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High order discretization schemes for stochastic volatility models

Benjamin Jourdain and Mohamed SbaiEl

Abstract

In usual stochastic volatility models, the process driving the volatility of the asset price evolves accord-
ing to an autonomous one-dimensional stochastic differential equation. We assume that the coefficients
of this equation are smooth. Using It6’s formula, we get rid, in the asset price dynamics, of the stochastic
integral with respect to the Brownian motion driving this SDE. Taking advantage of this structure, we
propose

- a scheme, based on the Milstein discretization of this SDE, with order one of weak trajectorial

convergence for the asset price,

- a scheme, based on the Ninomiya-Victoir discretization of this SDE, with order two of weak con-

vergence for the asset price.

We also propose a specific scheme with improved convergence properties when the volatility of the asset
price is driven by an Ornstein-Uhlenbeck process. We confirm the theoretical rates of convergence by
numerical experiments and show that our schemes are well adapted to the multilevel Monte Carlo method
introduced by Giles [2008b, 2008a].

Introduction

There exists an extensive literature on numerical integration schemes for stochastic differential equations.
To start with, we mention, among many others, the work of Talay and Tubaro [1990] who first established
an expansion of the weak error of the Euler scheme for polynomially growing functions allowing for the use
of Romberg extrapolation. Bally and Taley [1996] extended this result to bounded measurable functions and
Guyon [2006] extended it to tempered stable distributions. More recently, many discretization schemes of
higher weak convergence order have appeared in the literature. Among others, we cite the work of Kusuoka
[2001, 2004], the Ninomiya and Victoir [2008] scheme which we will use hereafter, the Ninomiya and Ninomiya
[2009] scheme and the scheme based on cubature on Wiener spaces of Lyons and Victoir [2004].
Concerning strong approximation, the Milstein scheme has order one of strong convergence. Unfortunately,
it involves the simulation of iterated Brownian integrals unless a restrictive commutativity condition is
satisfied. Under ellipticity, Cruzeiro et al. [2004] have recently proposed a discretization scheme which gets
rid of these iterated integrals and has nice strong convergence properties. More precisely, for each number of
time steps, there exists a Brownian motion different from the one giving the Brownian increments involved
in the scheme such that the strong error between the scheme and the stochastic differential equation driven
by this new Brownian motion is of order one. We call such a property weak trajectorial convergence of order
one. Weak trajectorial error estimation is exactly what is needed to control the discretization bias for the
computation of path dependent option prices.
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Stochastic volatility models, which have now become a standard of the market, are an eloquent example of
the use of stochastic differential equations in finance. In our study, we will consider the following specification
of a stochastic volatility model for an asset (S¢)¢cjo,77 :

dS, = rSudt+ f(Y)S; (pdW, +/T=p2dB,); o =s0 >0 )
dYy b(Yy)dt +o(Yy)dWy; Yo =yo

where r the instantaneous interest rate, (Bt)te[o,T] and (Wt)te[o,T] are independent standard one-dimensional
Brownian motions, p € [—1, 1] is the correlation between the Brownian motions respectively driving the asset
price and the process (Y;):c[o,7) Which solves a one-dimensional autonomous stochastic differential equation.
The volatility process is (f(Y))te[o,r] where the transformation function f is usually taken positive and
strictly monotonic in order to ensure that the effective correlation between the stock price and the volatility
keeps the same sign (the function o usually takes nonnegative values). This specification nests almost all
the known stochastic volatility models:

e Hull&White [1987] model (p = 0) and Wiggins [1987] (p # 0)

dS, = rSidt+ VY.S, (det T deBt)
dY; pYedt + (Y dWy

which can be expressed as ([]) with f(y) = VY, b(y) = py and o(y) = Cy. Nlote that it can also be

seen as ([]) with f(y) = e¥, b(y) = 5 — % and o(y) = %

Scott’s [1987] model which generalizes Hull& White model

dS, = rSidt+ ape¥sS, (det /1o deBt)
dYy = k(0 —Yy)dt + vdW, (2)

= f(y) = 00e?, b(y) = k(0 —y) and o(y) = v.

Stein&Stein model [1991]

dSt = TStdt + }/tSt (det + 4/ 1-— deBt)
dY, = k(0 —Yy)dt+ vdW,

= f(y) =y, bly) = k(0 —y) and o(y) = v.

Quadratic Gaussian model
dS; = rSudt+Y?2S, (det Iz deBt)
dY, = k(0 —Yy)dt + vdW,
= f(y) =% bly) = w(0 —y) and o(y) = v.

Heston’s [1993] model
dS, = rSidt+ VY.S, (det V1o deBt)
dYy = k(0 —Yy)dt + v/Y,dW,
= f(y) = V¥, b(y) = k(0 — y) and o(y) = v\/y.



In all but the last example, the volatility of the asset is driven by an Ornstein Uhlenbeck process.

The development of specific discretization schemes for stochastic volatility models has only received little
attention. We mention nevertheless the work of Kahl and Jackel [2006] who discussed various numerical
integration methods and proposed a simple scheme with order 1/2 of strong convergence like the standard
Euler scheme but with a smaller multiplicative constant. Also the numerical integration of the CIR process
and of the Heston model received a particular attention because of the inadequacy of the Euler scheme due
to the fact that both f and o are equal to the square root function (see for example Deelstra and Delbaen
[1998], Alfonsi [2005], Kahl and Schurz [2006], Andersen [2007], Berkaoui et al. [2008], Ninomiya and Victoir
[2008], Lord et al. [2008], Alfonsi [2009]). An exact simulation technique for the Heston model was also
proposed by Broadie and Kaya [2006].

In the present paper, we assume in return that the functions f, o and b are smooth and do not deal with
the Heston model. Our aim is to take advantage of the structure of (EI) to construct and analyse simple and
robust ad’hoc discretization schemes which have nice convergence properties.

For a start, we make a logarithmic change of variables for the asset : the two-dimensional process
(Xt :=1og (St),Yi)eeqo,r) solves the following SDE

{ dX; = (r— %ﬁ(Yt))dt + (%) (pdWi + V1= p2dB1) 5 Xo = log(so). (3)
ay, = b(Yy)dt+o(Yy)dW; Yo=1yo

Our main idea is to get rid in the first equality of the stochastic integral involving the common Brownian
motion (W;)seo,r)- In all what follows, we assume that

(A) f and o are C* functions and o > 0.

One can then define the primitive F(y) = foy g(z)dz and apply Ito’s formula to get

f

AR (V) = L(V)aY; + S~ o) (Vo

Therefore (X¢,Y:):e[0, solves
dX: = pdF(Yy) + h(Yy)dt + /1 — p?f(Y:)dB: (@)
Yy = bY)dt + o(Yi)dW,

where b iy = — 2f2(y) — p(2f + (o f — fo'))(y). We discretize the autonomous SDE satisfied by Y
using a scheme with high order of strong or weak convergence depending on wether one is interested in
path-dependent or vanilla options. Then, in the dynamics of X, we only need to discretize the standard
integral fOT h(Ys)ds and the stochastic integral fOT f(Y1)dBy where (Y1)icpo,7) and (By)eeo,11-

We recall that usual weak convergence is the right notion to analyse the discretization bias for plain
vanilla options whereas weak trajectorial convergence permits to deal with path-dependent options. The
first section of the paper is devoted to path-dependent options. Combining the Milstein discretization of the
one-dimensional SDE satisfied by (Y;):c[0,7) with an appropriate discretization of the integral fOT f(Y1)dB;
based on the independence of (Y;f)te[O,T] and (Bt)te[O,T]a we obtain a scheme with order one of weak tra-
jectorial convergence. In the second section, using the Ninomiya-Victoir discretization of the SDE satisfied
by (Y3)ie[o,r], we construct a scheme with order two of weak convergence. Since the SDE satisfied by Y is
one-dimensional, the Ninomiya-Victoir scheme only involves two one-dimensional ODEs whose solutions are
available in closed form. The last section is devoted to numerical experiments which confirm the theoretical
rates of convergence. We also show that our schemes are well adapted to the multilevel Monte Carlo method
introduced by Giles [2008b, 20084].



Notations

We will consider, for a number of time steps N > 1, the uniform subdivision [[y = {0 =ty <t; <--- <
ty =T} of [0,T] with the discretization step 6y = %.
We denote by 1) the greatest lower bound of the function ¢ : 3 — f2(y) and by ¥ its lowest upper bound.
We also introduce the following notation :

~ 3/2(y)  if Y =o0
dly) =

) otherwise

1 An efficient scheme for path dependent options pricing

Building a first order strong convergence scheme for a two dimensional SDE is not an obvious task. Even
the ad’hoc schemes provided by Kahl and Jéckel [2006] exhibit a strong convergence of order %

Actually, the natural candidate for this purpose is the Milstein scheme. Unfortunately, the commutativity
condition which permits to implement it amounts to of’ = 0 in our setting. This condition is typically true
when either f is constant or o = (0. Both cases are of no practical interest since they lead to a deterministic
volatility.

However, since the inherent Brownian motion is not essential for applications in finance, the usual strong
convergence criterion is not adapted for estimating the error of a scheme in pricing a path dependent option.
What is more relevant is the approximation in law of the whole trajectory of the process considered for
instance by Cruzeiro et al. [2004]. Using an ingenious rotation of the Brownian motion, these authors have
constructed a discretization scheme allowing for a weak convergence on the whole trajectory of order one
which avoids the simulation of the iterated stochastic integrals.

For the SDE (f), the discretization scheme of Cruzeiro, Malliavin and Thalmaier writes as

tht1

2 CMT
XOMT _ XOMT 4 ( %) >) On + pf (VM T) AW + §o f (VEMT) AW,

VT P f (YEMT) AW, 1 ABrss + V1= 2F(YCMT)ABys — Sof (YEMT)ABE,,
()
2 pr
Ytazvl[T = YOMT 4 (b(YtSMT) 4 %(% _ UU/)(YtEMT)) O + o (YEMT) AWy
+io0' (VOMT)AWE,, — SEABE,
where AW, =Wy, ., — Wy, and ABg1 = By, ., — By, correspond to the Brownian increments.

We set out to construct a much simpler scheme having the same order of weak trajectorial convergence
by taking advantage of the particular structure of the SDE defining stochastic volatility models. We first
begin with the general case of any process (Y;):e[o,7) driving the volatility and then consider the case of an
Ornstein-Uhlenbeck process where we obtain more precise results.

1.1 General case

A discretization scheme will naturally involve the Brownian increments. Thanks to the independence
between (Y;)icjo,7) and (Bi)iefo,r], We can construct a vector (Xi,,...,X;y) using only (ABy,...,ABy)
and (Y:)¢eo,), which has exactly the same law as (X¢,,..., Xty )

Lemmal —V0<I<N, let vy, = % :l“lw(ys)ds. The vector (Xyy, ..., X¢y) defined by
X1 = Xuo

N N th k—1
Vi<k< N,th = Xto +p(F(Y;5k) _F(Y;fo)) +/ h(Y;)dS +v 1 _pQZ\/'U_lABH-l
0 =0



has the same law as (X¢g, ..., Xty )-

Proof :  The proof is elementary. Conditionally on Y, the two vectors are Gaussian vectors with the same
mean and covariance matrix. O

In order to approximate ()?tk)ogng, one needs to discretize vy, for k € {0,...,N —1}. If (U;iv)ogng—l
is an approximation of (vx)o<k<n—1, then by Doob’s inequality

& 2
2 sup Z (\/U_l - \/UIN) ABi+1
0<k<N-1 \ ;5

IN

10n Ni_[ [(ﬁl - UIN) 2]

ON [E[(vl—le)Q}

i
2:O
L

<

SR

b
Il

as soon as 1 = inf, 1(x) is assumed to be positive and, V0 < k < N —1, v,iv is greater than 4. Consequently,
to obtain a scheme with order one of strong convergence for ()?tk)ogkg N, one needs that VO < kK < N —
1,E [(’Uk - v,]cv)ﬂ = O (xz). According to the treatment of the term T, defined by (f]) in the proof of the
Theorem E below, one has VO < k < N — 1,

1

o' (Y, bt
£ [(Uk - (w(y;fk) + M/ (Wé - Wtk)ds))
N t
This equality still holds true when replacing Y by a scheme with order one of strong convergence in the
term with sign minus of the left hand side. Better still, (F (Yz,) + fg " h(Ys)ds) . is approximated with
0<k<N

2

strong order one when replacing Y by such a scheme and using a rectangular discretization for the integral
in time.

For all these reasons, we choose the Milstein scheme for Y :
~ ~ ~ ~ 1 ~ ~
VO Sk SN =1, VN, = VY 4 bTN)0n + o (V) AW + 500 () (AWR,, —0n); T = o

and we write our scheme as follows

WeakTraj_-1 scheme ‘

XN, =X 4 (PO

tr41

)= FOVY)) +nh(V,Y)

(VN tht1 (7)
+/1 — p? <¢(57tzkv) + %/ (Wy — Wtk)dg) VY ABjgy1

N t

Note that in order to implement this scheme, one needs to simulate both the Brownian increment AWy
and the random variable ftt:“ (Ws — Wy, )ds. This is straightforward as one can easily check that

s AWkJrl N 0 SN 512\1/2
/ (Ws — Wy, )ds 0 )\ 6%/2 6%/3
ty

We can now state our first main result :



Theorem 2 — Under the assumptions of Lemma E and if

(H1) f and o are C® functions, g and ff' are bounded
(H2) ¢ >0
(H3) there exists a constant K such that, ¥(z,y) € R?,
o2
|60 + Th)w)| < Ka (1 + o)
|oh/ ()] < K1 (1 + Jyl)

[h(y) = h(@)| < Kily - 2l
(H4) there exists a constant Ko such that, V(x,y) € R?,

0_2
|00 + T w)| < Ka1+ )
|0y (y) — o9 (x)| < Kaly — |

then the WeakTraj_1 scheme has order one of weak trajectorial convergence. More precisely, for each p > 1,
there exists a constant C' independent of the number of time steps N such that

= SN N\ |I?P ¢
| ma | (Keove) = (R) |7 = 5

The proof of the theorem relies on the order one of strong convergence of the Milstein scheme (see Milstein
[1995] for the particular case p =1) :
Lemma 3 — Suppose that
(H5) b and o are C* functions with bounded first and second derivatives
(H6) there exists a positive constant K such that ¥(z,y) € R?

o0’ (x) — o0’ (y)] < K|z -y

then, Vp > 1, there exists a positive constant C, independent of N such that

0<k<N

~ 2p
[E( max ‘Y}k —Ytjkv‘ ) < CP(SJQ\?.

The proof for general p is postponed to the appendix.

Remark 4 — Before giving the proof of the theorem, we make a few comments on its assumptions. (HE)
implies that h and v are C? functions which was implicitly assumed in (’HE) and (’Hﬂ) The latter assumptions
are expressed in a reduced form. One can check that the following conditions on the coefficients of the original
SDE are sufficient for them to hold :

o [ and o are bounded C* functions with bounded derivatives.

e b is a bounded C3 function with bounded derivatives.



e Jog > 0 such that Vy € R, o(y) > o9.

Proof of the theorem : Throughout the proof, we denote by C' a constant which can change from one
line to another while always being independent of N. Thanks to Lemma E, we just have to control the error

OH)ZZ

k—1
[ELQ%JX% - X5 |2p} =E| max ’p(F(Yzek) - F(Y,)+ <

tjt1
Y(Ys)ds ABj4a

tj

. (YN) [t
—/1—p? <w(ytJ]V) + M/ (Wy — Wtj)ds> Vi ABji
t

vy,

< 3% (1o + I + (1 - p*)P)

where

and
J+1
IFEOL% 5N/ v =

HYNY i
(1/}(}74\7) + M / (WS — Wt].)d8> V g ABjJrl
t

N
oN ;
(HEI) yields that F' is Lipschitz continuous so using Lemma E we show that Iy < % Next, we have that

J+1 k-1 ~ 2p
2p N
n<cle Og}%xN‘Z/ Ya)ds — Snh(Ys, )‘ + 62PF Og}ixN‘Zoh(Ytj) — h(¥)
]:
On one hand, thanks to assumption (7—[) and Lemma E,
2p YN - SNy |*P c
§%E Og}%xN\ZhYt h(y,Y) <C§Nz;[EUh(Yt)h(Yt ) ]gﬁ.
‘7:

On the other hand, using an integration by parts formula,

k—1

— ti+1 2p
I, =L og}%XN Jz_;/tj h(Ys) —h(Ytj)ds’

k—1 AN

/ttj+1(tj+1 - s) ((bh’ +2 2h )(Ys)ds + O-h/(Y;)dWS) }217

= [E | max

0<k<N )
j=0"1%i

-t (E " T a4 E tk "y,
2 ( |:OI<I}€&<XN’/O (15 — s)(bh" + 5 ) s)ds‘ }i— [Og}iXN‘/O (1s — 8)oh/(Ys)

.

IN



where we denoted by 7, the lowest discretization point greater than s : 7, = [ﬁ]ég\;. Using Jensen’s
inequality for the first integral and the Burkholder-Davis-Gundy inequality for the second, we obtain

2p
I, < C<[E ds]
+E

C T
3,
0

Under the assumptions of Lemma fj, supg< i< E(]Y5]?P) < oo (see Problem 3.15 p. 306 of Karatzas and

0_2 h//

A

23
max ;7! / (15 — )P | (bh + )(Ys)
0

0<k<N
T ) p
( / (ra — 8% [ oW (Y2) ds> D
0

2p )
+]oh/ (Vo)™

0.2 h//

(%) ds.

o +

and hence

Shreve [1991] for example) so, with the help of assumption (#f]), we conclude that T; < %

L < % We now turn to the last term. Using Burkholder-Davis-Gundy inequality, we get

2\ P

N—-1 1 tit1 " 0 f/N tis1
I < COE || \/a / Y (Yy)ds— (wm%w/ (Ws—Wmds) Ve
Jj=0 ti

on e,

2p

w [ e )
<N JZ:% £ \/E /tj Y(Ys)ds — (w(yx\r) + T/t (Ws = We)ds | Vb

J

Assumption (Hﬁ) yields that the two terms appearing in the square root are bounded from below by ) > 0
so we have that

N-1 ‘s HNY  pts 2p
1 J+1 -~ o Y/ J+1
I, < Cén Z Ell— O(Ys)ds — [ 0(V,Y) + M/ (Ws =Wy, )ds | V1
=0 on Jy, ’ On t -
N-1 tit1 - - tjt1 Zp
< CN*'ME »(Ys)ds — <w(Yt? )on + o (V) / (W, — thds)
=0 tj tj
N-1
< on Y (B + )
j=0
where
2p
- ti+1 , ti+1
T, - / B(Ys)ds - (wnnazv o/ (:) / (W, - Wmds) (9)
tj tj
and
2p
~ ~ ~ ti+1
B=F ||on (v(r,) = 0(7) + (o0 () = o' (7)) / (W, — Wi, )ds
tj
Again, integrating by parts yields that
2p

T=F ‘ [ =9 (0000 = 0w .+ (0 + G v )




We control the stochastic integral term as follows

E / "ty — )00 (Ya) — 00! (¥, )W,

tj

ti+1
§C5§'§1[E[/ (tjr1 — )% |ow/ (V) — Jw'(Ytj)IQ”dS]
tj

3p—1 Ko / ’ 2p
<0 Elow/ (v) — 0w/ (vi,)[*] ds
tj
b1
<oy [T E[v-vi 7] as
tjtjﬂ
§C513\}7_1/ |s —¢;|" ds
tj

<C&YF

The third inequality is due to assumption (’HH) and the fourth one is a standard result on the control of the
moments of the increments of the solution of a SDE with Lipschitz continuous coefficients (see Problem 3.15
p. 306 of Karatzas and Shreve [1991] for example).

We also control the other term thanks to assumption (HH) :

tit1 0.2 2p 91 tit1 0.2
E / (tj1 = 8) (09" + -9")(Y)ds < iy E / (tjy1 — $)*P|(b0" + 7¢")(5G)|2pd8
t; t;
o1 tit1 o2 2p
<oy [ e ‘(bw’ + Zun)| | ds
t;
< o5y

Hence, 7; < ng. To conclude the proof of the theorem, it remains to show a similar result for fg :

7i 2p—1 SN | / 13N fr v
Bo< 27 [y (wv) o[+ |(ov' i) — o0 7)) [ 0% =03 pas
~ 2 3p 12
- <l el
< Nip

The second inequality is due to the fact that v is Lipschitz continuous (thanks to assumption (7—[)) for the
first term and to the independence of (m/)’(Yt].) — m/)’(fft]jv)) and ftt7“ (Ws — W, )ds for the second term. O

Remark 5 — Our scheme exhibits the same convergence properties as the Cruzeiro et al. [2004] scheme.
Apart from the fact that it involves less terms, it presents the advantage of improving the multilevel Monte
Carlo convergence. This method, which is a generalization of the statistical Romberg extrapolation method
of Kebaier [2005], was introduced by Giles [2008b, 2008a/].

Indeed, consider the discretization scheme with time step don = % :

VO<k<2N -1, X2, = X +p (F(f/ﬁﬁm) - Fo?gN)) + oo h(VEY) + /1 p2
2 2N

kT kT
5N 2N 2N

oW/ (V) [T
2N (WS — W%)ds V (B(k+1)T — B%)
- 2N

oN daN i



oy (YRY)  (tnT
2N 2N

02N 755 2N

Denote by v = /1 — p? (1/)(37,3%\7) + (Ws — Wer )ds) Vo the random wvariable which
2N -

multiplies the increment of the Brownian motion (B(k+1)T — Bir ) Because of the independence properties,
2N
~N ~N

()Zt]z) has the same distribution law as the vector <)~(tk defined inductively by X, = log(so)
0<k<N 0<k<N
and
~N ~N ~
VOSESN-1, X, =X, +p(FOY,) - FTN) + onh(V)
Sy TR e ~
V=P (woafj) + T/ (W, — W )ds | v ABY,,
ty
where
2N 2N
_ V3 (B(2k+1)T — Bz;fT) + v (B(2k+2)T — B(2k+1)T)
ABY,, =2 o —— i — o (10)
VO3 + 08)
Going over the proof of the theorem, one can show in the same way that
- 2
v 2N -2
E log}%XN X, — X, =0O(N™?) (11)

Hence, one can apply the multilevel Monte Carlo method to compute the expectation of a Lipschitz continuous
functional of X and reduce the computational cost to achieve a desired root-mean-square error of € >0 to a
O(e™?).

As a matter of fact, the particular structure of our scheme enabled us to reconstruct the coupling which
allows to efficiently control the error between the scheme with time step % and the one with time step %
This does not seem possible with the Cruzeiro et al. [2004] scheme.

From a practical point of view, it is more interesting to obtain a convergence result for the stock price.
It is also more challenging because the exponential function is not globally Lipschitz continuous. We can
nevertheless state the following corollary with some general assumptions and we will see in the next section
that we can make them more precise in case (Y;):e[o,r) is an Ornstein-Uhlenbeck process.

Corollary 6 — Let p > 1. Under the assumptions of Theoremﬁ and if
(H7)

Je > 0 such that E [ max S| + E [ max e2PTOXN | & o
0<k<N 'k 0<k<N

then there exists a positive constant C independent of N such that

eXth — etk

[E[max

0<k<N

N QP] C

10



Proof :  Using Holder inequality we have that

_ N2 - =~ ~ 2
E { max |eXt — X P} < E { max (62PX% vggpri) ’th- - Xy p}
0<k<N - 0<k<N k
Pl 2])16
< (E| max S| +E| max 2PraXi,
0<k<N 'k 0<k<N
2petap? ZpTe
= on|E
(e o 222 )
We conclude by assumption (#f]) and Theorem [ O
Remark 7 — Had we introduced a new cut-off to our scheme as follows
XN, = X 0 (FORY) = FORY)) + onh(VY)

(VN tht1 .
+4/1— p2 (1#(171&]:) + %j}’“)/ (VV‘S — Wtk)d5> Ay \/y ABk-{-l

ty

assumption (Hﬂ) would have been induced by assuming that the functions F, f and h are bounded.

1.2 Special case of an Ornstein-Uhlenbeck process driving the volatility

For many stochastic volatility models, the process (Y;)e[o,r7 which drives the volatility is an Ornstein-
Uhlenbeck process. For example, this is the case for all the models cited in the introduction but the Heston
model. Therefore, it is useful to focus on this particular case. We will hereafter suppose that (Y;)¢cjo,7] is
solution of the following SDE

dYy = vdW; + k(0 — Y;)dt (12)

with v,k and € three positive constants. Since exact simulation is possible, we can replace the Milstein
discretization by the true solution in our previous scheme :

WeakTraj_1 scheme when Y is an O-U process‘

)’Zt]Z+1 = )’Zt]Z +p (F(Y;fk+1) - F(Y;fk)) + 5Nh(Y;fk)
/ tet1 (13)
+4/1— p2\/<w(y}k) + %NY%)/ (VV‘S - Wtk)ds) \/ﬁ ABk-{-l
ty

Note that we require the exact simulation of both (Y;,,Y;,.,) and j;t:“ (Ws — Wy, )ds. The unique solution

of (1) is YV; = yoe ™ +0(1 —e ") +-v fot e *(t=5)dW, and one can easily deduce that, V& € {0,..., N — 1},

}/tk+1 - eilﬂsN}/tk
bt ~N (Ma F)
/. (Ws — W, )ds

ty
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O(1 — e="on) V(1 — e 2m0n) (1 — e "N (1 + kdy))
where M = and I' =
0

Z(1— e N (1 + kdy)) N
K2 N 3
We first state the following technical lemma whose proof is postponed to the appendix :

Lemma 8 —Vc¢; > 0,¢2 € [0,1),

1
E (661 suPo<i<r Vil +C2) < 00.

As might be expected, it is possible to weaken the assumptions of Theorem E In particular, we relax
the assumption on the lower bound of the volatility (HE) and replace it with a weaker one (see assumption

(H[LQ) below).

Theorem 9 — Let p > 1. Suppose that Y is solution of ) and that the scheme is defined by ) Under
assumption (HR) of Theorem B and if

(H8) fis aC? function
(H9) there exist three constants co > 0,¢1 > 0 and ¢y € [0,1) such that, Yy € R,

[LFe2

2
‘fi(é’ —y)h'(y) + %h”(y)} < coerl¥

|h'(y)‘ S Coecl‘y‘1+62

2
50 = )’ () + S0 ()] < coe?

’w//(y)‘ < Coecl |y|1+c2

|1+c2

then there exists a constant C independent of the number of time steps N such that

2?} C
< —_—
= N2p

The same result holds true when we replace assumption (HE) by

E | max ‘)? - XN
0<hen |t tk

(H10) There exist two positive constants C' and € such that Vy € R,

Yy) > 0
W' (y) < Cy(y)
sup E (1/1p(1+6) ) < o
t<T
fgg[E (wp(1+e) (Y1) ) <

Proof :  The proof of the first part of the theorem repeats the proof of Theorem P with fewer terms to
control because of the exact simulation of (Y;):cj0,7). At the places where we used assumptions (HB) and
(HHA), we use assumption (Hf]) together with Lemma J§

12



We now focus on the second part of the theorem. According to equation (E), all we have to show is the
existence of a positive constant C' independent of N such that Vj € {0,..., N — 1}

2p

1 ti+1 "y, tit1 C
E \/E/tj Y(Yy)ds — (w(Ytj)JrM/ (Ws—Wtj)ds> vl | <+

on i,

We will adopt the following notations

- Ay =g [T (Ya)ds

v’ (Yi. .
- D, = (W) + SR W = W, )ds) v
Thanks to assumption (’HE), we have that Vj € {0,...,N—1}, A; > 0 and D; > 0. The idea of the proof is
to isolate the case where D; is small which is problematic since the square root is not Lipschitz continuous
in the neighborhood of 0 :
2p 2p 2p
‘\/Aj -VDj = ‘\/Aj ~VDi| Lp<umy ‘\/Aj VD Lp>uiy)/2
2p—1 "/)p(}/t])

2 (A§ + = ) Lp<uv,)/2)

IN

T
2p—2 2
+2°% <AP * W) A= DTz
Vi J

We take the expectation and apply Holder inequality to obtain

e ||V - VD

() ) )

1 o 1+€] T+e .
—(e|{= +—— ([E[A»—DJPTDI“.
€2 <A§+1/Jp(ytj)> |A; i

Let us begin with the second term. Following the estimation of 72 in the proof of Theorem , we show that

2p
:| S C(El + 62)

with

and

2 14€
1 i+ P

il P(Yy)ds — (ﬁ;(ym + M / Hl(WS - Wtj)ds> vy

(SN tj (SN tj

. [|Aj - Dj|2plﬂ =E

oplte
< Coy *

Thanks to assumption (H[I0) and Jensen’s inequality, we also have that

1

1 o\ b 1 [tn 1 1 e
(e 2 ) ) o (e (a2 )
(A§ wl’(i@j)) (5N , o) PO,

13




Hence e; < +%. Now let us turn to e;. Note first that assumption (’HE) enables us to show that there

— NZ2p
WP (V)
op

exists a positive constant C' independent of N such that ([E [(A? +
(Y, ))

1+e€ T+e
) D < C. Finally, what

< 25 —. In fact, we can show that
N

<
Va > 0,3C, > 0 such that P (D; g‘”(g‘))g%:

P <_1//(Ytj) /W(Ws —W;,)ds < —d}(?j))

on i,

Gl s /A0%)
G

where G is a centered reduced Gaussian random variable independent of Y.

is left to prove is that P (

o

¢(¥,)

P (py < 200)

. \/g’lﬁ(Yt) C .
Thanks to assumption (HE), 3C > 0st. P (|G| > Wdﬂ(JYt)l) < 2P (G > \/TTV) and using the
following standard upper bound of the Gaussian tail probability : V¢ > 0,P(G > t) < \/Z we conclude. O

Remark 10 —

e The fact that we can simulate exactly the volatility process without affecting the order of convergence
of the scheme is yet another advantage of our approach over the Cruzeiro et al. [2004] scheme. On
the other hand, the Kahl and Jickel [2006] scheme allows the exact simulation of (Yi)iepo,r)- Applied
to the SDE (B) it writes as

2(y, 2(Y,
X7 = x[TK 4 <r S X)) + 71 tk)>5N+pf(}/tk)AWk+1

tet 4
Y Y
Tl ) IO N 22 ) (AW = o)

Note that it is close to our scheme insofar as it takes advantage of the structure of the SDE (for example,
unlike the Cruzeiro et al. [2004] scheme, it allows the use of the coupling introduced in Remark E} The
main difference, which explains why our scheme has better weak trajectorial convergence order, is that
we discretize more accurately the integral of f(Y;) with respect to the Brownian motion (Bt)iejo,r)- 1If;
instead of a trapezoidal method, one uses the same discretization as for the WeakTraj-1 scheme, then
it can be shown that this modified IJK scheme will exhibit a first order weak trajectorial convergence.

(14)

e One can easily check that this theorem applies for the Scott’s [1987] model (and therefore for the Hull

2 2

and White [1987] model) where we have h(y) = r — 225 - pooeY(£(0 —y) + %) and ¥(y) = ogeV.
The Stein and Stein [1991] and the quadratic Gaussian models do not satisfy the assumption ¢ (y)| <
Ci(y)-

e [t is possible to improve the convergence at fized times up to the order % Following Lapeyre and Temam
tk+1

[2001] who approximate an integral of the form f Ys)ds for a twice diﬁer@ntiable function g by

ong(Yy,) +vg' (Ys,) tk“(W We,)ds + (k(6 — Ytk)g (Ytk) + % (Y}k)) 3% we obtain the following

scheme

‘ O U_Improved scheme‘

Xt]Z+1 = jz)sz +p (F(Y;fk+1) - F(Y;fk)) +E7€ + v 1- P2 \/ 'le ABk-l-l (15)

14



where hy, = Sy h(Yy, ) + vi (Y, )t’““(W Wy, )ds + (k(60 — Yt,ﬂ)h'(ytk)jL R, ))é nd
B = ((Vay) + 25 [0 (W = Wi )ds + (6(0 — Yo 0/ (Yi,) + 54" (V) 52 V 9.

Mimicking the proof of Theorem E, one can show that

max [E ‘th XtN
0<k<N k+1

2
} =0 (N7?)
where th and )?t]ZH have respectively the same distribution as Xy, and )N(t]Z :

tr tk
Ry = Xo + p(F(Ya) — Flyo)) + / h(Y.)ds + /T 2 i / $(Y.)ds By,

and

XN = Xo+p(F(Ys,) - F(

As for the stock, we can prove the same convergence result under some additional assumptions which
are more explicit than assumption (Hﬂ) of Corollary E To do so, let us make the following changes in our
scheme so that we can control its exponential moments :

XN

thy1 —

= X\ +p (F(Youy) = F(Y2,) +0nh(Yy,)

(16)

ty

/ tet1 N
Vi p2\/ (i) + 225 [ G = wiyas) w3035 v 0 BB

Proposition 11 — Suppose that Y is solution of ) and that the scheme is defined by (@)
Under the assumptions (HY), (Hd) and (H[Ld) of Theorem [§ and if

(H11) there exists 5 € (0,1) and K > 0 such that Vy € R
R+ FW)+ 1 ()] < K(L+]y[**7)

Ify)] < K1+ y%)

then, Vp > 1, there exists a positive constant C independent of N such that

0<k<N - N2p°

- SN2
E [ max_|eXte — ek p] < ¢
The same result holds true if one replaces assumption (H@) by assumption (H@) together with the assumption
that 3C > 0 for which Yy € R, |’ (y)| < Cy(y).

Proof :  We go over the proof of Corollary fj. The fact that E [max0<k<N ’)?tk — X{Z

"] = otz

is not a straightforward consequence of Theorem E anymore because we have introduced some changes in

15



our scheme. However, looking through the proof of the theorem, one can see that it is enough to prove the
following inequality : Vj € {0,..., N — 1}

2p

ti+1 "(Yy,) [t 7 ¢
\/i/ V{¥a)ds - (w(nm%ﬁ/t <W5—Wt,~>ds>w%>w <wm (0

J

When ¢ is finite, since - f:,”l ¥(Ys)ds is smaller than ¢(Y;,) = ©, we can remove the new cut-
off from the left hand side of ) and then proceed like in Theorem E When 1) = 400, on the event

(1/)(Yt].) + %}jﬁj) f:j”l (W — Wy, )ds) < @(Ytj), we recover our original scheme and we prove ([[7) like in

Theorem E Then, using the Gaussian arguments developed in the end of the proof of Theorem H, we control
the probability of the complementary event to conclude.

Now, what is left to prove is that assumption (Hﬂ) is satisfied. On the one hand, we have that

tg ty 4p
E [ max Sf,f’] = [k [ max (So +/ rSsds +/ f(Ys)Ss (des +4/1 - deBs)) 1
<k< 0 0

0<k<N

C <1 + /T E (S;*pa + f4p(Yt))) dt)
0
¢ (1 + "R VETT f4p<m>2>dt>

Thanks to assumption (H[LT]) and Lemma [, there exists C > 0 such that \/E (1 + f4(Y;))2) < C. Observe
that conditionally on (Y3):e0,77,

IN

IN

X~ N (log(SO) +p(F(Ye) = F(yo)) + /Ot h(Ys)ds, (1 p?) /Ot fQ(YS)dS) (18)
so, by Jensen’s inequality and assumption (HfL1])
E ( Sfp) — F (eSp(log<sO>+p<F<Yt>—F<yo>>+fg h(Ys)ds) 32p% (1-p%) f3 fZ(Ys)ds)
< E <espaog(so>+p(F<Yf,>—F(yo>>>% / ' et(Sph<Ys>+32p2<1p2>f2<Ys>)dS>
< CE (ec Supo<i<r lYtl”B) i

Using Lemma f, we deduce that E [maxongN Sfﬂ < oo.

On the other hand, using Cauchy-Schwartz inequality, we have that

k—1 k—1
apXy | _

[E{Og}czsze k} = E omax, exp dp | Xo + p(F(Yz,) — F(yo) JrZO(SNhYt Jrzox/

j j=

() [ R
X <¢(5/tj)+T/ (Ws = Wy,)ds | ANp(Ye,) Vb ABjyy
tj
< ENVEY
where

BV —F | max eSP(Xote(F ()~ Fluo)+ 5423 oxh(vz,))
0<k<N
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and

_ WP( t;) ot —~
BV | max eswl—pz il (wm )+ —5 f;“(ws—wtjms)Awmj)vaBM
N _
0<k<N

Using the same argument as before, we show that E{V < CE (ec StPoge<T ‘Ytllw) < 0.

Denote by D; = (Q/J(Y;:j) + %;ftj) f:jj“ (Wy — Wtj)ds) A ’L//J\(Y;gj) V9. Using Doob’s maximal inequality
for the positive submartingale (€4PV 1-p? X520 v DJ'ABJ'“) . (see Theorem 3.8 p. 13 of Karatzas and
0<k<N

Shreve [1991] for example), we also have that

EY < 4E (6817\/@ SN D ABHI)

N-—1
H e320°6n (1-p%)D;

< 4E max 632;02(1—/12)12(1/17)
o 0<k<N-1
By virtue of assumption (’H@), E‘év < 0o which concludes the proof. i

2 A second order weak scheme

Integrating the first stochastic differential equation in (H) gives

X = og(s0) + p(F(¥5) = Flw)) + | hVoyds+ VT=72 [ pvya, (19)

We are only left with an integral with respect to time which can be handled by the use of a trape-
zoidal scheme and a stochastic integral where the integrand is independent of the Brownian motion. Hence,
conditionally on (Y} ):e(o,77,

Xr ~ N (log(so) + p(F(Yr) = F(yo)) +mr, (1= p*)ur) (20)
where mp = fOT h(Y;)ds and v = fOT f?(Ys)ds. This suggests that, in order to properly approximate the

law of X7, one should accurately approximate the law of Y7 and carefully handle integrals with respect to
time of functions of the process (Y;)e[0,r). We thus define our weak scheme as follows

Weak_2 scheme |

—N =N _ _
Xy =log(so) + p(F(Y7) — F(yo)) + M7 + /(1 - p?)op G (21)
(Y )+h(Y Y +f2 vy —

where Mm% = 6y ]]cvol —( W+ ’”1), oy = oy ]]cvol Fe)+r ’““), (YN)o<k<N is the Ninomiya-

Victoir scheme of (Y;):eq0,1 and G is an mdependent centered reduced Gaussian random variable. Note

that, conditionally on (Yé\i)ogkgj\/’, Xév is also a Gaussian random variable with mean log(so) + p(F(YT) —
F(yo)) +m% and variance (1 — p?)o%.
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It is well known that the Ninomiya and Victoir [2008] scheme is of weak order two. For the sake of
completeness, we give its definition in our setting :

?(])V =Y N N
VO<k<N—-L1Y,  =exp(55V0)exp (Wi, —Wi)V)exp (55 V) (Vy,)

where Vp : @+ b(z) — 200’ (z) and V : z — o(z). The notation exp(tV)(z) stands for the solution, at time ¢
and starting from x, of the ODE #/(t) = V(n(t)). What is nice with our setting is that we are in dimension
one and thus such ODEs can be solved explicitly. Indeed, if ¢ is a primitive of % 2 C(t) = fot ﬁds, then

the solution writes as n(t) = ¢! (t + ((x)).

Note that our scheme can be seen as a splitting scheme for the SDE satisfied by
(Zt =X; — /)F(Y;:),Yt) :

dzy = h(Yp)dt+ /1 —p*f(Y:)dB; (22)
Y = b(Yy)dt + (Y)W,
The differential operator associated to (@) writes as
v o d(y)0*v  (1—p?) .5, 0%
Lo(zy) =hly) g, + g + 5" 52 5 " Wga = Lyv(zy) + Lzv(zy)

where Lyv(z,y) = b(y)g—; + 022(1’) giyg and Lzv(z,y) = h(y)3e + O_sz)fQ(y)%. One can check that our
scheme amounts to first integrate exactly £z over a half time step then apply the Ninomiya-Victoir scheme
to Ly over a time step and finally integrate exactly Lz over a half time step. According to results on
splitting (see Alfonsi [2009] or Tanaka and Kohatsu-Higa [2009] for example) one expects this scheme to
exhibit second order weak convergence. We will not use this point of view to prove our convergence result
stated in the next theorem, since we need to apply test functions with exponential growth to X7 to be able

to analyse weak convergence of the stock price.

Theorem 12 — Suppose that p € (—1,1). If the following assumptions hold

(H12) b and o are respectively C* and C°, with bounded derivatives of any order greater or equal to 1.

(H13) h and f are C* and F is C®. The three functions are bounded together with all their derivatives.

(H14) >0

then, for any measurable function g verifying 3¢ > 0, u € [0,2) such that Vx € R, |g(x)| < cel*!”, there
exists C > 0 such that
—N C
(o) —£ (o) < 17
In terms of the asset price, we easily deduce the following corollary :
Corollary 13 — Under the assumptions of Theorem @, for any measurable function o verifying dc >
0, € [0,2) such that Yy > 0, |a(y)| < cel°8WI” | there exists C > 0 such that
—N C
E(a(ST)) — E (a(eXT ))’ < Nz

18



Proof of the theorem : The idea of the proof consists in conditioning by the Brownian motion which
drives the volatility process and then applying the weak error analysis of Talay and Tubaro [1990].

—N
As stated above, conditionally on (Wt)te[O,T]a both X7 and X, are Gaussian random variables and one
can easily show that

e == |E [g(Xr) — (X7

o los(s B )2 _ (z—log(s0)+pF (yo)—pF (Y7 ) —m})?

exp (7( log( o)+g€(_y(;)2)5f(YT) T) ) exp ( 2(1—p2)oY T T )

= /g(x)[E d
R

27r(1 — p?)ur 2m(1 — p2)oy

T

For z € R, denote by 7, the function
Yo : RXRxRL, — R

exp (7 (w—log(SO)JrQ/J(TEZZ%));pF(y)—m)Q)

27(1 — p?)v

(y,m,v)

so that e < [ g(x) ‘[E {%(YT,mT,UT) —m(?ﬁ,mg,ig)} ’ dx. Consequently, it is enough to show the
following intermediate result : 3C, K > 0 and p € N such that

Ve € R [E [V, mr,vor) 1o (73, w8, 0] | < o507 (1 + Jal?). (23)
We naturally consider the following 3-dimensional degenerate SDE:
dY; = o(Y)dW, +b(Y)dt; Yo =y
dm: = h(Yy)dt; mo=0 (24)
dve = fA2(Yi)dt; vy =0

Note that (7? , My, o) is close to the terminal value of the Ninomiya-Victoir scheme applied to this 3-

dimensional SDE. In order to prove (E), we need to analyse the dependence of the error on z and not only

on N. That is why we resume the error analysis of Ninomiya and Victoir [2008] in a more detailed fashion.
For z € R, let us define the function w, : [0,7] x R x R x R} — R by

Ug (ta y,m, ’U) =L |:’YI ((YTftv mr—t, UTft)(y1m7v)):|

where we denote by (Yr_g, mr—s, vr—s) @™ the solution at time T — ¢ of (24) starting from (y, m, v).

The remainder of the proof leans on the following lemmas. We will use the standard notation for
partial derivatives: for a multi-index a@ = (ay,...,aq) € N% d being a positive integer, we denote by
la| = a1 + -+ + aq its length and by 9, the differential operator 9% /o7 ... 95,

Lemma 14 — Under assumptions (H[13), (H[L3) and (H[}), we have that

i) ug is C3 with respect to the time variable and C5 with respect to the space variable. Moreover, it solves
the following PDE

Oy +Luy, = 0
(25)
uz(T,y,m,v) = u(y,m,v)
where L is the differential operator associated to @)
o?(y) 0%u ou ou 5, \Ou
Lu(y, m,v) = 2 02 +b(y)8_y + h(y)a—m +f (?J)%-
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i) For any multi-index o € N3 and integer | such that 21 + || < 6, there exists Ca, Kio > 0 and
(Pl Q1.a) € N2 such that

V(t,y,m,v) € [0,T] x D, yaéaauz(t,y, m, v)’ < Cl@e_Kl’“””Q (14 |x|Pbe) (1 4 |y|9e)

where Dy is the set R x tsupzeR |h )|, tsup,eg [h(2)|] x [t, t]. Note that 1 and ¢ are finite by
virtue of assumptions (H{13) and (H|14).

Lemma 15 — Under assumption (H[13),

—N|g
Vg € N, sup [E(‘YtNk

0<k<N

) < o0
Now, following the error analysis of Talay and Tubaro [1990], we write that

’[E [%(YT,mT,vT) — %(VT RS } ’ <

gl
s

k=0

[E—

’andV0<k<N

_N _ _
Wmm@iﬁ[%%nmwﬁﬂﬁﬁuwm%ﬂww)
) klf(Y)Jrf(Y )

h(Y ¢ )+h
mp =N Zk AR d o) = én > e ltl- - Using the Markov property for the
first term in the expectatlon and Taylor s formula together Wlth PDE (@) for the second, we get

—N __
nk(iﬁ) = ’IE |:¢I(tk+laytkamtkavé\£) (tk-‘rlaytkamtkavtk) 6N£uz(tk+laytkamtkavé\£)

5% N oony L 9P —N =N 2

*_E uib(thrlﬂYtkvmtkavtk) + ) ER = (t, Ytkvmtkavtk>(t — t)"dt

123
where
N,y 2Ny 9
=N, hY,, ")+ h(y iy + f*(y)
¢x(tk+17yamav>:[E lum(tk+layt1 y7m+5N¥vv+5N ( 2 ; ( )

Denote by I'y the function z — ug(tgr1,2,m + 5NM, v+ 5NM). Using Taylor’s formula we

can show that Vz € R,
2

y(2) = Ty (2) + 6Ty2(2) + 2Ty 5(2) + Fo()

where
y1(2) = ug(teyr, 2,m,v)

) = M i PO
Tys(2) = (h(z);h(y)) ZWZ; (beot, 2 m,0) + (f (Z);Lf (y)) c’?a:; (teon 2. m,0)
+2h(Z) i h(y) f2(Z) i fQ(y) 62“w (tk-i-lgz, m, 'U)

2 2 omov
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and

3 .-
Ro(z) = [0 x=t? gy ((%) 255 (12,2, + HEE0D 4 LELW)

2 2 3 2 2
n (f ()] (y)) Ly (tk+1’z’m_’_th(z);rh(y),v_i_tf ()] (y))

(26)

+

2 .
3 f2(z)'5f2(y)) (h(z);h(y)) a?:;gﬁz (tk+1’z’m_i_th(z)-;h(y),,v_i_tfz(z)—gfz(y))

2 9 2 - 2 2
43 <h<z>;h<y>) (f Gts <y>) Dus (tk+1,z,m+th<z>;h<y>,v+tf G <y>)>
So,

v Ny

o (trsr, y,m,v) = E [ry,l(?ﬁ ’y)} +OnE [Fy,g(ytl )] + %[E [ry,g(?jf ’y)} +E [RO(?ﬁ ’y)} (27)

b1 (tkt1,y,m,0) G2 (trt1,y,m,0) ¢a,3(tkt1,y,m,0)

With a slight abuse of notations, we define the first order differential operators Vy and V acting on C!
functions by Voé(z) = Vo(x)¢'(z) and VE(x) = V(2)¢' (z) for € € CH(R). We make the same expansions as
in Ninomiya and Victoir [2008] but with making the remainder terms explicit in order to check if they have
the good behavior with respect to . We can show after tedious but simple computations that

ON

Gz1(thg1,y,mv) = Tyai(y)+ > (V2Ly1(y) + 2Vol'y1(y))

52
+§N (4Vo Ty a(y) + 2VoV2Ly 1 (y) + 2V Vol a(y) + VAT, 1(y)) + E(Ri(y))

52
Gz2(thg1,y,mv) = OnLya(y) + 7N (V2Ty2(y) + 2VoTy 2(y)) + E (Ra(y))
O
bz 3(thg1,y,mv) = 7ry,3(y) +E(Rs(y))
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where
Ri(y) = fOJTN - 52 ‘/OBFy,l( s3VoWan Vo 5 Vo(y))dssdsadsy
+f0 51 52 083 054 . V6Fy,1(essveéTNVO(y))d36d35d34d53d82d81
+or OWSN 051 . V4V€)Fy71(€s4ve%NV°(y))d54d53d82d81
+% OWSN o VIV® Fy,l(eszvesTNvo(y))d&dSl
+ foJTN o Jo Vo'Ty,1(e*3¥0 (y))dsadsadsy + % fOSTN o Vo? V2T, 1 (e%2V° (y))dsads;
+% foSTN VoVAT 1 (e Y0 (y))ds1 + 67]\] fOSTN 051 Vo®Ty 1 (e%2Y0 (y))dsads:

2 SN 2 SN
0 [ VYT, (e Yo (y))dsy + 22 [12 VePTy (e Yo (y))dsy
(28)

m S1 6_
Ro(y) = on (fOZ Jo Vo’ Ty a(e32V0eWon Ve 2V0 (y))dsadsy
+f0 o IS VAT e (e s4veJTNV°(y))d54d53d52dsl
)
+5% foWJN Jo' VQVEJFW(@SZV@STNV” (v)dsadsy + fy > 5 Vo Lya(e™" (y))dsadsy

) )
Lo [ E VD, (e Vo (y))dsy 1235 [ VH2T, a(en Vo <y>>dsl>

R3(y) = (fo Vo' y3 SlVU@W&NV@%NVO(y))dsl +f0W5N 0Sl Vzry73(€s2ve%vvo(y))d32d31

_N
D, (e (y))dsl)

Putting all the terms together, one can check that

52
d)x (thrl , Yy, m, ’U) = Uy (thrl y Yy, m, ’U) + 5N£Uz (thrl , Yy, m, ’U) + %EQUI (thrlv Yy, m, ’U) + R(y)

where R(y) = E [RO( ) & Ry (y) + Ra(y) + R3(y)] Finally,

N-1
<N _N _N 1 bt 83 —N —
E [ (Ve ma vr) (P 7y S| < DS [ St Vo, mi o)t - t)dt| + |ROV,
k=0 tr

i

From Lemmas @ and , we deduce that there exists C1, K1 > 0 and p; € N such that

N—-1 1 tht1 83 ~ . o
2t Hi/t S Y o T — 1) dtH < 23 Cre” O (L4 [af™) (29)
k=0 k

On the other hand, a close look to (P§) and (R§) convinces us that the term E HR N)H is of order w5

and that it involves only derivatives of u, and of the coefficients of the SDE (@) So, thanks Lemmas B
and E, there exists Cy, Ko > 0 and ps € N such that
= —N 1 2
E[|RV))|] < 55 Coe 2 (1 + ) (30)
k=0
From (R9) and (BJ) we deduce the desired result (23) to conclude.
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Remark 16 —

e The theorem does not cover the case of perfectly correlated or uncorrelated stock and volatility which is
not very interesting from a practical point of view.

o As for plain vanilla options pricing, observe that, by the Romano and Touzi [1997] formula,

—r _ m (1—p2)w . 1— p2 .
E (e a(Sr)|(Ye)iep,r)) = BSa.r (soep(F(YT) Fyo))tmr+(T—gp - —n)T ( z ) )

where BSq 1(s,v) stands for the price of a European option with pay-off o and maturity T in the Black
& Scholes model with initial stock price s, volatility \/v and constant interest rate r. When, like for
a call or a put option, BSy 1 is available in a closed form, one should approximate E (e_TTa(ST)) by

M _N,i —N,i
1 —N,i Ny, (=D (1 — p2)’U o’
_ E p(F(Y 7 )=F(yo))+myp ' +(——t—-r)T \= F J°T
i 2 BSQ,T (Soe T 0 T T R T

where M is the total number of Monte Carlo samples and the index i refers to independent draws.

Indeed, the conditioning provides a variance reduction. We also note that what is most important is to
have a scheme with a high order weak convergence on the triplet (Y, ms,vs)epo,r] solution of the SDE
(2]), which is the case for our scheme.

e In the special_case of an Ornstein-Uhlenbeck process driving the wvolatility (i.e (Yi)icjo,1) is solution
of the SDE @), one should replace the Ninomiya-Victoir scheme by the true solution. We can
then prove more easily the same weak convergence result: at step @) of the preceding proof, we
apply Ité’s formula instead of carrying out the Ninomiya-Victoir expansion. Moreover, we can prove,
following the same error analysis, that the OU_Improved scheme also exhibits a second order weak
convergence property. Better still, it achieves a weak trajectorial convergence of order % on the triplet

(Yi, M4, 0t )seo,m) which allows for a significant improvement of the multilevel Monte Carlo method, as

we shall check numerically.

3 Numerical results

For numerical computations, we are going to consider Scott’s model (E) We use the same set of param-
eters as in Kahl and Jéckel [2006] : So = 100, = 0.05,7 = 1,09 = 0.25,y0 = 0,k = 1,0 = 0,v = 72—\{)5,p =
—0.2 and f : y — ogel.

We are going to compare our schemes (WeakTraj_1, Weak_2 and OU_Improved) to the Euler scheme with
exact simulation of the volatility (hereafter denoted Euler), the Kahl and Jéckel [2006] scheme (IJK) and
the Cruzeiro et al. [2004] scheme (CMT).

3.1 Numerical illustration of strong convergence properties

In order to illustrate the strong convergence rate of a discretization scheme XN , we consider the squared
L?-norm of the supremum of the difference between the scheme with time step % and the one with time

step % :

E | max ’XthXfN
0<k<N k k

l (31)

This quantity will exhibit the same asymptotic behavior with respect to N as the squared L?-norm of
the difference between the scheme with time step % and the limiting process towards which it converges (see
Alfonsi [2005]).
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In Figure , we draw the logarithm of the Monte Carlo estimation of (@) as a function of the logarithm of
the number of time steps. The number of Monte Carlo samples used is equal to M = 10000 and the number

of discretization steps is a power of 2 varying from 2 to 256. We also consider the strong convergence of the
Ry oRN)?
etk — etk

schemes on the asset itself (see Figure fl) by computing E {max0<k< N

The slopes of the regression lines are reported in Table . We see that, both for the logarithm of the
asset and for the asset itself, all the schemes exhibit a strong convergence of order % Our schemes only have
a better constant.

g e
-0+ @ 0
_||®---® weakTraj_1 _| |@---® WeakTraj_1
>--< Weak_2 . N >--< Weak_2
-10 -+
| pk---=k OU_Improved *\\‘ \\\& ¢ | pk--=k OU_Improved
Ak A--AK
-1 o -2
BB Euler g gAY B---® Euler
X emt e KXt
-1 T T T T T T T T T T e T T T T T T T T T T
05 10 15 20 25 30 35 40 45 50 55 60 05 10 15 20 25 30 35 40 45 50 55
Figure 1: Strong convergence on the log-asset Figure 2: Strong convergence on the asset

WeakTraj-1 | Weak 2 | OU_Improved | IJK | CMT | Euler
Log-asset -1.01 -0.88 -0.94 -0.92 | -0.98 | -0.84
Asset -1.01 -0.91 -0.95 -0.88 | -0.95 | -0.85

Table 1: Slopes of the regression lines (Strong convergence)

3.1.1 Weak trajectorial convergence

Nevertheless, as explained in Remark E, for the scheme with time step %, one can replace the increments
of the Brownian motion (Bj)c[o,r) by a sequence of Gaussian random variables smartly constructed from
the scheme with time step ﬁ This particular coupling is possible whenever the independence structure
between (Bt)seqo, 7] and (Y:)ie[o, 1) is preserved by the discretization of the latter process, which is the case for
all the schemes but the CMT scheme. So we carry out this coupling and we repeat the preceding numerical
experiment. The results are put together in Figures H and @ and in Table E

As expected, we see that the WeakTraj_1 and the OU_Improved schemes exhibit a first order convergence
rate whereas the other schemes exhibit a % order convergence rate. Note that the CMT scheme has a weak
trajectorial convergence of order one but it is much more difficult to implement the coupling for which the
convergence order is indeed equal to one.
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Figure 3: Weak trajectorial convergence

log-asset (wit

3.1.2 Convergence at terminal time

We consider now convergence at terminal time, precisely the squared L?-norm of the difference between

T T
0 25 3.0

h coupling)

T T T T
35 4.0 45

5.0

55 6.0

on the

[®—@ WeakTraj_1 (C)
>—< Weak_2 (C)
pk—¥ OU_Improved (C)

A—A 13K (©)
B—® Euler (C)

-10 T T
0.5 1.0

15

T
2.0

T T
25 3.0

T
35

4.0

T T T
45 5.0 55

Figure 4: Weak trajectorial convergence on the
asset (with coupling)

WeakTraj-1 | Weak 2 | OU_Improved | IJK | CMT | Euler
Log-asset -1.92 -0.91 -1.99 -0.95 - -0.85
Asset -1.92 -0.95 -2 -0.91 - -0.87

Table 2: Slopes of the regression lines (Weak trajectorial convergence)

the terminal values of the schemes with time steps % and % :

Note that we introduce a coupling : we write the schemes straight at the terminal time as we did for the
Weak_2 scheme (see (RI])) and we generate the terminal values of the schemes with time steps £
using the same single normal random variable to simulate the stochastic integral w.r.t. (Bt)iefo,r). Once
again, it is possible to proceed alike for all the schemes but the CMT scheme. For the latter, we simulate

~ ~ 2
E UX;VX%N ] .

(32)

T
and 5

the scheme at all the intermediate discretization times to obtain the value at terminal time.

We also consider the convergence at terminal time of the asset itself. We report the numerical results in
Figures E and E and give the slopes of the regression lines in Table E

We observe that, as stated in Remark E, the OU_Improved scheme exhibits a convergence rate of order %,
outperforming all the other schemes. As previously, the WeakTrak_1 scheme exhibits a first order convergence

WeakTraj-1 | Weak 2 | OU_Improved | IJK | CMT | Euler
Log-asset -2.03 -2 -2.97 -1.97 | -1.05 | -1.34
Asset -2.02 -1.98 -2.97 -1.95 | -1.08 | -1.34

Table 3: Slopes of the regression lines (Convergence at terminal time)
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Figure 5: Convergence at terminal time for the

log-asset

rate. Note also that this new coupling at terminal time improved the convergence rate of the Weak_2 and
the IJK schemes up to order one and, surprisingly, it improved the convergence rate of the Euler scheme up

[®—@ WeakTraj_1 (C)

[G—=< Weak_2 (C)

pk—¥ OU_Improved (C)
JA—A K (©)

—141 —® Euler (C)

AP---Xemr

-16 T T T T T T
0.5 1.0 15 2.0 25 3.0 35

Figure 6: Convergence at terminal time for the

asset

to an order strictly greater than the expected %, approximately 0.67.

3.2 Standard call pricing

3.2.1 Numerical illustration of weak convergence

We compute the price of a call option with strike K = 100 and maturity 7' = 1. For all the schemes but

T T T T
4.0 45 5.0 55

the CMT scheme, we use the conditioning variance reduction technique presented in Remark E

In Figure E, we draw the price as a function of the number of time steps for each scheme and in Figure
E we draw the logarithm of the pricing error : log (|Pexact — Py

steps.

We see that, as expected, the Weak_2 scheme and the OU_Improved scheme exhibit a weak convergence
of order two and converge much faster than the others. The weak scheme already gives an accurate price
with only four time steps. The WeakTraj_1 scheme has a weak convergence of order one like the Euler and
the IJK scheme, but it has a greater leading error term. Fortunately, its better strong convergence properties

scheme

enable it to catch up with the multilevel Monte Carlo method as we will see hereafter.

Finally, note that the weak scheme does not require the simulation of additional terms when compared
to the Euler or the IJK schemes. Combined with its second order weak convergence order, this makes the

Weak_2 scheme very competitive for the pricing of plain vanilla European option.

3.2.2 Multilevel monte carlo

Let us now apply the multilevel Monte Carlo method of Giles [2008b] to compute the Call price. As
previously, we consider the schemes straight at the terminal time and use a conditioning variance reduction
technique. We give the CPU time as a function of the root mean square error in Figure ] (see Giles [2008b]

for details on the heuristic numerical algorithm which is used).
We observe that both the Weak_2 and the OU_Improved scheme are great time-savers. For the OU_Improved

scheme, the effect coming from its good strong convergence properties is somewhat offset by the additional
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by a multilevel Monte Carlo with an accuracy of 5bp, as a function of the logarithm of the number of times
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Figure 7: Convergence of the call price with re-

spect to N

terms it requires to simulate. We can see nevertheless that it is going to overcome the Weak_2 scheme for
bigger accuracy levels.
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Figure 9: Multilevel Monte Carlo method for a Call option using different schemes

3.3 Lookback option pricing and multilevel Monte Carlo

Finally, we consider an example of path-dependent option pricing : the Lookback option. More precisely,
we compute the price of the option whose pay-off is equal to S7 — mins¢[o 77 St-
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In order to take full advantage of the good convergence properties of our schemes, we approximate the
minimum of the scheme by the minimum of a drifted Brownian motion. This is similar to what is done in
Giles [20084q].

More precisely, for the WeakTraj_1 scheme, consider the interval [k%, (k + 1)%]

Scheme with time step dop :
We approximate min, ¢, 7 41y 7] St by may Aman,, where, V0 < j < 2N —1,

~ ~ 2 ~
1 X2N X2N 2X2N T
~on _ 1 o e2N ok qe2N _ L €2 (v
my =g |e iTN +S(j+1)§v \/<e igN S(J'Jrl)ﬁv) 2¢ JIn f (Y z?v)QNln(U)

. 2
where S i]\{)w = ¢ IaN (1 +ray + (Y x) (p(W(j-H)% — W,z )+ 1= p*(Byiyz — Bj%))) and
(Uj)o<j<an—1 is an independent sequence of independent random variable uniformly distributed.

Scheme with time step dy :
~N

According to Remark E is computed using the Brownian increment ABk ',1 given by a linear com-

tht
bination of (B(2k+1)% = Bz, Bz — B(%H)%) (see ([Ld)). Now, to prevent bias, we are going to
52N of some Euler scheme S¢?Y like in the

approximate minte[k%ﬁ(,ﬁl)%] St by the minimum ming, 4, .

scheme with time step do. To remain consistent, we have to choose

=~N

e, T / D
St;jr]lv - th (1 + TN + f(Yk%) (p(Wtk+1 - Wtk) + 1- pQABl]cVJrl))

In order to ensure a good strong couphng with the scheme with time step Jon, we need to compute

~2N
the intermediate value Séiil)% = e*u <1 +r& + f(Yyz) < Whpr — W) + /1 = AB%H)) us-

x2N ~
ing some Brownian increment AB,; ., as close as possible to By, 1y — Bz but such that ABY,, —
~2N ~2N ~2N
AB%H is independent of AB%H and distributed according to NV(0, 5x:). Choosing ABy, ., of the form
“( (k1) 5 k1>+b( <k+1)1_B<2k+1)l> - =2N
S = - =~ and maximizing Cov { ABy; 1, Bgpy1y 2 — Bz | = T leads
to a=v3Y + v, and b= 3., — v3 (see Remark [ for the definition of v?V).
Finally, we approximate min, ¢,z (x41y7)5: by my Ay, where
L[ 5 r ek r
~N _ 1 k Qe2N k e,2N _ ) _
"k =g METCHSIE S (e S<2k+1>2w) 207N A (Yig ) gy Uan)

and

1~ - ~ = 2 Xo T T
~ N e, 2N e, 2N e,2N e,2N 2X
M = 5 | Sorym %%z ~ \/(S(Qk-i-l)% - S(k-ﬁ-l)%) —2¢7 K f2(Yyz) o (Uzk+1)

The numerical results we obtain are very satisfactory. In figure @, we draw the CPU time times the
mean square error against the root mean square error. We see that our schemes perform much better than
the others.
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Figure 10: Multilevel Monte Carlo method for a Lookback option using different schemes.

4 Conclusion

In this article, we have capitalized on the particular structure of stochastic volatility models to propose
and discuss two simple and yet competitive discretization schemes. The first one exhibits first order weak
trajectorial convergence and has the advantage of improving multilevel Monte Carlo methods for the pricing
of path dependent options. The second one is rather useful for pricing European options since it has a second
order weak convergence rate.

We have also focused on the special case of an Ornstein-Uhlenbeck process driving the volatility, which
encompasses many stochastic volatility models such as the Scott’s [1987] model or the quadratic Gaussian
model. Then, the convergence properties of the previous schemes are preserved when simulating (Y;)o<i<T
exactly. We have also proposed an improved scheme exhibiting both weak trajectorial convergence of order
one and weak convergence of order two.

The numerical experiments show that our schemes are very competitive for the pricing of plain vanilla
and path-dependent options. Their use with multilevel Monte Carlo gives satisfactory results too. We should
also mention that the main purpose of our study was the convergence order with respect to the time step.
It would be of great interest to carry out an extensive numerical study of the computational complexity of
the schemes presented in this paper. This will be the subject of future research.
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5 Appendix

5.1 Proof of Lemma J

We first suppose that p = 1. According to Theorem 5.2 page 72 of Milstein [1995], it suffices to check
that there exists a positive constant C' independent of NV such that

IN

‘[E (Y(;N f?f;fv)’ o
‘[E ((K;N —722)2) f cos, (33)

()] s

IN

First note that
N 6]\] 6]\] S 1
Y5y — Y5, = / b(Ys) — b(yo)ds —|—/ (/ (bo’ + 5020”)(K)dr + (o0’ (Y,) — aa'(yo))dWT) dWs
0 0 0

Thanks to It6’s formula and to assumption (#[]), we have that

/OM /0 E ((bb’ + %b”&)(m) drds

6]\] S

C’/ /C(1+[E(|YT|2))drds
o Jo

< 08

o7 -

IN
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Using assumptions (Hf) and (Hff), we also have Vp > 1

—N |2p on >
£ (v -70[") < || [ 0 - stes
2p
( (bo’ + aa "N(Y,)dr + (o0’ (V) — aa’(yo))dWT> AWy
< ot g [ () b)) s
1 o
+CoR 1/0 E /0 (bo’ + 500”)()@)(# + (00’ (Y,) — o0’ (yo))dW, ds
N N s 1 2p
< C 5]25)_1/ spds—l—&f\,_l/ s2p—1/ E ’(bo’+§aa")(YT) dr ds
0 0 0
51\7 S 9
+5’;V71/ spfl/ E (|O’OJ(K~> — o’ (yo)] p) drds
0 0
< ooy

This implies both the second and the third inequality of () This estimation is also sufficient to extend
the result of Milstein [1995] to the L?” norm and conclude the proof.

5.2 Proof of Lemma f§

One can easily check that (Y;)o<¢<r is a Gaussian process which has the same distribution law as the
—rt
process (yoe " +0(1 — e ") + v Weant _1)o<t<T- SO,

[E(ecls“POStSTlchz) = [E(GCISUP“SfSTy"e O R W IHCQ)

IN

1
CE (cCsmmocrca Woaee1 1)

Since supg<i<e2sr_g |[Wy| = (supogtgezm_l Wt) \Y (f infocyceonr_q Wt), we deduce from the symmetry prop-
erty of the Brownian motion that

1
E (et mpusean 72

IN

CE (60\ SUPg< <ozt g Wil 72 + Clinfoc,cean s Wt‘ch)

< 2CE (60\ SUPo<i<e2rT 1 thﬁcz)

2
The probability density function of supy<;<7 Wt is equal to y — 4/ %e‘g_T T¢y>0y (see for example problem
8.2 p. 96 of Karatzas and Shreve [1991]) which permits to conclude.

5.3 Proof of Lemma [4

The first point is an obvious consequence of the Feynman-Kac theorem. In order to prove the second
one, let us first check the following result :

For any multi-index 8 € N3 such that 3; < 6, 3Cg,Kg > 0 and pg € N such that

34
Wy m.v) € Dry 19ya(ysm,0)] < Coe=Ka (14 2P (34
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Indeed, using Leibniz’s formula, one can show that 037, (y, m,v) can be written as a weighted sum of terms
of the form

(z —log(so) + pF(yo) — pF(y) —m)*> (z —log(s0) + pF(yo) — pF(y) —m)* i
o= g(s0 pvklyfé pF(y exp< g(so 251—11,2) p )HaF<

where k = (ki, k2, k3) belongs to a finit set I C N* and (a;)o<i<k, are constants taking value in {0,1}.
Using assumption () and (H@) and Young’s inequality, we show that 3C%, Ky > 0 and pr € N such
that (x| < Cre=5#*"(1 + |2|P*) which yields the desired result.

Now, let us fix @ € N3,1 € N such that 2/ + |a| < 6 and (¢,y,m,v) € [0,T] x D;. Thanks to PDE (£4),
0Ly (t,y,m,v) = (—=1)!'0aLlu,(t,y,m,v). One can check that the right hand side is equal to a weighted
sum of terms of the form g, uy (t,y, m,v) X 7, (b, o, f, h) where 31 € N? is multi-index belonging to a finite
set I! 15 D2 is a suffix belonging to a finite set I? 1 and mg, (b0, f,h) is a product of terms involving the
funct1ons b,o, f, h and their derivatives up to order 4.

On the first hand, assumptions (#f1d) and (#[L3) yield that 3¢j, > 0 and ¢ € N such that

VB2 € 12, T, (b0, foh)| < cf o(1+ [y|%=). (35)

On the other hand, by inverting expectation and differentiations, we see that ds, us(t,y, m,v) is equal
to the expectation of a product between derivatives of the flow (y,m,v) = (Yr_s, mp_s,vr_s) ™% and
derivatives of the function v, evaluated at (Yp_;, mp—_q, vT,t)(yvm*”) € Dr. Using result (@) and the fact
that, under assumptions (H[[2) and (H[LJ), the derivatives of the flow satisfy a system of SDEs with Lipschitz
continuous coefficients (see for example Kunita [1984]) we show that ﬂcll’a, Ko > 0 and p;, € N such that

V81 € I 1, |9, ua(t, yom, 0)| < cf e K0T (1 [P, (36)

Gathering (Bg) and (Bg) enables us to conclude.

5.4 Proof of Lemma [§
Making the link between ODEs and SDEs (see Doss [1977]), one can check that (YN, . ,YN ) has the

same distribution law as (Ygtl, . Ygt ~ ) where (Yt)te[o 27 is solution of the following inhomogeneous SDE

thy0+f0 SY ds+f0_sY)dW with,
Y(s,y) € [0,27T] x R,

N-1
1 , 4k + 1T (4k +3)T
] ) - o) itse U | |
b(S, y) = 1 2 k=0 2N 2N
7500' (v) otherwise

and

(4 nTr (4 T
0 1fs€U{ kot (k2—|]—v3)]

a(s,y) =

o(y) otherw1se

Since these coefficient have a uniform in time linear growth in the spatial variable, one easily concludes.
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