw through the vertex of a 2–corner perpendiculars to its
boundary lines. Orient each perpendicular in the sense opposite to that induced by
the co-orientation of the corresponding boundary line. The angular region bounded
by the positive halves of the perpendiculars is called the link of the corner.

The angle measure of the link is called the central angle of the 2–corner.

See Figure 10 for examples. The central angles ωj,j+1 of the corners constituting
the face Fi sum up to the cone angle ωi.

Figure 10. Examples of 2–corners and their links.

Now let us proceed with the proof of Lemma 6.11. Choose the biggest of the
numbers |g1|, |g2|, . . . , |gn|. Without loss of generality, let this be |g1|. If gj = 0 for
all j, then we have ωj,j+1 = γj,j+1 for all j and thus

(42) ωi =
n∑

j=1

γj,j+1.

On the other hand, we have

(43)
n∑

j=1

γj,j+1 = θi > 2π
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because θi is the cone angle at the singular point i of (T2, g). Thus (42) implies
ωi > 2π that contradicts the assumption κi ≥ 0 of the lemma.

If not all of gj vanish, then we have |g1| > 0. By formula (61) we have

sinh g1n =
− cos γ1n sinh gn + sinh g1

sin γ1n cosh gn
,

sinh g12 =
− cos γ12 sinh g2 + sinh g1

sin γ12 cosh g2
.

Thus the numbers g1n and g12 have the same sign as g1. Since g1n + g12 = ℓi1 ≥ 0,
we have

(44) g1 > 0, g1n > 0, g12 > 0.

Cut the face Fi along the perpendicular to the first side and develop it on the
plane. Since ωi ≤ 2π, the union of the links of the corners is a non-overlapping
angular region (or the whole plane, if ωi = 2π). Due to this and to (44), the
boundary of Fi represents a convex polygonal line, see Figure 11. Note that the
cone point might lie inside or outside the face.

g1
g1

g1ng12

g1

g1n

g12

g1

ωi

ωi

Figure 11. Two examples of a face with positive curvature cut
along its biggest height.

Assume that there is a face of the dual tesselation with an angle greater or equal
π at i. This means that several consecutive sides of the face Fi have zero length,
so that the exterior angle between two adjacent non-zero sides is at least π. If the
angle is bigger than π, then it contradicts the convexity of the developed boundary
shown in the previous paragraph. If there is an exterior angle equal to π, then the
convexity of the developed boundary implies that Fi degenerates into a segment so
that ωi = 2π. Then we have

n∑
j=1

γj,j+1 = π + π = 2π

that contradicts (43). Thus no face of the dual tesselation can have an angle greater
or equal π at i, and Lemma 6.11 is proved. ¤
Remark 6.14. Figure 12 shows an example with κi < 0 and an angle greater than
π at i in the dual tesselation.

Remark 6.15. Lemma 6.11 can be viewed as an analog of Volkov’s lemma from
[Vol60], see also Lemma 5.3 in [Izm08].
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Figure 12. The development at the right is the limit of develop-
ments like one at the left, as the shortest side shrinks to a point.

6.4. Behavior of V at infinity.

Proposition 6.16. For every h ∈ RΣ put

d(h) = max
i,j∈Σ

|hi − hj |.

Then there exists D > 0 such that for every h ∈ M∗
tr with d(h) ≥ D there is a

tangent vector ξ ∈ Ch(M∗
tr ∩ Qd(h)) such that

∂V

∂ξ
> 0.

Proof. Denote

h+ = max
i∈Σ

hi;

h− = min
i∈Σ

hi.

In the case when h ∈ ∂M∗
tr, take ξ as in (39). We have already shown in the

proof of Proposition 6.10 that ∂V
∂ξ > 0 and that ξ ∈ ChM∗

tr. In order to show that
ξ ∈ ChQd(h) it suffices to prove that hi > h− holds for all i such that there is a face
concave at i. This is indeed true because the support function of a cusp has the
form (10) on every face, thus is a concave function and cannot attain its minimum
at i.

From now on let us assume that h lies in the interior of M∗
tr and that for all

ξ ∈ ChQd(h) we have ∂V
∂ξ ≤ 0. The latter means that

(45) κi

 ≤ 0 if hi = h−;
= 0 if h− < hi < h+;
≥ 0 if hi = h+

holds for all i ∈ Σ. Our goal is to show that this is impossible if

h+ − h− ≥ D,

for an appropriately chosen D that depends on the geometry of (T2, g).
Order the heights:

h− = hi1 ≤ hi2 ≤ · · · ≤ hi|Σ| = h+.
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Choose a big gap between two neighbors:

his+1 − his ≥ D

|Σ| − 1
,

and split Σ into two subsets:

Σ− = {hi1 , . . . , his}, Σ+ = {his+1 , . . . , hi|Σ|}.
Then we have

(46) hi − hj ≥ D

|Σ| − 1
, for all i ∈ Σ+, j ∈ Σ−.

Let T be a triangulation of (T2, g) associated with the height vector h, and let
G be the 1–skeleton of T . Let G+ and G− be the induced subgraphs of G on the
vertex sets Σ+ and Σ−, respectively. Consider the connected components of G+

and G−:
G+ = G1

+ ⊔ · · · ⊔ Gp
+, G− = G1

− ⊔ · · · ⊔ Gq
−

and their vertex sets

Σ+ = Σ1
+ ⊔ · · · ⊔ Σp

+, Σ− = Σ1
− ⊔ · · · ⊔ Σq

−.

The cell decomposition of the torus T2 dual to the triangulation T associates with
each point i ∈ Σ a 2–cell N(i). For a subset X of Σ, denote

N(X) =
⋃
i∈X

N(i).

Then N(Σ1
+), . . . , N(Σp

+) and N(Σ1
−), . . . , N(Σq

−) are the connected components of
N(Σ+) and N(Σ−), respectively. Note that each of N(Σs

±) is a compact surface
with boundary. An Euler characteristic argument shows that either one of N(Σs

±)
is homeomorphic to the disk, or all of them are homeomorphic to the annulus. The
subsequent argument deals with these three cases separately.

Remark 6.17. The lengths of closed contractible geodesics on (T2, g) form a dis-
crete subset of R. For closed contractible geodesics that contain at least one cone
point, this follows from Lemma 2.9. To those that contain no cone points and whose
length is not a multiple of 2π, the argument in the proof of [ILTC01, Proposition 1]
can be applied.

Since, by assumption of Theorem A, all closed contractible geodesics have lengths
bigger than 2π, there exists a number δ > 0 such that all closed contractible
geodesics have lengths at least 2π + δ.

Case 1. There is a component N(Σs
+) homeomorphic to the disk.

In this case we will show that, if D is chosen sufficiently large, there is a contractible
closed geodesic in (T2, g) of length less than 2π + δ. This contradicts Remark 6.17.

Let T ′ be a subcomplex of T consisting of all triangles that have a non-empty
intersection with N(Σs

+). There is a map

(47) D2 → T2

whose image is the union of all triangles of T ′ and which is injective when restricted
to the interior of the disk D2. By pulling back through (47), we view T ′ as a
triangulation of the disk D2 and draw it on the plane, see Figure 13.

By the boundary of T ′ we mean the polygonal curve that bounds D2. When
mapped to T2 via (47), this curve can run twice through some edges and several
times through some vertices of the triangulation T .
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Figure 13. The triangulation T ′ of disk D2. Vertices from Σs
+ are

colored black, vertices from Σ− are colored white, the set N(Σs
+)

is shaded.

Claim 1. If D is sufficiently large, then the boundary of T ′ has length less than
2π + δ.

Let V , E, and F denote the numbers of vertices, edges, and triangles of the
triangulation T ′, respectively. We have

V = Vι + V∂ ;
E = Eι + E∂ ;
F = F1 + F2 + F3.

Here Vι and Eι denote the numbers of vertices and edges in the interior of T ′; V∂

and E∂ denote the numbers of vertices and edges on the boundary of T ′; F1, F2,
and F3 denote the numbers of triangles with 1, 2, and 3 vertices in the set Σs

+,
respectively. We have

V − E + F = 1;
V∂ = E∂ = F1;
3F = 2Eι + E∂ ,

which easily implies

(48) Vι =
1
2
(F2 + F3) + 1.

By the assumption (45),

(49)
∑

i∈Σs
+

ωi ≤ 2πVι.

On the other hand,

(50)
∑

i∈Σs
+

ωi =
1
2

∑
i,j,k∈Σs

+

ωjk
i +

∑
i,j∈Σs

+
k∈Σ−

ωjk
i +

1
2

∑
i∈Σs

+
j,k∈Σ−

ωjk
i .

(The factors 1
2 are needed because of ωjk

i = ωkj
i , so that in the first and the third

sum on the right hand side all angles appear twice.)
The first sum on the right hand side of (50) splits into F3 groups of the form

ωjk
i + ωik

j + ωij
k = π, the second and the third sum are estimated by Lemma 6.20.
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As a result, we have∑
i∈Σs

+

ωi > πF3 + (π − ε)F2 +
∑

jk∈∂T ′

(αjk − ε)

> π(F2 + F3) − 6|Σ|ε +
∑

jk∈∂T ′

αjk,

where ε can be made arbitrarily small by choosing large D. (Note that the trian-
gulation T ′ can depend on D, and the speeds of the convergencies in Lemma 6.20
depend on the shapes of the triangles. But, since the number of triangles on (T2, g)
is finite, ε can be viewed as depending only on D.)

By combining the last inequality with (48) and (49), we obtain∑
jk∈∂T ′

αjk < 2π + 6|Σ|ε,

which proves Claim 1.
Through the map (47), the metric g on T2 induces on the disk D2 a spherical

cone metric which, by abuse of notation, is also denoted by g. As next, we will
show that (D2, g) has a locally concave boundary.

Claim 2. If D is sufficiently large, then all angles spanned in (D2, g) by two con-
secutive boundary edges of the triangulation T ′ are at least π.

Assume the converse: there is a vertex i on the boundary of T ′ such that the
angle in (D2, g) formed by the boundary edges ij, ik of T ′ is less than π. Develop
on the sphere the union of all triangles of T ′ adjacent to i. We obtain a spherical
polygon P , see Figure 14, left. The polygon P is triangulated, so that all triangles
have a common vertex i. Aside from i, j, and k, polygon P has at least one other
vertex l, otherwise i has no neighbor in Σs

+. Draw the shortest geodesic arc jk on
the sphere. Note that jk is not necessarily contained in P ; thus there may be no
corresponding arc in (T2, g). Let l′ be the intersection point of the arc jk with the
arc il or with its extension.

i
kj

i

k

j

l

l′

Figure 14.

The exponent of the support function h̃T is the restriction of a convex function on
cone(P ) ⊂ cone(S2) = R3, linear on the cone over each triangle of the triangulation
of P , see Section 4. The values of exp h̃T at the vertices i, j, k, l, are ehi , ehj ,
ehk , ehl , respectively. If jk is not contained in P , we extend the function h̃T in
a support-like way along the rays starting from i. Then the restriction of exp h̃T
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to cone(jk) is a convex PL function, and the restriction of exp h̃T to cone(il) is a
linear function. Thus we have

h̃T (l′) ≤ log(aehj + behk),(51)

h̃T (l′) = log(cehi + dehl).(52)

Here the numbers a, b, c, d depend only on the relative position of the points i,
j, k, l on S2. Besides, a, b, and d are positive, whereas c is positive or negative
depending on whether jk intersects il or its extension beyond l. The inequalities
(51) and (52) imply

(53) aehj + behk ≥ cehi + dehl .

The inequality (53) can be rewritten as

(54) d ≤ aehj−hl + behk−hl − cehi−hl .

Since i, j, k ∈ Σ− and l ∈ Σ+, it follows from (46) that each of the differences
hj − hl, hk − hl, hi − hl is smaller or equal − D

|Σ|−1 . By choosing D large, the right
hand side of (54) can be made arbitrarily close to 0, whereas the left hand side is
a positive constant by the previous paragraph. This contradiction shows that the
angle at i in (D2, g) cannot be less than π.

Again, while D is changing, the triangulation T ′ can vary, as well as a suspected
vertex i with an angle less than π. But, since the number of configurations is finite,
the constants a, b, c, d take only finitely many values. Thus, a sufficiently large
value of D in the above argument can be chosen uniformly. Claim 2 is proved.

Remark 6.18. Let us explain the geometric meaning of Claim 2. Consider the
associated cusp with coparticles. Fit together the corners that correspond to the
triangles of T ′ adjacent to i. We obtain a configuration of hyperbolic planes with
combinatorics outlined on Figure 14, right. The unmarked faces lie further from
the truncating horosphere than the faces marked with i, j, and k, by the distance
at least D

|Σ|−1 . If, by making D arbitrarily large and preserving the Gauss images
of all of the vertices, we can still achieve that all of the edges have non-negative
lengths, then it is intuitively clear that the edges shared by the face i with the faces
j and k don’t intersect, when extended downwards. It follows that the sum of the
exterior angles of the face i at the depicted vertices is at least π.

To finish dealing with Case 1, consider the space

F = T2 \ int D2,

with the metric g, where int D2 is the image of the interior of D2 under the map
(47). The image of the boundary of D2 is a closed curve Γ in F, non-contractible
in F. By Claim 1, Γ has length less than 2π + δ. By Lemma 6.22, F contains a
closed geodesic Γ′ homotopic to Γ, thus contractible in T2, and no longer than Γ.
Claim 2 implies that Γ′ is also a geodesic in (T2, g). This leads to a contradiction
with Remark 6.17.

Remark 6.19. Case 1 is similar to the situation of “long thin tube” appearing in
closeness results in [RH93].

Case 2. There is a component N(Σs
−) homeomorphic to the disk.
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Define a complex T ′ similarly to the Case 1. Now on Figure 13 the black points
form the set Σs

−, the white points are their neighbors from Σ+. Instead of (49), we
have

(55)
∑

i∈Σs
−

ωi ≥ 2πVι.

On the other hand, by estimating the sums on the right hand side of (50), where
plus and minus signs should be interchanged, with the help of Lemma 6.20 we
obtain ∑

i∈Σs
−

ωi < πF3 +
1
2

∑
i,j∈Σs

−
k∈Σ+

(π − αij + ε) + F1ε(56)

< π(F2 + F3) −
1
2

∑
i,j∈Σs

−
k∈Σ+

αij + 6|Σ|ε,

with ε → 0 as D → ∞. With (48) taken into account, this contradicts (55).

Case 3. All components of N(Σ+) and N(Σ−) are homeomorphic to the annulus.
Let N(Σs

−) be a component of N(Σ−). The complex T ′, with identifications on the
boundary resolved, is homeomorphic to the annulus. Therefore we have

Vι =
1
2
(F2 + F3)

instead of (48). This still suffices to arrive at a contradiction between (55) and
(56).

Thus, all three cases are resolved, which means that the inequalities (45) cannot
hold if h+ − h− is large enough, which in turn means that a tangent vector ξ as
required in the proposition exists. Proposition 6.16 is proved. ¤

Lemma 6.20 (Degeneration of corners). Let ∆ be a spherical triangle with edge
lengths α12, α23, α31. Consider a truncated corner with Gauss image ∆ and heights
h1, h2, h3. Denote by ω23

1 , ω31
2 , ω12

3 the dihedral angles at the heights of the corre-
sponding brick, see Figure 8. Then we have

(1) if h1 − h2 → +∞ and h1 − h3 → +∞, then ω23
1 → α23;

(2) if h1 − h3 → +∞ and h2 − h3 → +∞, then ω12
3 → 0.

Proof. By (60), if h1 −h2 and h1 −h3 tend to +∞, then sinhh12 and sinhh13 tend
to − cot α12 and − cot α13, respectively. By substituting this into (62) and using
the spherical Cosine Law, we obtain the first statement of the lemma. The second
statement is proved in a similar way. ¤

Let T be a geodesic triangulation of a spherical cone-surface F. Let T ′ be a
subcomplex of T , and let F′ be the union of all simplices from T ′. Note that the
complex T ′ is not required to be pure, that is T ′ can contain edges that are not
adjacent to any triangle of T ′. This means that F′ is not necessarily a surface with
boundary.

Definition 6.21. A curve Γ in F′ is called a geodesic, if Γ is locally length mini-
mizing.
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Outside the vertices of T ′, a geodesic looks locally like a great circle. Thus
a geodesic either does not pass through any vertex or consists of a sequence of
spherical geodesic arcs joining vertices. At a vertex of T ′, a geodesic must span
angles in F′ of at least π on both sides. Note that the angle in F′ at a vertex
i ∈ Γ on a particular side of Γ is defined only if at that side of Γ the vertex i has a
neighborhood homeomorphic to the half-plane. By excluding angles less than π we
also exclude zero angles, that is a geodesic is not recurring.

By a polygonal curve on F′ we mean a curve that consists of a sequence of spher-
ical geodesic arcs joining cone points. Note that in this case we allow a spherical
geodesic arc to have length π or bigger.

Lemma 6.22 (Curve shortening). Let Γ be an arbitrary homotopically non-trivial
closed polygonal curve in F′. Then Γ is homotopic to a closed geodesic Γ′ in F′ such
that Γ′ is no longer than Γ.

Proof. We will show that if Γ is not a geodesic, then it can be homotoped to a polyg-
onal curve of smaller length. Lemma 2.9 implies that the lengths of closed polygonal
curves form a discrete subset of R. Because of this and since Γ is non-contractible,
by successive shortening we arrive sooner or later to a geodesic homotopic to Γ.

So assume that Γ spans in F′ an angle less than π at a vertex i. If Γ is recurring
at i, then it contains two copies of the same arc run in opposite directions, and we
can shorten Γ by removing them. If the angle at i is bigger than 0, then consider
a point z that moves along the bisector starting from i, see Figure 15.

Let ji, ki be the arcs of Γ ending at i. Close to them there are geodesic arcs jz,
kz in F. Let us show that for all z sufficiently close to i, the arcs jz and kz lie in
F′. Assume that ji is an edge of T . Then F′ contains a neighborhood U of i on
the side of z from Γ and the triangle ∆ of T adjacent to ji on that side. Since the
length of ji is less than π, the arc jz is contained in U ∪∆ for z sufficiently close to
i. If ji is not an edge of T , then a whole two-sided neighborhood W of the interior
of ji is in F′, and the arc jz is contained in U ∪ W . See Figure 15.

i

z

k

j

Figure 15. Shortening a polygonal curve; here the length of ji is
bigger than π.

It is not hard to show that during the deformation the sum of the lengths of jz
and kz decreases. We stop moving z if one of the following three events occur. First,
if the angle at z becomes π; then we have homotoped Γ into a shorter polygonal
curve. Second, if z arrives at a vertex of T ′; then we also have homotoped Γ into
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a shorter polygonal curve. Third, if one of the geodesic arcs jz or kz (say, this is
jz) meets a vertex j1. In this last case we continue pushing the point z inside the
angle which is smaller than π, now deforming the arcs j1z and kz, and wait for the
next event to occur. Note that if z meets the boundary of F′, then either z arrives
at a vertex or the angle at z becomes π.

If i was the only vertex on Γ, then at the beginning we are deforming a geodesic
loop based at z, see Figure 16, left. In this case, if the angle at z becomes π, we
obtain a geodesic avoiding the vertices. The other two kinds of events from the
previous paragraph yield the same results as described there. On Figure 16, two
encounters with new vertices are depicted.

We cannot stumble upon new vertices permanently, because the length of our
curve keeps decreasing, and if a closed curve on F runs through n vertices, then its
length is at least n times the length of a shortest arc between two vertices. Thus
we will end up with a polygonal curve shorter than Γ.

i

j1

z z

j1
j2

j2

j1

z

Figure 16. Coming across new vertices during the deformation of Γ.

The lemma is proved. ¤

7. Concluding remarks

7.1. Andreev’s theorem for cusps. As mentioned in the Example 2.14, if all
edge lengths of a triangulation T of (T2, g) are at least π

2 , then T is a unique
geodesic triangulation of (T2, g). This allows to characterize convex polyhedral
cusps with non-obtuse dihedral angles in terms of their combinatorics and values of
dihedral angles. The following theorem deals only with the case of acute dihedral
angles.

Theorem C. Let C be a cellular subdivision of the torus T2 with trivalent vertices.
Call three pairwise disjoint edges e, f , g of C a proper cutset, if there exists a
simple closed curve that intersects each of e, f , g exactly once and bounds a disk
on T2.

Let φ : e → φe be a map from the edge set of C to the interval (0, π
2 ) such that

the following conditions hold.
(1) If e, f , g are three edges incident to a vertex, then φe + φf + φg > π.
(2) If e, f , g form a proper cutset, then φe + φf + φg < π.

Then there exists a unique convex polyhedral cusp with face structure C and dihedral
angles φ.
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Proof. Let T be a triangulation of T2 dual to C. Denote αe = π − φe. Then the
condition (1) implies that αe, αf , αg satisfy the triangle inequality. Consider the
spherical cone metric g on T2 given by gluing spherical triangles with edge lengths α.
Then, as shown in [Hod92], αe > π

2 implies that all cone angles in g are bigger than
2π, and condition (2) implies that in (T2, g) there is no closed contractible geodesic
of length less or equal 2π. Thus by Theorem A there exists a convex polyhedral
cusp M with Gauss image (T2, g). If we show that T is the dual tesselation of M ,
then Theorem C follows.

As shown in [Hod92, Proposition 2.4], every geodesic arc of length at most π
between two cone points in (T2, g) is an edge of T . Thus T is a refinement of the
dual tesselation of M . Since the faces of the dual tesselation are convex spherical
polygons, and the union of several triangles of T is not a convex polygon, T is
exactly the dual tesselation of M . The theorem is proved. ¤

In the situation of Theorem C, the proof of Theorem A is substantially simpli-
fied. Since T is the unique triangulation of (T2, g), all cusps with coparticles have
the form (T, h). Further, it is easy to show that for all h ∈ RΣ, the pair (T, h) yields
a convex truncated cusp. Thus, Mtr = RΣ, and the whole Section 4 is redundant.
In Section 5, we don’t need to take care of different triangulations, so the differen-
tiability of V is straightforward without Whitney’s extension theorem. Finally, in
Section 6 we don’t need Morse theory on manifold with corners and don’t need to
study the behavior of V on the boundary. We only need the argument from Section
6.4 showing that V attains its maximum. The assumptions on the edge lengths of
the triangulation T again simplify that argument at several points.

7.2. Circle patterns on the torus. Theorem C can be reformulated in terms of
circle patterns on the torus. In this form, it becomes a special case of Thurston’s
theorem, [Thu97a, Theorem 13.7.1].

Theorem 7.1 (Thurston). Let C and φ be as in the statement of Theorem C.
Then there is a flat metric on T2, unique up to scalar multiple, a unique geodesic
triangulation isotopic to the dual T of C and a unique family of circles Ki, centered
at the vertices of T , such that Ki and Kj intersect at an angle φij (and are disjoint
if there is no edge ij in T , and intersect at several pairs of points if there are several
edges that join i with j).

Consider a convex polyhedral cusp M and its universal cover M̃ ⊂ H3. The
plane spanned by a face of M̃ intersects ∂H3 in a circle. This gives a doubly-
periodic circle pattern on a Euclidean plane R2 = ∂H3 \ {o}, where o is the fixed
point of the group of covering transformations. By taking a quotient, we obtain a
circle pattern on the torus. If all dihedral angles of M are acute, then the planes of
non-adjacent faces don’t intersect, so that the nerve of the obtained circle pattern
is dual to the 1–skeleton of the cusp M , and the intersection angles of circles are
equal to the dihedral angles of M . Thus Theorem 7.1 is equivalent to Theorem C.

In the original version of Thurston’s theorem, [Thu97a, Theorem 13.7.1], condi-
tion (1) of Theorem C is not imposed. This means that the cusp that corresponds
to the circle pattern can have ideal and hyperideal vertices. Thurston also considers
circle patterns on surfaces of higher genus.

Here is an outline of Thurston’s proof of Theorem 7.1. Let ri be the (variable)
radius of the circle Ki. For every triangle ijk of the triangulation T , there is a
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unique arrangement of circles of radii ri, rj , rk so that their intersection angles are
φij , φjk, φik, see [Thu97a, Lemma 13.7.2]. One can fail to simultaneously arrange
all circles that intersect Ki. By forcing the cycle of circles around Ki to close, one
obtains a cone singularity at the center of Ki. Thus, every set of radii {ri} gives
rise to a circle pattern on a torus with cone singularities of curvatures {κi}, and
the problem is to show that there exist such radii that all of κi vanish. For this,
Thurston investigates the behavior of curvatures when some of the radii tend to
zero.

In many aspects our approach parallels that of Thurston. First, cusps with
coparticles are generalizations of circle patterns on a torus with cone singularities.
An arrangement of three circles corresponds to a corner, so that our Lemma 3.4 is
equivalent to Thurston’s lemma 13.7.2. Note also that the radii of circles and the
heights of a cusp are related through

(57) ri = e−hi ,

up to a constant factor. Second, Thurston’s Lemma 13.7.3 essentially finds the
signs of the partial derivatives of our function V , see Sections 5.3 and 5.4, which
is crucial to prove the concavity of V . Thurston does not consider function V , but
the map {ri} 7→ {κi} that he studies is related to the gradient of V . Third, our
considerations in Section 6.4 deal with the situation when some heights become
small with respect to others, which is similar to Thurston’s study of radii tending
to zero.

Our proof of Theorem A is more involved, because a much more general situation
is considered: in terms of circle patterns, not only the intersection angles can be
obtuse, but also the combinatorics is not known (but a choice of combinatorics fixes
intersection angles). Theorem A generalizes Theorem 7.1 in the same direction in
that Rivin-Hodgson’s Theorem 1.1 generalizes Andreev’s Theorem 1.2.

Chow and Luo gave in [CL03] a proof of Thurston’s theorem based on a “com-
binatorial Ricci flow”. In the genus one case, they consider the evolution of radii
governed by

(58)
dri

dt
= −κiri

and show that the limit for t → ∞ gives a circle pattern with zero curvatures. They
also noted that the flow (58) becomes a gradient flow after a variable change (57),
but have not provided a geometric interpretation for the potential function. Our
Proposition 5.8 shows that this function is V . Besides, results of the present paper
show that V is concave independently of whether the intersection angles are acute
or obtuse, thus partially answering Question 1 in [CL03, Section 7].

In the situation of Theorem A, one can also consider the gradient flow of function
V . Note that the combinatorics changes during the evolution. As V is concave, the
flow will converge to the unique critical point of V and thus will yield a cusp with a
given Gauss image, provided that the solution exists for all times. In order to show
that the solution exists for all times with any initial point, one has to show that at
the boundary points of the domain M∗ the gradient of V points inwards. It would
be interesting to see if this is indeed the case (in Section 6.3 we show only that
the gradient is not pointing outwards orthogonally to the boundary). On the other
hand, one can be satisfied with showing that the flow exists for some particular
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initial point. A natural candidate for an initial point would be a cusp with equal
heights.

For circle patterns on surfaces of higher genus, a corresponding 3–dimensional
object would be a convex polyhedral Fuchsian manifold. Cone singularities at
the centers of circles would correspond to coparticles in a Fuchsian manifold. It
is conceivable that the (appropriately modified) function V is again concave and
attains maximum. This would yield a variational proof of the higher genus case
of Thurston’s theorem, and more generally that of an analog of Theorem A. Note
that the higher genus analog of Theorem A is proved in [Sch04, Fil09], see also the
discussion in Section 1.4.

7.3. De Sitter point of view on the main theorem. Consider the Minkowski
space R3,1 with the norm ∥p∥2 = −p2

0 + p2
1 + p2

2 + p2
3. The hyperboloid model of the

hyperbolic space is well-known:

H3 = {p ∈ R3,1 | ∥p∥2 = −1, p0 > 0}.
The de Sitter space is the one-sheeted hyperboloid

dS3 = {p ∈ R3,1 | ∥p∥2 = 1}
with the metric induced from R3,1. Thus the de Sitter space is a Lorentzian man-
ifold : the Minkowski scalar product restricts as an inner product of signature
(−,+, +) to TpdS3 for every p ∈ dS3. Note that dS3 is homeomorphic to S2 × R.

By duality with respect to the Minkowski scalar product, a point w ∈ dS3

corresponds to a hyperbolic half-space:

(59) w∗ = {x ∈ H3 | ⟨w, x⟩ ≤ 0}.
Similarly, a point v ∈ H3 corresponds to a de Sitter “half-space” v∗.

For a closed convex subset K ⊂ H3, its polar dual is defined as

K∗ = {y ∈ dS3 | ⟨x, y⟩ ≤ 0 for all x ∈ K} =
⋂

x∈K

x∗.

Lemma 7.2 ([RH93], Proposition 2.6). If P is a compact convex polyhedron in H3,
then the Gauss image of ∂P is isometric to ∂P ∗ ⊂ dS3.

Proof. Let v be a vertex of P . A parallel translation yields a linear isomorphism

τv : TvH3 → v⊥,

where v⊥ is the orthogonal complement of v in R3,1. By definition, τv preserves the
scalar products. Thus the de Sitter space is a perfect habitat for the Gauss image
Πv of the vertex v:

τv(Πv) ⊂ v⊥ ∩ dS3 = ∂v∗.

It is not hard to show that ⋃
v

τv(Πv) = ∂P ∗,

which proves the lemma. ¤

Through Lorentz transformations, isometries of H3 correspond to isometries of
dS3, so that it makes sense to speak of parabolic de Sitter isometries. Similarly to
a convex parabolic polyhedron in H3 (see Section 2.1), a convex parabolic de Sitter
polyhedron is defined as the convex hull of finitely many orbits of a Z2-action on
dS3 by parabolic isometries. (We cheat a little when saying “the convex hull”, since



GAUSS IMAGES OF CONVEX POLYHEDRAL CUSPS 51

the de Sitter space is not convex, and there is no convex subset of dS3 invariant
under a parabolic isometry. Let us call a subset of the de Sitter space convex if it
is the intersection of dS3 with a convex cone in the Minkowski space.)

The de Sitter space can be visualized in the Klein projective model of H3 as the
exterior of the absolute quadric. Then the duality with respect to the Minkowski
product becomes the polarity with respect to the quadric. For more details, see
[Fil08].

It is easy to show that the polar dual of a convex parabolic polyhedron in H3 is
a convex parabolic de Sitter polyhedron. Since Lemma 7.2 has a straightforward
generalization to parabolic polyhedra, Theorem A can be reformulated as follows
(see also Theorem 1.1').

Theorem A'. Let g be a spherical cone metric on the torus T2 such that the
following two conditions hold:

(1) All cone angles of (T2, g) are greater than 2π.
(2) There are no contractible closed geodesics on (T2, g) of length less or equal

2π.

Then the universal cover of (T2, g) can be isometrically embedded in the de Sitter
space dS3 as a convex polyhedral surface invariant under a parabolic action of Z2.
This embedding is unique up to isometry.

Uniqueness in the statement above must be understood as uniqueness among
convex parabolic polyhedra.

Our proof of Theorem A can also be interpreted in terms of de Sitter geometry.
The objects dual to hyperbolic cusps with coparticles are de Sitter cusps with
particles. They are constructed as follows. Let (L1, L2, L3; o) be a corner. Since co-
oriented planes are in a one-to-one correspondence with half-spaces, the equation
(59) associates a point wi ∈ dS3 to each of Li. Consider the tetrahedron with
vertices w1, w2, w3, o. Its intersection with the de Sitter space is called a de
Sitter horoprism. The operation dual to fitting corners together (see Section 3.2)
is side-to-side gluing of de Sitter horoprisms. A cusp with particles is a Lorentzian
cone-manifold with time-like singular lines ending at the vertices. In these terms
Lemmas 3.9, 3.10, 3.14 become more obvious.

Due to Lemma 7.2, the space M∗ can be viewed as the space of all convex de
Sitter cusps with particles with fixed boundary metric. On M∗, we consider the
function

V ∗(M∗) = −2 covol(M∗) +
∑

i

h∗
i κi +

∑
ij

ℓ∗ij(π − θ∗ij).

Here h∗
i are the (imaginary parts of the) heights of the de Sitter horoprisms; ℓ∗ij and

θ∗ij are the lengths of and the dihedral angles at the boundary edges of M∗; finally
covol(M∗) is the total volume of semi-ideal de Sitter simplices associated with the
horoprisms. Note that h∗

i = −hi. By the Schläfli formula in dS3, [SP00], we have

∂V ∗

∂h∗
i

= κi.

This implies the equation V ∗(M∗) + V (M) = const, see also [SP00, Proposition
2.1]. The functional V ∗ is a discrete analog of the Hilbert-Einstein functional, see
a discussion in the middle of Section 1.4.
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Appendix A. Some trigonometry

Let us call a kite a quadrilateral with two opposite right angles. We will study
two types of hyperbolic kites: compact ones, left of Figure 17, and semi-ideal ones,
right of Figure 17. We denote the edge lengths and angle values in kites as shown
on Figure 17. The lengths b and c in a semi-ideal kite are defined as distances
to a horosphere H centered at the ideal vertex. All edge lengths in a kite are
allowed to be negative. Formally, a kite is a triple (L1, L2; v), where L1 and L2

are intersecting co-oriented lines, and v is a point from which perpendiculars to the
lines are dropped. If v is an ideal point, then we require that it lies on the positive
sides of both L1 and L2.

γ

c

bb

γ

β β

c

H

L2

L1 L1

L2

α

a a

Figure 17. Metric elements in hyperbolic kites.

Lemma A.1. For a compact hyperbolic kite, the following holds.
• The sine law:

sin a

sinα
=

cosh b

cosh β
=

cosh c

cosh γ
.

• The cosine laws:

cos a = sinh b sinh c − cosh b cosh c cos α,

sinh c = − cos a sinh b + sin a cosh b sinh γ,

• When c varies, we have
∂α

∂c
= − tanhβ

cosh c
.

For a semi-ideal kite, the following holds.
• The sine law:

eb

cosh β
=

ec

cosh γ
.

• The cosine laws:

ec−b = − cos a + sin a sinh γ

1 = sinhβ sinh γ − cosh β cosh γ cos a.
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• When c varies, we have

∂γ

∂c
=

ec−b

cosh γ sin a
=

1
cosh β sin a

.

Proof. By polarity, co-oriented lines in H2 correspond to points in the de Sitter
plane dS2. Let w1 and w2 be the poles of the lines L1 and L2, respectively. Then
we have a triangle vw1w2 in H2 ∪ dS2, and formulas of Theorem A.1 are just sine
and cosine laws for this triangle. The formulas can be proved using an argument
similar to that in [Thu97b, Section 2.4]. For a compact kite, this is done in [Cho07,
end of Section 4.3]. ¤

Faces of bricks, see Section 5.2, are hyperbolic kites. By applying formulas of
Lemma A.1 to them, we obtain the following.

(60) sinhh12 =
eh2−h1 − cos α12

sin α12

(61) sinhh123 =
− cos γ23

1 sinhh12 + sinh h13

sin γ23
1 cosh h12

(Note that h123 = h213 by construction, although it is not obvious in the above
formula.)

(62) cos ω23
1 =

sinhh12 sinhh13 + cos γ23
1

cosh h12 cosh h13

(63)
∂ω23

1

∂h2
=

∂ω23
1

∂h12

∂h12

∂h2
= − tanhh123

sinα12 cosh h12 cosh h21
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