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Spelling Correction in Context

Spelling checkers, frequently used nowadays, do not allow to correct real-word errors. Thus, the erroneous replacement of dessert by desert is not detected. We propose in this article an algorithm based on the examination of the context of words to correct this kind of spelling errors. This algorithm uses a training on a raw corpus.

Introduction

Spell checkers distributed with text processing such as MS Word or OpenOffice are based on the use of a dictionary. The text is analyzed word by word: each word which does not appear in the dictionary is supposed to be erroneous so corrections are proposed to the user. Paradoxically, the performances of these checkers in error detection are degraded with the increase in the size of the dictionary because they are unable to detect realword errors.

These real-word errors occur when one or more modifications of a word transform it into another word which is present in the dictionary. example : This chocolate cake is a famous desert.

The omission of an s in dessert reveals the word desert. This error is not detected because desert is present in the dictionary. This problem was tackled during the second half of the 90's, in particular by Andrew R. Golding in (Golding 95) and (Golding & Schabes 96). He defines confusing sets (like {desert , dessert} for example) and then determines by examining the text which of these words is the best candidate. This method was used in other papers like (Jones & Martin 97) and (Mangu & Brill 97).

First, we will explain our algorithm and then, we will compare it with the method named context word by Andrew R. Golding (Golding 95).

Simultaneous Detection and Correction

Our algorithm detects and corrects the errors simultaneously.

During the examination of a word m, the algorithm compares its probability of appearing in its context with the probability that another word m ′ appears in the same context, m ′ being close to m in the sense of an arbitrary distance.

The context of a word is defined by the set of the words present in a vicinity of fixed size in number of words. Considering that it is the semantic aspect of a word which will guide the correction, we make the assumption that the order of these words is not important.

The probabilities are collected during the training part.

We now present the two distinct parts of our algorithm: the computation of the contextual probabilities and the error detection/correction process.

Training

The training is made on a raw corpus. This algorithm is parameterized by k: the number of words around a word that constitute its context.

Reading the Corpus

The corpus is parsed word by word. Let w c be the current word.

Constitution of the Dictionary

The goal is to index all the words appearing in the corpus with their frequency.

Let D be the dictionary, composed of a set of pairs D i = (w i , c i ), w i being a word. Each w i is unique. c i is the number of occurrences of the word w i .

The constitution of the dictionary is processed as follows:

• if D c exists, c c is incremented. • else, D c = (w c , 1) is added to D.
Thus, we obtain the number of appearances of each word in the corpus. This information will allow to calculate various probabilities thereafter.

Context Dictionary C

Definition The context dictionary named C gathers the co-occurrences of the words w i and w j , the distance between these words being lower or equal to k words. The word order is not taken into account. Each co-occurrence is supplied with its frequency f i,j :

C = {C i,j / C i,j = ({w i , w j }, f i,j )}
Algorithm The corpus is parsed word by word. During the treatment of a word w c , the C c,j with j ∈ [c -k, c -1] are calculated. They are the k co-occurrences generated while combining w c with the words appearing in a window of width k preceding w c (see figure 1):

• if C c,j exists, c c,j is incremented. • else, C c,j = ({w c , w j }, 1) is added to C.
We thus obtain all the 2-word sets located at a distance lower or equal to k, and their frequencies.

Complexity Complexity in space is O(nk) with n the size of the corpus in number of words. In practice, it should be lower because of the redundancy of words and co-occurrences.

Let O(f (x)) be the complexity of the search, with x the size of the database in which the search is processed. As the size of this base can be raised by nk, complexity in time is O(nkf (n)).

Calculating the Probabilities

We use the data gathered during the parsing of the corpus to calculate the probabilities of the contexts kept in C.

Let B be the dictionary of the pairs of words associated with their probability. We thus have:

B i,j = ((w i , w j ), P (w i |w j ))
B i,j and B j,i are defined for each C i,j . The probability is calculated as follows:

P (w i |w j ) = c i,j c j
4 Detection and Correction

Similarity Between Two Words

Let edist(w i , w j ) be a function comparing two strings and returning a positive number with the condition edist(w i , w j ) = 0 ⇔ w i = w j

The largest edist(w i , w j ) is, the most distant w i is from w j . The Aspell (Atkinson 05) distance function takes in account the phonetic of words so it needs a linguistic knowledge and depends on the target language. In this first version, we choose to use the minimal edit distance (Wagner & Fischer 74) which is totally independent of the target language. However, we slightly modified this function to reduce the cost of the inversion of letters.

To determine if a word is a plausible correction of the word to be corrected, we use a sim(w i , w j ) function, which takes in arguments 2 words and returns true if the 2 words are similar and false if not.

Let ǫ be the empty string, we can define sim as in figure 2.

In practice, we will take γ = 8 and c = edist("a", ǫ). These values have been determined after several experimentations.

Detection and Correction Algorithm

Let K c be the context of a word w c . K c is the set of the 2k words located around w c , that is to say the k words located before w c and the k words located after w c (see figure 3).

Let w c be the word to correct. For each w j ∈ K c , we constitute the set F j such that

F j = {B i,j ∈ B| sim(w c , w i ) = true, P (w i |w j ) > P (w c |w j )}
We thus obtain 2k sets of propositions. The set of the possible propositions, F , is the union of the sets F j (see example figure 4).

We now need a heuristic to give a score to each proposition in order to have them in a pertinent order. We here propose a first heuristic, but we are also elaborating tests to refine it.

Let G j be the subset of F such that

G j = {B i,j , B i,j ∈ F } Let k = 3 and c = 6
We can have a lot of money. w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 3 , w 4 and w 5 are in the context of w 6 , that implies the sets {w 3 , w 6 }, {w 4 , w 6 } and {w 5 , w 6 }. We can see that this is a very good dog. w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8 w 9 w 10

We here have w 3 , w 4 , w 5 , w 7 , w 8 and w 9 in the context of w 6 , that gives The numbers are P (w i |w j ). For example P (round|came) = 0.07317 G 1 = {((came, so), 0.03086), ((came, my), 0.01207), ((came, round), 0.07317), ((came, to), 0.01620), ((came, the), 0.01571)}

K 6 = {w 3 ,
We do not detail G 2 , . . . , G 6 which are built in the same way.

The heuristic gives the highest score to the first proposition came because it appears 5 times.

For this example, we trained our algorithm on the novel The War of the Worlds by H. G. Wells. The sentence came from The Time Machine by H. G. Wells (Chapter 3) with the error added.

Figure 4: Propositions One can then define the following H j heuristic:

H j = |G j | + B i,j ∈G j P (w i |w j )
This heuristic favors the propositions appearing in several sets of proposals F j , then the strongest probabilities (see example in figure 4).

Comparison with Other Works

This algorithm is close to the Context Words Method by Andrew R. Golding (Golding 95).

The Context Words Method

In (Golding 95) During the training, a set of (w c , w i , P (w c |w i )) is created (with w c a word belonging to at least one confusion set, w i any word). To correct a word, the probabilities of all the words of the corresponding confusion sets are computed, the highest probability being proposed in correction.

Comparison of the Two Methods

These two methods are based on the same idea: using the words present around the word to correct. They differ especially in the way of establishing sets and also in the nature of them:

• Golding supposes that its confusion sets are preestablished.

We automatically determine words which can be confused during the correction process. This selection is based on the corpus itself and on our similarity function.

• The Golding's confusion sets are disjoint (their intersections are empty). This is not the case in our method: for each word w i , we determine automatically a list of words that are similar to w i and which occur in the same context of the words cooccurring with w i . The list established for w i and the list established for w j (w i = w j ) can encounter some words in commom.

Experimentations

Corpus

We would have liked to experiment our method on the same corpus as Golding in order to compare fruitfully our results with those he has obtained.

Unfortunately, the Brown corpus used by Golding is not free, so we could not perform our algorithm on it. So, our experiments on this spelling checker use the novel les Misérables by Victor Hugo. This corpus is divided into two parts: the training part (480588 words) and the part to be corrected (53405 words) in which errors have been added.

Experimental Method

We performe the correction and then generate the precision and the recall on the detection of error as well as the precision on correction (see figure 5 for the formulas).

Adding Errors

Real-word errors are previously added automatically without using any external resource.

This introduction is done in two steps: first the generation of the possible errors, then the introduction of these errors in the text.

Generation of the Possible Errors

Let D be a simple dictionary (a set of word). For each word w i ∈ D, we associate a set of words included in D and close to w i (in the sense of our similarity function). This method generates a base which can be used to generate real-word errors.

In practice, we use as dictionary the words appearing more than ten times in les Misérables to select errors using words whose context is known by our corrector. Errors on low frequency words (like apax) could not be detected in such experimentations because their context is completely unknown.

Adding Real-word Errors

Two parameters control the introduction of real-word errors: the density of inserted errors and the previously determined possible errors.

Errors are located using a XML tag which keeps the original word (this is the correction we wish to find).

Example: we introduce the word "game" instead of "came" in the text "And so my mind came round to the business. Each word of the corpus is affected or not by an error according to the probability of error fixed by the wished density.

Results

A summary of the results is given in the table 1. We note that the precision on detection is very bad. This overdetection of our algorithm is problematic.

On the other hand, we obtain a very good recall on detection and the precision of the correction is more than 95%. The correction in itself is thus very efficient.

Conclusion

We have presented here an algorithm that uses non-ordered contexts to detect and correct realword errors.

The advantages of this algorithm are:

• simplicity;

• independence from any linguistic information;

• use of a raw corpus for the training;

• few parameters have to be regulated.

The disadvantages are:

• the significant size of the data generated by the training.

• the low precision on detection: the algorithm proposes corrections for a lot of correct words.

Our algorithm is intended to be used during the interactive correction of a text so its speed should be sufficient. On the other hand, the overdetection of errors constitutes a real problem.

We thus direct our research towards the definition of better heuristics of scheduling of the propositions. The size of the training corpus may also influence the quality of the results, its influence should be observed. We also plan to define ordered contexts to use the syntax in addition to semantics.

These various methods will be precisely evaluated on the same corpus to analyze their relevance.
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	Density Precision	Recall	P. on correction
	10%	0.1081926 0.9363030	0.9622054
	1%	0.0206164 0.9615384	0.9500000