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High order discretization schemes for stochastic volatility models

Benjamin Jourdain1 and Mohamed Sbai 1

Abstract

In usual stochastic volatility models, the process driving the volatility of the asset price evolves accord-
ing to an autonomous one-dimensional stochastic differential equation. We assume that the coefficients
of this equation are smooth. Using Itô’s formula, we get rid, in the asset price dynamics, of the stochastic
integral with respect to the Brownian motion driving this SDE. Taking advantage of this structure, we
propose

- a scheme, based on the Milstein discretization of this SDE, with order one of weak trajectorial
convergence for the asset price,

- a scheme, based on the Ninomiya-Victoir discretization of this SDE, with order two of weak con-
vergence for the asset price.

We also propose a specific scheme with improved convergence properties when the volatility of the
asset price is driven by an Orstein-Uhlenbeck process. We confirm the theoretical rates of convergence
by numerical experiments and show that our schemes are well adapted to the multilevel Monte Carlo
method introduced by Giles [2008a,b].

Introduction

There exists an extensive literature on numerical integration schemes for stochastic differential equations.
To start with, we mention, among many others, the work of Talay and Tubaro [1990] who first established
an expansion of the weak error of the Euler scheme for polynomially growing functions allowing for the use
of Romberg extrapolation. Bally and Talay [1996] extended this result to bounded measurable functions and
Guyon [2006] extended it to tempered stable distributions. More recently, many discretization schemes of
higher weak convergence order have appeared in the literature. Among others, we cite the work of Kusuoka
[2001, 2004], the Ninomiya and Victoir [2008] scheme which we will use hereafter, the Ninomiya and Ninomiya
[2009] scheme and the scheme based on cubature on Wiener spaces of Lyons and Victoir [2004].
Concerning strong approximation, the Milstein scheme has order one of strong convergence. Unfortunately,
it involves the simulation of iterated Brownian integrals unless a restrictive commutativity condition is
satisfied. Under ellipticity, Cruzeiro et al. [2004] have recently proposed a discretization scheme which gets
rid of these iterated integrals and has nice strong convergence properties. More precisely, for each number of
time steps, there exists a Brownian motion different from the one giving the Brownian increments involved
in the scheme such that the strong error between the scheme and the stochastic differential equation driven
by this new Brownian motion is of order one. We call such a property weak trajectorial convergence of order
one. Weak trajectorial error estimation is exactly what is needed to control the discretization bias for the
computation of path dependent option prices.
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Stochastic volatility models, which have now become a standard of the market, are an eloquent example of
the use of stochastic differential equations in finance. In our study, we will consider the following specification
of a stochastic volatility model for an asset (St)t∈[0,T ] :

{
dSt = rStdt+ f(Yt)St(ρdWt +

√
1 − ρ2dBt); S0 = s0 > 0

dYt = b(Yt)dt+ σ(Yt)dWt; Y0 = y0
(1)

where r the instantaneous interest rate, (Bt)t∈[0,T ] and (Wt)t∈[0,T ] are independent standard one-dimensional
Brownian motions, ρ ∈ [−1, 1] is the correlation between the Brownian motions respectively driving the asset
price and the process (Yt)t∈[0,T ] which solves a one-dimensional autonomous stochastic differential equation.
The volatility process is (f(Yt))t∈[0,T ] where the transformation function f is usually taken positive and
strictly monotonic in order to ensure that the effective correlation between the stock price and the volatility
keeps the same sign (the function σ usually takes nonnegative values). This specification nests almost all
the known stochastic volatility models :

• Hull&White model [Hull and White, 1987] (ρ = 0) and Wiggins [1987] (ρ 6= 0)

{
dSt = rStdt+

√
YtSt(ρdWt +

√
1 − ρ2dBt)

dYt = µYtdt+ ζYtdWt

which can be expressed as (1) with f(y) =
√
y, b(y) = µy and σ(y) = ζy. Note that it can also be seen

as (1) with f(y) = ey, b(y) = µ
2 − ζ2

4 and σ(y) = ζ
2 .

• Scott’s model [Scott, 1987] which generalizes Hull&White model

{
dSt = rStdt+ eYtSt(ρdWt +

√
1 − ρ2dBt)

dYt = κ(θ − Yt)dt+ νdWt

⇒ f(y) = ey, b(y) = κ(θ − y) and σ(y) = ν.

(2)

• Stein&Stein [Stein and Stein, 1991]

{
dSt = rStdt+ YtSt(ρdWt +

√
1 − ρ2dBt)

dYt = κ(θ − Yt)dt+ νdWt

⇒ f(y) = y, b(y) = κ(θ − y) and σ(y) = ν.

• Quadratic Gaussian model

{
dSt = rStdt+ Y 2

t St(ρdWt +
√

1 − ρ2dBt)

dYt = κ(θ − Yt)dt+ νdWt

⇒ f(y) = y2, b(y) = κ(θ − y) and σ(y) = ν.

• Heston model [Heston, 1993]

{
dSt = rStdt+

√
YtSt(ρdWt +

√
1 − ρ2dBt)

dYt = κ(θ − Yt)dt+ ν
√
YtdWt

⇒ f(y) =
√
y, b(y) = κ(θ − y) and σ(y) = ν

√
y.
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In all but the last examples, the volatility of the asset is driven by an Ornstein Uhlenbeck process.
The development of specific discretization schemes for stochastic volatility models has only received little

attention. We mention nevertheless the work of Kahl and Jäckel [2006] who discussed various numerical
integration methods and proposed a simple scheme with order 1/2 of strong convergence like the standard
Euler scheme but with a smaller multiplicative constant. Also the numerical integration of the CIR process
and of the Heston model received a particular attention because of the inadequacy of the Euler scheme due
to the fact that both f and σ are equal to the square root function (see for example Deelstra and Delbaen
[1998], Alfonsi [2005], Kahl and Schurz [2006], Andersen [2007], Berkaoui et al. [2008], Ninomiya and Victoir
[2008], Lord et al. [2008], Alfonsi [2009]). An exact simulation technique for the Heston model was also
proposed by Broadie and Kaya [2006].

In the present paper, we assume in return that the functions f , σ and b are smooth and do not deal with
the Heston model. Our aim is to take advantage of the structure of (1) to construct and analyse simple and
robust ad’hoc discretization schemes which have nice convergence properties.

For a start, we make a logarithmic change of variables for the asset : (Xt = log (St) , Yt)t∈[0,T ] solves
{

dXt = (r − 1

2
f2(Yt))dt+ f(Yt)(ρdWt +

√
1 − ρ2dBt); X0 = log(s0).

dYt = b(Yt)dt+ σ(Yt)dWt; Y0 = y0
(3)

Our main idea is to get rid in this equation of the stochastic integral involving the common Brownian
motion (Wt)t∈[0,T ]. In all what follows, we assume that

(A) f and σ are C1 functions and σ > 0.

One can then define the primitive F (y) =
∫ y
0
f
σ (z)dz and apply Itô’s formula to get

dF (Yt) =
f

σ
(Yt)dYt +

1

2
(σf ′ − fσ′)(Yt)dt.

Therefore (Xt, Yt)t∈[0,T ] solves
{
dXt = ρdF (Yt) + h(Yt)dt+

√
1 − ρ2f(Yt)dBt

dYt = b(Yt)dt+ σ(Yt)dWt

(4)

where h : y 7→ r− 1
2f

2(y)−ρ( bσ f+ 1
2 (σf ′−fσ′))(y). We recall that usual weak convergence is the right notion

to analyse the discretization bias for plain vanilla options whereas weak trajectorial convergence permits
to deal with path-dependent options. The first section of the paper is devoted to path-dependent options.
Combining the Milstein discretization of the one-dimensional SDE satisfied by (Yt)t∈[0,T ] with an appropriate

discretization of the integral
∫ t
0 f(Ys)dBs based on the independence of (Yt)t∈[0,T ] and (Bt)t∈[0,T ], we obtain

a scheme with order one of weak trajectorial convergence. In the second section, using the Ninomiya-Victoir
discretization of the SDE satisfied by (Yt)t∈[0,T ], we construct a scheme with order two of weak convergence.
The last section is devoted to numerical experiments which confirm the theoretical rates of convergence.
We also show that our schemes are well adapted to the multilevel Monte Carlo method introduced by Giles
[2008a,b].

Notations

We will consider, for a number of time steps N ≥ 1, the uniform subdivision
∏
N = {0 = t0 < t1 < · · · <

tN = T } of [0, T ] with the discretization step δN = T
N .

We denote by ψ the greatest lower bound of the function ψ : y 7→ f2(y) and by ψ its lowest upper bound.
We also introduce the following notation :

ψ̂(y) =





3
2f

2(y) if ψ = ∞

ψ otherwise
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1 An efficient scheme for path dependent options pricing

Building a first order strong convergence scheme for a two dimensional SDE is not an obvious task. Even
the ad’hoc schemes provided by Kahl and Jäckel [2006] exhibit a strong convergence of order 1

2 .
Actually, the natural candidate for this purpose is the Milstein scheme. Unfortunately, the commutativity

condition which permits to implement it amounts to σf ′ = 0 in our setting. This condition is typically true
when either f is constant or σ = 0. Both cases are of no practical interest since they lead to a deterministic
volatility.

However, since the inherent Brownian motion is not essential for applications in finance, the usual strong
convergence criterion is not adapted for estimating the error of a scheme in pricing a path dependent option.
What is more relevant is the approximation in law of the whole trajectory of the process considered for
instance by Cruzeiro et al. [2004]. Using an ingenious rotation of the Brownian motion, these authors have
constructed a discretization scheme allowing for a weak convergence on the whole trajectory of order one
which avoids the simulation of the iterated stochastic integrals.

For the SDE (3), the discretization scheme of Cruzeiro, Malliavin and Thalmaier writes as

XCMT
tk+1

= XCMT
tk

+

(
r − f2(Y CMT

tk
)

2

)
δN + ρf(Y CMT

tk
)∆Wk+1 + ρ

2σf
′(Y CMT

tk
)∆W 2

k+1

+
√

1 − ρ2σf ′(Y CMT
tk )∆Wk+1∆Bk+1 +

√
1 − ρ2f(Y CMT

tk )∆Bk+1 − ρ
2σf

′(Y CMT
tk )∆B2

k+1

Y CMT
tk+1

= Y CMT
tk

+
(
b(Y CMT

tk
) + 1

2 (σ
2f ′

f − σσ′)(Y CMT
tk

)
)
δN + σ(Y CMT

tk
)∆Wk+1

+ 1
2σσ

′(Y CMT
tk )∆W 2

k+1 − σ2f ′

2f ∆B2
k+1

(5)

where ∆Wtk+1
= Wtk+1

−Wtk and ∆Bk+1 = Btk+1
−Btk correspond to the Brownian increments.

We set out to construct a much simpler scheme having the same order of weak trajectorial convergence
by taking advantage of the particular structure of the SDE defining stochastic volatility models. We first
begin with the general case of any process (Yt)t∈[0,T ] driving the volatility and then consider the case of an
Orstein-Uhlenbeck process where we obtain more precise results.

1.1 General case

To start with, consider the Milstein scheme of Y :

∀0 ≤ k ≤ N − 1, Y
N

tk+1
= Y

N

tk
+ b(Y

N

tk
)δN + σ(Y

N

tk
)∆Wk+1 +

1

2
σσ′(Y

N

tk
)
(
∆W 2

k+1 − δN
)
; Y

N

t0 = y0.

Our scheme writes as follows

WeakTraj 1 scheme

X̃N
tk+1

= X̃N
tk

+ ρ
(
F (Y

N

tk+1
) − F (Y

N

tk
)
)

+ δNh(Y
N

tk
)

+
√

1 − ρ2

√√√√
(
ψ(Y

N

tk
) +

σψ′(Y
N

tk
)

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∨ ψ ∆Bk+1

(6)

Note that in order to implement this scheme, one needs to simulate both the Brownian increment ∆Wk+1

and the random variable
∫ tk+1

tk
(Ws −Wtk)ds. This is straightforward as one can easily check that




∆Wk+1∫ tk+1

tk

(Ws −Wtk)ds


 ∼ N

((
0

0

)
,

(
δN δ2N/2

δ2N/2 δ3N/3

))
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It is well known that the Milstein scheme exhibits a strong convergence of order one (see Milstein [1995]).
For the sake of completeness, we mention the assumptions under which this result holds true in our setting
and postpone the proof to the appendix.

Lemma 1 — Suppose that

(H1) b and σ are C2 functions with bounded first and second derivatives

(H2) there exist a positive constant K such that ∀(x, y) ∈ R2

|σσ′(x) − σσ′(y)| ≤ K|x− y|

then, ∀p ≥ 1, there exists a positive constant Cp independent of N such thatE( max
0≤k≤N

∣∣∣Ytk − Y
N

tk

∣∣∣
2p
)

≤ Cpδ
2p
N .

As mentioned above, we are interested in a result of weak convergence on the whole trajectory. So we
first construct a coupling which will enable us to control the error :

Lemma 2 — The vector (X̃t0 , . . . , X̃tN ) defined by

X̃t0 = Xt0

∀0 ≤ k ≤ N − 1, X̃tk+1
= X̃tk + ρ(F (Ytk+1

) − F (Ytk)) +

∫ tk+1

tk

h(Ys)ds+

√
1 − ρ2

δN

∫ tk+1

tk

ψ(Ys)ds∆Bk+1

has the same law than (Xt0 , . . . , XtN ).

Proof : The proof is elementary. Conditionally on Y , the two vectors are Gaussian vectors with the
same mean and covariance matrix. 2

We can now state our first main result :

Theorem 3 — Under the assumptions of Lemma 1 and if

(H3) f and σ are C3 functions, f
σ and ff ′ are bounded

(H4) ψ > 0

(H5) there exists a constant K1 such that, ∀(x, y) ∈ R2,

∣∣∣(bh′ +
σ2

2
h′′)(y)

∣∣∣ ≤ K1(1 + |y|)
∣∣σh′(y)

∣∣ ≤ K1(1 + |y|)
∣∣∣h(y) − h(x)

∣∣∣ ≤ K1|y − x|

(H6) there exists a constant K2 such that, ∀(x, y) ∈ R2,

∣∣∣(bψ′ +
σ2

2
ψ′′)(y)

∣∣∣ ≤ K2(1 + |y|)
∣∣σψ′(y) − σψ′(x)

∣∣ ≤ K2|y − x|
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then the WeakTraj 1 scheme has order one of weak trajectorial convergence. More precisely, for each p ≥ 1,
there exists a constant C independent of the number of time steps N such thatE [ max

0≤k≤N

∣∣∣
∣∣∣
(
X̃tk , Ytk

)
−
(
X̃N
tk
, Y

N

tk

) ∣∣∣
∣∣∣
2p
]
≤ C

N2p
.

Remark 4 — Before giving the proof, we make a few comments on the assumptions of the theorem. (H3)
implies that h and ψ are C2 functions which was implicitly assumed in (H5) and (H6). These latter assump-
tions are expressed in a reduced form. One can check that the following conditions on the coefficients of the
original SDE are sufficient for them to hold :

• f and σ are bounded C4 functions with bounded derivatives.

• b is a bounded C3 function with bounded derivatives.

• ∃σ0 > 0 such that ∀y ∈ R, σ(y) ≥ σ0.

Proof : Throughout the proof, we denote by C a constant which can change from one line to another
while always being independent of N . Thanks to Lemma 1, we just have to control the error on X̃ :E[ max

0≤k≤N
|X̃tk − X̃N

tk
|2p
]

= E max
0≤k≤N

∣∣∣ρ(F (Ytk) − F (Y
N

tk
)) +

k−1∑

j=0

(∫ tj+1

tj

h(Ys)ds− δNh(Y
N

tj )

+

√
1 − ρ2

δN

∫ tj+1

tj

ψ(Ys)ds∆Bj+1

−
√

1 − ρ2

√√√√√


ψ(Y

N

tj ) +
σψ′(Y

N

tj )

δN

∫ tj+1

tj

(Ws −Wtj )ds


 ∨ ψ ∆Bj+1

∣∣∣
2p







≤ 32p−1 (ρ2pI0 + I1 + (1 − ρ2)pI2)

where

I0 = E [ max
0≤k≤N

∣∣∣F (Ytk) − F (Y
N

tk
)
∣∣∣
2p
]

I1 = E max
0≤k≤N

∣∣∣
k−1∑

j=0

(∫ tj+1

tj

h(Ys)ds− δNh(Y
N

tj )

) ∣∣∣
2p




and

I2 = E max
0≤k≤N

∣∣∣
k−1∑

j=0

(√
1

δN

∫ tj+1

tj

ψ(Ys)ds −
√√√√√


ψ(Y

N

tj ) +
σψ′(Y

N

tj )

δN

∫ tj+1

tj

(Ws −Wtj )ds


 ∨ ψ


∆Bj+1

∣∣∣
2p


 .

(H3) yields that F is Lipschitz continuous so using Lemma 1 we show that I0 ≤ C
N2p . Next, we have that

I1 ≤ C


E max

0≤k≤N

∣∣∣
k−1∑

j=0

∫ tj+1

tj

h(Ys)ds− δNh(Ytj )
∣∣∣
2p


+ δ2pN E max

0≤k≤N

∣∣∣
k−1∑

j=0

h(Ytj ) − h(Y
N

tj )
∣∣∣
2p






6



On one hand, thanks to assumption (H3) and Lemma 1,

δ2pN E max
0≤k≤N

∣∣∣
k−1∑

j=0

h(Ytj ) − h(Y
N

tj )
∣∣∣
2p


 ≤ CδN

N−1∑

j=0

E [∣∣∣h(Ytj ) − h(Y
N

tj )
∣∣∣
2p
]
≤ C

N2p
.

On the other hand, using an integration by parts formula,

I1 := E max
0≤k≤N

∣∣∣
k−1∑

j=0

∫ tj+1

tj

h(Ys) − h(Ytj )ds
∣∣∣
2p




= E max
0≤k≤N

∣∣∣
k−1∑

j=0

∫ tj+1

tj

(tj+1 − s)

(
(bh′ +

σ2h′′

2
)(Ys)ds+ σh′(Ys)dWs

) ∣∣∣
2p




≤ 22p−1

(E [ max
0≤k≤N

∣∣∣
∫ tk

0

(τs − s)(bh′ +
σ2h′′

2
)(Ys)ds

∣∣∣
2p
]

+ E [ max
0≤k≤N

∣∣∣
∫ tk

0

(τs − s)σh′(Ys)dWs

∣∣∣
2p
])

where we denoted by τs the lowest discretization point greater than s : τs = ⌈ s
δN

⌉δN . Using Jensen’s
inequality for the first integral and the Burkholder-Davis-Gundy inequality for the second, we obtain

I1 ≤ C

(E[ max
0≤k≤N

t2p−1
k

∫ tk

0

(τs − s)2p
∣∣∣∣(bh

′ +
σ2h′′

2
)(Ys)

∣∣∣∣
2p

ds

]
+ E[(∫ T

0

(τs − s)2 |σh′(Ys)|2 ds
)p])

≤ C

N2p

∫ T

0

E[∣∣∣∣(bh′ +
σ2h′′

2
)(Ys)

∣∣∣∣
2p

+ |σh′(Ys)|2p
]
ds.

Under the assumptions of Lemma 1, sup0≤t≤T E(|Ys|2p) < ∞ (see Problem 3.15 p. 306 of Karatzas and

Shreve [1991] for example) so, with the help of assumption (H5), we conclude that I1 ≤ C
N2p and hence

I1 ≤ C
N2p . We now turn to the last term. Using Burkholder-Davis-Gundy inequality, we get

I2 ≤ CδpNEN−1∑

j=0




√
1

δN

∫ tj+1

tj

ψ(Ys)ds−

√√√√√


ψ(Y

N

tj ) +
σψ′(Y

N

tj )

δN

∫ tj+1

tj

(Ws −Wtj )ds


 ∨ ψ




2



p


≤ δN

N−1∑

j=0

E∣∣∣∣∣∣∣√ 1

δN

∫ tj+1

tj

ψ(Ys)ds−

√√√√√



ψ(Y
N

tj ) +
σψ′(Y

N

tj )

δN

∫ tj+1

tj

(Ws −Wtj )ds



 ∨ ψ

∣∣∣∣∣∣∣

2p



(7)
Assumption (H4) yields that the two terms appearing in the square root are bounded from below by ψ > 0
so we have that

I2 ≤ CδN

N−1∑

j=0

E∣∣∣∣∣∣ 1

δN

∫ tj+1

tj

ψ(Ys)ds−



ψ(Y
N

tj ) +
σψ′(Y

N

tj )

δN

∫ tj+1

tj

(Ws −Wtj )ds



 ∨ ψ

∣∣∣∣∣∣

2p



≤ CN2p−1
N−1∑

j=0

E∣∣∣∣∣∫ tj+1

tj

ψ(Ys)ds−
(
ψ(Y

N

tj )δN + σψ′(Y
N

tj )

∫ tj+1

tj

(Ws −Wtj )ds

)∣∣∣∣∣

2p




≤ CN2p−1
N−1∑

j=0

(
I
j

2 + Ĩj2

)

7



where

I
j

2 = E∣∣∣∣∣∫ tj+1

tj

ψ(Ys)ds−
(
ψ(Ytj )δN + σψ′(Ytj )

∫ tj+1

tj

(Ws −Wtj )ds

)∣∣∣∣∣

2p



and

Ĩj2 = E∣∣∣∣∣δN (ψ(Ytj ) − ψ(Y
N

tj )
)

+
(
σψ′(Ytj ) − σψ′(Y

N

tj )
) ∫ tj+1

tj

(Ws −Wtj )ds

∣∣∣∣∣

2p




Again, integrating by parts yields that

I
j

2 = E∣∣∣∣∣∫ tj+1

tj

(tj+1 − s)

(
(σψ′(Ys) − σψ′(Ytj ))dWs + ((bψ′ +

σ2

2
ψ′′)(Ys))ds

)∣∣∣∣∣

2p



We control the stochastic integral term as followsE∣∣∣∣∣∫ tj+1

tj

(tj+1 − s)(σψ′(Ys) − σψ′(Ytj ))dWs

∣∣∣∣∣

2p


 ≤ Cδp−1
N E[∫ tj+1

tj

(tj+1 − s)2p|σψ′(Ys) − σψ′(Ytj )|2pds
]

≤ Cδ3p−1
N

∫ tj+1

tj

E [∣∣σψ′(Ys) − σψ′(Ytj )
∣∣2p
]
ds

≤ Cδ3p−1
N

∫ tj+1

tj

E [∣∣Ys − Ytj
∣∣2p
]
ds

≤ Cδ3p−1
N

∫ tj+1

tj

|s− tj |p ds

≤ Cδ4pN

The third inequality is due to assumption (H6) and the fourth one is a standard result on the control of the
moments of the increments of the solution of a SDE with Lipschitz continuous coefficients (see Problem 3.15
p. 306 of Karatzas and Shreve [1991] for example).

We also control the other term thanks to assumption (H6) :E∣∣∣∣∣∫ tj+1

tj

(tj+1 − s)(bψ′ +
σ2

2
ψ′′)(Ys)ds

∣∣∣∣∣

2p


 ≤ δ2p−1
N E[∫ tj+1

tj

(tj+1 − s)2p|(bψ′ +
σ2

2
ψ′′)(Ys)|2pds

]

≤ δ4p−1
N

∫ tj+1

tj

E[∣∣∣∣(bψ′ +
σ2

2
ψ′′)(Ys)

∣∣∣∣
2p
]
ds

≤ Cδ4pN

Hence, I
j

2 ≤ C
N4p . To conclude the proof of the theorem, it remains to show a similar result for Ĩj2 :

Ĩj2 ≤ 22p−1E∣∣∣δN (ψ(Ytj ) − ψ(Y
N

tj )
)∣∣∣

2p

+

∣∣∣∣∣
(
σψ′(Ytj ) − σψ′(Y

N

tj )
) ∫ tj+1

tj

(Ws −Wtj )ds

∣∣∣∣∣

2p



≤ C

(
δ2pN E [∣∣∣Ytj − Y

N

tj

∣∣∣
2p
]

+
δ3pN
3p

E [∣∣∣Ytj − Y
N

tj

∣∣∣
2p
])

≤ C

N4p

The second inequality is due to the fact that ψ is Lipschitz continuous (thanks to assumption (H3)) for the

first term and to the independence of
(
σψ′(Ytj ) − σψ′(Y

N

tj )
)

and
∫ tj+1

tj
(Ws−Wtj )ds for the second term. 2
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Remark 5 — Our scheme exhibits the same convergence properties as the Cruzeiro et al. [2004] scheme.
Apart from the fact that it involves less terms, it presents the advantage of improving the multilevel Monte
Carlo convergence. This method, which is a generalization of the statistical Romberg extrapolation method
of Kebaier [2005], was introduced by Giles [2008a,b].

Indeed, consider the discretization scheme with time step δ2N = T
2N :

∀0 ≤ k ≤ 2N − 1, X̃2N
(k+1)T

2N

= X̃2N
kT
2N

+ ρ
(
F (Y

2N
(k+1)T

2N
) − F (Y

2N
kT
2N

)
)

+ δ2Nh(Y
2N
kT
2N

)

+
√

1 − ρ2

√√√√√


ψ(Y

2N
kT
2N

) +
σψ′(Y

2N
kT
2N

)

δ2N

∫ (k+1)T
2N

kT
2N

(Ws −W kT
2N

)ds


 ∨ ψ

(
B (k+1)T

2N
−B kT

2N

)

Denote by v2N
k =

√
1 − ρ2

√√√√
(
ψ(Y

2N
kT
2N

) +
σψ′(Y

2N
kT
2N

)

δ2N

∫ (k+1)T
2N

kT
2N

(Ws −W kT
2N

)ds

)
∨ ψ the random variable which

multiplies the increment of the Brownian motion
(
B (k+1)T

2N
−B kT

2N

)
. Because of the independence properties,

(
X̃N
tk

)

0≤k≤N
has the same distribution law as the vector

(
˜̃
X
N

tk

)

0≤k≤N
defined inductively by

˜̃
X
N

t0 = log(s0)

and

∀0 ≤ k ≤ N − 1,
˜̃
X
N

tk+1
=
˜̃
X
N

tk + ρ
(
F (Y

N

tk+1
) − F (Y

N

tk)
)

+ δNh(Y
N

tk)

+
√

1 − ρ2

√√√√
(
ψ(Y

N

tk) +
σψ′(Y

N

tk
)

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∨ ψ ∆B̃Nk+1

where

∆B̃Nk+1 =
√

2



v2N
2k

(
B (2k+1)T

2N

−B 2kT
2N

)
+ v2N

2k+1

(
B (2k+2)T

2N

−B (2k+1)T
2N

)

√(
v2N
2k

)2
+
(
v2N
2k+1

)2




Going over the proof of the theorem, one can show in the same way thatE[ max
0≤k≤N

∣∣∣∣
˜̃
X
N

tk − X̃2N
tk

∣∣∣∣
2
]

= O(N−2) (8)

Hence, one can apply the multilevel Monte Carlo method to compute the expectation of a Lipschitz continuous
functional of X and reduce the computational cost to achieve a desired root-mean-square error of ǫ > 0 to a
O(ǫ−2).

As a matter of fact, the particular structure of our scheme enabled us to reconstruct the coupling which
allows to efficiently control the error between the scheme with time step T

N and the one with time step T
2N .

This does not seem possible with the Cruzeiro et al. [2004] scheme.

From a practical point of view, it is more interesting to obtain a convergence result for the stock price.
It is also more challenging because the exponential function is not globally Lipschitz continuous. We can
nevertheless state the following corollary with some general assumptions and we will see in the next section
that we can make them more precise in case (Yt)t∈[0,T ] is an Orstein-Uhlenbeck process.

Corollary 6 — Let p ≥ 1. Under the assumptions of Theorem 3 and if

9



(H7)

∃ǫ > 0 such that E [ max
0≤k≤N

S2p+ǫ
tk

]
+ E [ max

0≤k≤N
e(2p+ǫ)

eXNtk

]
<∞

then there exists a positive constant C independent of N such thatE [ max
0≤k≤N

∣∣∣e eXtk − e
eXNtk

∣∣∣
2p
]
≤ C

N2p

Proof : Using Hölder inequality we have thatE[ max
0≤k≤N

∣∣∣e eXtk − e
eXNtk

∣∣∣
2p
]
≤ E[ max

0≤k≤N

(
e2p

eXtk ∨ e2p eXNtk

) ∣∣∣X̃tk − X̃N
tk

∣∣∣
2p
]

≤
(E[ max

0≤k≤N
S2p+ǫ
tk

]
+ E[ max

0≤k≤N
e(2p+ǫ)

eXNtk

]) 2p
2p+ǫ

(E[ max
0≤k≤N

∣∣∣X̃tk − X̃N
tk

∣∣∣
2pǫ+4p2

ǫ

]) ǫ
2p+ǫ

We conclude by assumption (H7) and Theorem 3. 2

Remark 7 — Had we introduced a new cut-off to our scheme as follows

X̃N
tk+1

= X̃N
tk

+ ρ
(
F (Y

N

tk+1
) − F (Y

N

tk
)
)

+ δNh(Y
N

tk
)

+
√

1 − ρ2

√√√√
(
ψ(Y

N

tk
) +

σψ′(Y
N

tk
)

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∧ ψ ∨ ψ ∆Bk+1

assumption (H7) would have been induced by assuming that the functions F, f and h are bounded.

1.2 Special case of an Orstein-Uhlenbeck process driving the volatility

For many stochastic volatility models, the process (Yt)t∈[0,T ] which drives the volatility is an Orstein-
Uhlenbeck process. For example, this is the case for all the models cited in the introduction but the Heston
model. Therefore, it is useful to focus on this particular case. We will hereafter suppose that (Yt)t∈[0,T ] is
solution of the following SDE

dYt = νdWt + κ(θ − Yt)dt (9)

with ν, κ and θ three positive constants. Since exact simulation is possible, we can replace the Milstein
discretization by the true solution in our previous scheme :

WeakTraj 1 scheme when Y is an O-U process

X̃N
tk+1

= X̃N
tk + ρ

(
F (Ytk+1

) − F (Ytk)
)

+ δNh(Ytk)

+
√

1 − ρ2

√(
ψ(Ytk) +

νψ′(Ytk)

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∨ ψ ∆Bk+1

(10)

10



Note that we require the exact simulation of both (Ytk , Ytk+1
) and

∫ tk+1

tk
(Ws −Wtk)ds. The unique solution

of (9) is Yt = y0e
−κt + θ(1 − e−κt) + ν

∫ t
0 e

−κ(t−s)dWs and one can easily deduce that, ∀k ∈ {0, . . . , N − 1},



Ytk+1
− e−κδNYtk

∫ tk+1

tk

(Ws −Wtk)ds


∼N




(
θ(1 − e−κδN )

0

)
,




ν2

2κ
(1 − e−2κδN )

ν

κ2
(1 − e−κδN (1 + κδN))

ν

κ2
(1 − e−κδN (1 + κδN ))

δ3N
3





 .

We first state the following technical lemma whose proof is postponed to the appendix :

Lemma 8 — ∀ c1 > 0, c2 ∈ [0, 1), E(ec1 sup0≤t≤T |Yt|1+c2
)
<∞.

As might be expected, it is possible to weaken the assumptions of Theorem 3. In particular, we relax
the assumption on the lower bound of the volatility (H4) and replace it with a weaker one (see assumption
(H10) below).

Theorem 9 — Let p ≥ 1. Suppose that Y is solution of (9) and that the scheme is defined by (10). Under
assumption (H4) of Theorem 3 and if

(H8) f is a C3 function

(H9) there exist three constants c0 > 0, c1 > 0 and c2 ∈ [0, 1) such that, ∀y ∈ R,
∣∣∣κ(θ − y)h′(y) +

ν2

2
h′′(y)

∣∣∣ ≤ c0e
c1|y|1+c2

∣∣h′(y)
∣∣ ≤ c0e

c1|y|1+c2

∣∣∣κ(θ − y)ψ′(y) +
ν2

2
ψ′′(y)

∣∣∣ ≤ c0e
c1|y|1+c2

∣∣ψ′′(y)
∣∣ ≤ c0e

c1|y|1+c2

then there exists a constant C independent of the number of time steps N such thatE [ max
0≤k≤N

∣∣∣X̃tk − X̃N
tk

∣∣∣
2p
]
≤ C

N2p

The same result holds true when we replace assumption (H4) by

(H10) There exist two positive constants C and ǫ such that ∀y ∈ R,
ψ(y) > 0

|ψ′(y)| ≤ Cψ(y)

sup
t≤T

E(ψp(1+ǫ)(Yt)) < ∞

sup
t≤T

E( 1

ψp(1+ǫ)(Yt)

)
< ∞.
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Proof : The proof of the first part of the theorem repeats the proof of Theorem 3 with fewer terms to
control because of the exact simulation of (Yt)t∈[0,T ]. At the places where we used assumptions (H5) and
(H6), we use assumption (H9) together with Lemma 8.

We now focus on the second part of the theorem. According to equation (7), all we have to show is the
existence of a positive constant C independent of N such that ∀j ∈ {0, . . . , N − 1}E∣∣∣∣∣∣√ 1

δN

∫ tj+1

tj

ψ(Ys)ds−

√√√√
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∨ ψ

∣∣∣∣∣∣

2p

 ≤ C

N2p

We will adopt the following notations

- Aj = 1
δN

∫ tj+1

tj
ψ(Ys)ds

- Dj =
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj
(Ws −Wtj )ds

)
∨ ψ

Thanks to assumption (H10), we have that ∀j ∈ {0, . . . , N −1}, Aj > 0 and Dj ≥ 0. The idea of the proof is
to isolate the case where Dj is small which is problematic since the square root is not Lipschitz continuous
in the neighborhood of 0 :

∣∣∣
√
Aj −

√
Dj

∣∣∣
2p

=
∣∣∣
√
Aj −

√
Dj

∣∣∣
2p 1{Dj≤ψ(Ytj )/2} +

∣∣∣
√
Aj −

√
Dj

∣∣∣
2p 1{Dj>ψ(Ytj )/2}

≤ 22p−1

(
Apj +

ψp(Ytj )

2p

) 1{Dj≤ψ(Ytj )/2} + 22p−2

(
1

Apj
+

2p

ψp(Ytj )

)
|Aj −Dj |2p1{Dj>ψ(Ytj )/2}

We take the expectation and apply Hölder inequality to obtainE [∣∣∣√Aj −√Dj

∣∣∣
2p
]

≤ C(ǫ1 + ǫ2)

with

ǫ1 =

(E[(Apj +
ψp(Ytj )

2p

)1+ǫ
]) 1

1+ǫ (P(Dj ≤
ψ(Ytj )

2

)) ǫ
1+ǫ

and

ǫ2 =



E( 1

Apj
+

2p

ψp(Ytj )

)1+ǫ








1
1+ǫ (E [|Aj −Dj |2p

1+ǫ
ǫ

]) ǫ
1+ǫ

.

Let us begin with the second term. Following the estimation of I
j

2 in the proof of Theorem 3, we show thatE [|Aj −Dj|2p
1+ǫ
ǫ

]
= E∣∣∣∣∣ 1

δN

∫ tj+1

tj

ψ(Ys)ds−
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∨ ψ
∣∣∣∣∣

2p 1+ǫ
ǫ





≤ Cδ
2p 1+ǫ

ǫ

N

Thanks to assumption (H10) and Jensen’s inequality, we also have that



E( 1

Apj
+

2p

ψp(Ytj )

)1+ǫ








1
1+ǫ

≤ 2
ǫ

1+ǫ

(
1

δN

∫ tj+1

tj

E( 1

ψp(1+ǫ)(Ys)

)
ds+ 2p(1+ǫ)E( 1

ψp(1+ǫ)(Ytj )

)) 1
1+ǫ

≤ C
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Hence ǫ2 ≤ C
N2p . Now let us turn to ǫ1. Note first that assumption (H10) enables us to show that there

exists a positive constant C independent of N such that

(E [(Apj +
ψp(Ytj )

2p

)1+ǫ
]) 1

1+ǫ

≤ C. Finally, what

is left to prove is that P(Dj ≤
ψ(Ytj )

2

)
≤ C

N2p 1+ǫ
ǫ

. In fact, we can show that ∀α > 0, ∃Cα > 0 such thatP(Dj ≤
ψ(Ytj )

2

)
≤ Cα

Nα :P(Dj ≤
ψ(Ytj )

2

)
≤ P(νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds ≤ −ψ(Ytj )

2

)

= P(|G| ≥ √
3ψ(Ytj )

2
√
δNν|ψ′(Ytj )|

)

where G is a centered reduced Gaussian random variable independent of Ytj .

Thanks to assumption (H10), ∃C > 0 s.t. P(|G| ≥ √
3ψ(Ytj )

2
√
δNν|ψ′(Ytj )|

)
≤ 2P(G ≥ C√

δN

)
and using the

following standard upper bound of the Gaussian tail probability : ∀t > 0,P(G ≥ t) ≤ e−
t2

2

t
√

2π
, we conclude. 2

Remark 10 —

• The fact that we can simulate exactly the volatility process without affecting the order of convergence
of the scheme is yet another advantage of our approach over the Cruzeiro et al. [2004] scheme. On the
other hand, the Kahl and Jäckel [2006] scheme allows the exact simulation of (Yt)t∈[0,T ]. Applied to
the SDE (3), it writes as

XIJK
tk+1

= XIJK
tk

+

(
r − f2(Ytk+1

) + f2(Ytk)

4

)
δN + ρf(Ytk)∆Wk+1

+
√

1 − ρ2
f(Ytk+1

) + f(Ytk)

2
∆Bk+1 +

ρν

2
f ′(Ytk)

(
(∆Wk+1)

2 − δN

) (11)

Note that it is close to our scheme insofar as it takes advantage of the structure of the SDE (for example,
unlike the Cruzeiro et al. [2004] scheme, it allows the use of the coupling introduced in Remark 5). The
main difference, which explains why our scheme has better weak trajectorial convergence order, is that
we discretize more accurately the integral of f(Yt) with respect to the Brownian motion (Bt)t∈[0,T ]. If,
instead of a trapezoidal method, one uses the same discretization as for the WeakTraj 1 scheme, then
it can be shown that the IJK scheme will exhibit a first order weak trajectorial convergence.

• One can easily check that this theorem applies for the Scott [1987] model (and therefore for the Hull

and White [1987] model) where we have h(y) = r− e2y

2 − ρey(κν (θ− y)+ ν
2 ) and ψ(y) = e2y. The Stein

and Stein [1991] and the quadratic Gaussian models do not satisfy the assumption |ψ′(y)| ≤ Cψ(y).

• It is possible to improve the convergence at fixed times up to the order 3
2 . Following Lapeyre and Temam

[2001] who approximate an integral of the form
∫ tk+1

tk
g(Ys)ds for a twice differentiable function g by

δNg(Ytk) + νg′(Ytk)
∫ tk+1

tk
(Ws −Wtk)ds + (κ(θ − Ytk)g

′(Ytk) + ν2

2 g
′′(Ytk))

δ2N
2 , we obtain the following

scheme

OU Improved scheme

X̃N
tk+1

= X̃N
tk

+ ρ
(
F (Ytk+1

) − F (Ytk)
)

+ h̃k +
√

1 − ρ2

√
ψ̃k ∆Bk+1 (12)
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where h̃k = δNh(Ytk) + νh′(Ytk)
∫ tk+1

tk
(Ws −Wtk)ds+ (κ(θ − Ytk)h

′(Ytk) + ν2

2 h
′′(Ytk))

δ2N
2 and

ψ̃k =
(
ψ(Ytk) +

νψ′(Ytk )

δN

∫ tk+1

tk
(Ws −Wtk)ds+ (κ(θ − Ytk)ψ

′(Ytk) + ν2

2 ψ
′′(Ytk))

δN
2

)
∨ ψ.

Mimicking the proof of Theorem 3, one can show that

max
0≤k≤N

E [∣∣∣X̂tk − X̂N
tk+1

∣∣∣
2
]

= O
(
N−3

)

where X̂tk and X̂N
tk+1

have respectively the same distribution as Xtk and X̃N
tk :

X̂tk = X0 + ρ(F (Ytk) − F (y0)) +

∫ tk

0

h(Ys)ds+
√

1 − ρ2

√
1

tk

∫ tk

0

ψ(Ys)ds Btk

and

X̂N
tk = X0 + ρ (F (Ytk) − F (y0)) +

k−1∑

j=0

h̃j +
√

1 − ρ2

√√√√δN
tk

k−1∑

j=0

ψ̃j Btk .

As for the stock, we can prove the same convergence result under some additional assumptions which
are more explicit than assumption (H7) of Corollary 6. To do so, let us make the following changes in our
scheme so that we can control its exponential moments :

X̃N
tk+1

= X̃N
tk + ρ

(
F (Ytk+1

) − F (Ytk)
)

+ δNh(Ytk)

+
√

1 − ρ2

√(
ψ(Ytk) +

νψ′(Ytk)

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∧ ψ̂(Ytk) ∨ ψ ∆Bk+1

(13)

Proposition 11 — Suppose that Y is solution of (9) and that the scheme is defined by (13).
Under the assumptions (H8), (H9) and (H10) of Theorem 9 and if

(H11) there exists β ∈ (0, 1) and K > 0 such that ∀y ∈ R
|h(y)| + |F (y)| + |f ′(y)| ≤ K(1 + |y|1+β)

|f(y)| ≤ K(1 + |y|β)

then, ∀p ≥ 1, there exists a positive constant C independent of N such thatE [ max
0≤k≤N

∣∣∣e eXtk − e
eXNtk

∣∣∣
2p
]
≤ C

N2p
.

The same result holds true if one replaces assumption (H10) by assumption (H4) together with the assumption
that ∃C > 0 for which ∀y ∈ R, |ψ′(y)| ≤ Cψ(y).

Proof : We go over the proof of Corollary 6. The fact that E [max0≤k≤N
∣∣∣X̃tk − X̃N

tk

∣∣∣
4p
]

= O( 1
N4p )

is not a straightforward consequence of Theorem 9 anymore because we have introduced some changes in
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our scheme. However, looking through the proof of the theorem, one can see that it is enough to prove the
following inequality : ∀j ∈ {0, . . . , N − 1}E∣∣∣∣∣∣√ 1

δN

∫ tj+1

tj

ψ(Ys)ds−

√√√√
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∧ ψ̂(Ytj ) ∨ ψ

∣∣∣∣∣∣

2p

 ≤ C

N2p
(14)

When ψ is finite, since 1
δN

∫ tj+1

tj
ψ(Ys)ds is smaller than ψ̂(Ytk) = ψ, we can remove the new cut-

off from the left hand side of (14) and then proceed like in Theorem 9. When ψ = +∞, on the event(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj
(Ws −Wtj )ds

)
≤ ψ̂(Ytj ), we recover our original scheme and we prove (14) like in

Theorem 9. Then, using the Gaussian arguments developed in the end of the proof of Theorem 9, we control
the probability of the complementary event to conclude.

Now, what is left to prove is that assumption (H7) is satisfied. On one hand, we have thatE [ max
0≤k≤N

S4p
tk

]
= E[ max

0≤k≤N

(
S0 +

∫ tk

0

rSsds+

∫ tk

0

f(Ys)Ss

(
ρdWs +

√
1 − ρ2dBs

))4p
]

≤ C

(
1 +

∫ T

0

E(S4p
t (1 + f4p(Yt))

)
dt

)

≤ C

(
1 +

∫ T

0

√E(S8p
t )
√E ((1 + f4p(Yt))2)dt

)

Thanks to assumption (H11) and Lemma 8, there exists C > 0 such that
√E ((1 + f4p(Yt))2) ≤ C.

Observe that conditionally on (Yt)t∈[0,T ],

Xt ∼ N
(

log(s0) + ρ(F (Yt) − F (y0)) +

∫ t

0

h(Ys)ds , (1 − ρ2)

∫ t

0

f2(Ys)ds

)
(15)

so, by Jensen’s inequality and assumption (H11)E(S8p
t

)
= E(e8p(log(s0)+ρ(F (Yt)−F (y0))+

R

t

0
h(Ys)ds)e32p

2(1−ρ2)
R

t
0
f2(Ys)ds

)

≤ E(e8p(log(s0)+ρ(F (Yt)−F (y0)))
1

t

∫ t

0

et(8ph(Ys)+32p2(1−ρ2)f2(Ys))ds

)

≤ CE(eC sup0≤t≤T |Yt|1+β
)

Using Lemma 8, we deduce that E [max0≤k≤N S
4p
tk

]
<∞.

On the other hand, using Cauchy-Schwartz inequality, we have thatE [ max
0≤k≤N

e4p
eXNtk

]
= E max

0≤k≤N
exp



4p



X0 + ρ(F (Ytk) − F (y0)) +

k−1∑

j=0

δNh(Ytj )

+

k−1∑

j=0

√
1 − ρ2

√√√√
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∧ ψ̂(Ytj ) ∨ ψ∆Bj+1













≤
√
ẼN1

√
ẼN2

where

ẼN1 = E [ max
0≤k≤N

e8p(X0+ρ(F (Ytk )−F (y0))+
Pk−1
j=0 δNh(Ytj ))

]
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and

ẼN2 = E max
0≤k≤N

e
8p
√

1−ρ2 Pk−1
j=0

s

„

ψ(Ytj )+
νψ′(Ytj )

δN

R tj+1
tj

(Ws−Wtj
)ds

«

∧ bψ(Ytj )∨ψ∆Bj+1


 .

Using the same argument as before, we show that ẼN1 ≤ CE(eC sup0≤t≤T |Yt|1+β
)
<∞.

Denote by Dj =
(
ψ(Ytj ) +

σψ′(Ytj )

δN

∫ tj+1

tj
(Ws −Wtj )ds

)
∧ ψ̂(Ytj ) ∨ ψ. Using Doob’s maximal inequality

for the submartingale
(
e4p

√
1−ρ2 Pk−1

j=0

√
Dj∆Bj+1

)

0≤k≤N
(see Theorem 3.8 p. 13 of Karatzas and Shreve

[1991] for example), we also have that

ẼN2 ≤ 4E(e8p√1−ρ2
PN−1
j=0

√
Dj ∆Bj+1

)

= 4EN−1∏

j=0

e32p
2δN (1−ρ2)Dj





≤ 4E( max
0≤k≤N−1

e32p
2(1−ρ2) bψ(Ytj )

)

By virtue of assumption (H11), ẼN2 <∞ which concludes the proof. 2

2 A second order weak scheme

Integrating the first stochastic differential equation in (4) gives

Xt = log(s0) + ρ(F (Yt) − F (y0)) +

∫ t

0

h(Ys)ds+
√

1 − ρ2

∫ t

0

f(Ys)dBs (16)

We are only left with an integral with respect to time which can be handled by the use of a trape-
zoidal scheme and a stochastic integral where the integrand is independent of the Brownian motion. Hence,
conditionally on (Yt)t∈[0,T ],

XT ∼ N
(
log(s0) + ρ(F (YT ) − F (y0)) +mT , (1 − ρ2)vT

)
(17)

where mT =
∫ T
0 h(Ys)ds and vT =

∫ T
0 f2(Ys)ds. This suggests that, in order to properly approximate the

law of XT , one should accurately approximate the law of YT and carefully handle integrals with respect to
time of functions of the process (Yt)t∈[0,T ]. We thus define our weak scheme as follows

Weak 2 scheme

X
N

T = log(s0) + ρ(F (Y
N

T ) − F (y0)) +mN
T +

√
(1 − ρ2)vNT G (18)

where mN
T = δN

∑N−1
k=0

h(Y
N

tk
)+h(Y

N

tk+1
)

2 and vNT = δN
∑N−1
k=0

f2(Y
N

tk
)+f2(Y

N

tk+1
)

2 . (Y
N

tk
)0≤k≤N is the Ninomiya-

Victoir scheme of (Yt)t∈[0,T ] and G is a centered reduced Gaussian random variable. Note that, conditionally

on (Y
N

tk
)0≤k≤N , X

N

t is also a Gaussian random variable with mean log(s0) + ρ(F (Y
N

T ) − F (y0)) +mN
T and

variance (1 − ρ2)vNT .

16



It is well known that the Ninomiya and Victoir [2008] scheme is of weak order two. For the sake of
completeness, we give its definition in our setting :

{
Y
N

0 = y0

∀0 ≤ k ≤ N − 1, Y
N

tk+1
= exp

(
T
2N V0

)
exp

(
(Wtk+1

−Wtk)V
)
exp

(
T
2N V0

)
(Y

N

tk
)

where V0 : x 7→ b(x)− 1
2σσ

′(x) and V : x 7→ σ(x). The notation exp(tV )(x) stands for the solution, at time t
and starting from x, of the ODE η′(t) = V (η(t)). What is nice with our setting is that we are in dimension

one and thus such ODEs can be solved explicitly. Indeed, if ζ is a primitive of 1
V : ζ(t) =

∫ t
0

1
V (s)ds, then

the solution writes as η(t) = ζ−1 (t+ ζ(x)).
We now state the following theorem dealing with the weak error of the Weak 2 scheme

Theorem 12 — Suppose that ρ ∈ (−1, 1). If the following assumptions hold

(H12) b and σ are respectively C4 and C5, with bounded derivatives of any order greater or equal to 1.

(H13) h and f are C4 and F is C6. The three functions are bounded together with all their derivatives.

(H14) ψ > 0

then, for any measurable function g verifying ∃c ≥ 0, µ ∈ [0, 2) such that ∀x ∈ R, |g(x)| ≤ ce|x|
µ

, there
exists C > 0 such that

∣∣∣E(g(XT )
)
− E(g(XN

T )
)∣∣∣ ≤ C

N2

In terms of the asset price, we easily deduce the following corollary :

Corollary 13 — Under the assumptions of Theorem 12, for any measurable function α verifying ∃c ≥
0, µ ∈ [0, 2) such that ∀y > 0, |α(y)| ≤ ce| log(y)|µ , there exists C > 0 such that

∣∣∣E (α(ST )) − E(α(eX
N

T )
)∣∣∣ ≤ C

N2

Proof of the theorem : The idea of the proof consists in conditioning by the Brownian motion which
drives the volatility process and then applying the weak error analysis of Talay and Tubaro [1990].

As stated above, conditionally on (Wt)t∈[0,T ], both XT and X
N

T are Gaussian random variables and one
can easily show that

ǫ :=
∣∣∣E [g(XT ) − g(X

N

T )
]∣∣∣

=

∣∣∣∣∣∣∣∣

∫R g(x)Eexp
(
− (x−log(s0)+ρF (y0)−ρF (YT )−mT )2

2(1−ρ2)vT

)

√
2π(1 − ρ2)vT

−
exp

(
− (x−log(s0)+ρF (y0)−ρF (Y

N

T )−mNT )2

2(1−ρ2)vN
T

)

√
2π(1 − ρ2)vNT


 dx

∣∣∣∣∣∣∣∣
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For x ∈ R, denote by γx the function

γx : R× R× R∗
+ → R

(y,m, v) 7→
exp

(
− (x−log(s0)+ρF (y0)−ρF (y)−m)2

2(1−ρ2)v

)

√
2π(1 − ρ2)v

so that ǫ ≤
∫R g(x) ∣∣∣E [γx(YT ,mT , vT ) − γx(Y

N

T ,m
N
T , v

N
T )
]∣∣∣ dx. Consequently, it is enough to show the

following intermediate result :

∃C,K> 0 and p ∈ N such that ∀x ∈ R, ∣∣∣E [γx(YT ,mT , vT ) − γx(Y
N

T ,m
N
T , v

N
T )
]∣∣∣ ≤ C

N2
e−Kx

2

(1+|x|p). (19)

We naturally consider the following 3-dimensional degenerate SDE:





dYt = σ(Yt)dWt + b(Yt)dt; Y0 = y0

dmt = h(Yt)dt; m0 = 0

dvt = f2(Yt)dt; v0 = 0

(20)

Note that (Y
N

T ,m
N
T , v

N
T ) is close to the terminal value of the Ninomiya-Victoir scheme applied to this 3-

dimensional SDE. In order to prove (19), we need to analyse the dependence of the error on x and not only
on N . That is why we resume the error analysis of Ninomiya and Victoir [2008] in a more detailed fashion.

For x ∈ R, let us define the function ux : [0, T ]× R× R× R∗
+ → R by

ux(t, y,m, v) = E [γx ((YT−t,mT−t, vT−t)
(y,m,v)

)]

where we denote by (YT−t,mT−t, vT−t)(y,m,v) the solution at time T − t of (20) starting from (y,m, v).
The remainder of the proof leans on the following lemmas. We will use the standard notation for

partial derivatives: for a multi-index α = (α1, . . . , αd) ∈ Nd, d being a positive integer, we denote by
|α| = α1 + · · · + αd its length and by ∂α the differential operator ∂|α|/∂α1

1 . . . ∂αdd .

Lemma 14 — Under assumptions (H12), (H13) and (H14), we have that

i) ux is C3 with respect to the time variable and C6 with respect to the space variable. Moreover, it solves
the following PDE {

∂tux + Lux = 0

ux(T, y,m, v) = γx(y,m, v)
(21)

where L is the differential operator associated to (20):

Lu(y,m, v) =
σ2(y)

2

∂2u

∂y2
+ b(y)

∂u

∂y
+ h(y)

∂u

∂m
+ f2(y)

∂u

∂v
.

ii) For any multi-index α ∈ N3 and integer l such that 2l + |α| ≤ 6, there exists Cl,α,Kl,α > 0 and
(pl,α, ql,α) ∈ N2 such that

∀(t, y,m, v) ∈ [0, T ]×Dt,
∣∣∂lt∂αux(t, y,m, v)

∣∣ ≤ Cl,αe
−Kl,αx2

(1 + |x|pl,α) (1 + |y|ql,α)

where Dt is the set R × [−t supz∈R |h(z)|, t supz∈R |h(z)|] × [tψ, tψ]. Note that ψ and ψ are finite by
virtue of assumptions (H13) and (H14).
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Lemma 15 — Under assumption (H12),

∀q ∈ N, sup
0≤k≤N

E(∣∣∣Y Ntk ∣∣∣q) <∞

Now, following the error analysis of Talay and Tubaro [1990], we write that

∣∣∣E [γx(YT ,mT , vT ) − γx(Y
N

T ,m
N
T , v

N
T )
]∣∣∣ ≤

N−1∑

k=0

ηk(x)

where ηk(x) =
∣∣∣E [ux(tk+1, Y

N

tk+1
,mN

tk+1
, vNtk+1

) − ux(tk, Y
N

tk ,m
N
tk , v

N
tk)
]∣∣∣ and ∀0 ≤ k ≤ N,

mN
tk

= δN
∑k−1

j=0

h(Y
N

tj
)+h(Y

N

tj+1
)

2 and vNtk = δN
∑k−1

j=0

f2(Y
N

tj
)+f2(Y

N

tj+1
)

2 . Using the Markov property for the
first term in the expectation and Taylor’s formula together with PDE (21) for the second, we get

ηk(x) =
∣∣∣E [φx(tk+1, Y

N

tk ,m
N
tk , v

N
tk) − ux(tk+1, Y

N

tk ,m
N
tk , v

N
tk) − δNLux(tk+1, Y

N

tk ,m
N
tk , v

N
tk)

−δ
2
N

2
L2ux(tk+1, Y

N

tk ,m
N
tk , v

N
tk) +

1

2

∫ tk+1

tk

∂3ux
∂t3

(t, Y
N

tk ,m
N
tk , v

N
tk)(t− tk)

2dt

]∣∣∣∣

where

φx(tk+1, y,m, v) = E[ux(tk+1, Y
N,y

t1 ,m+ δN
h(Y

N,y

t1 ) + h(y)

2
, v + δN

f2(Y
N,y

t1 ) + f2(y)

2
)

]

Denote by Γy the function z 7→ ux(tk+1, z,m+ δN
h(z)+h(y)

2 , v + δN
f2(z)+f2(y)

2 ). Using Taylor’s formula we
can show that ∀z ∈ R,

Γy(z) = Γy,1(z) + δNΓy,2(z) +
δ2N
2

Γy,3(z) +R0(z)

where
Γy,1(z) = ux(tk+1, z,m, v)

Γy,2(z) =
h(z) + h(y)

2

∂ux
∂m

(tk+1, z,m, v) +
f2(z) + f2(y)

2

∂ux
∂v

(tk+1, z,m, v)

Γy,3(z) =

(
h(z) + h(y)

2

)2
∂2ux
∂m2

(tk+1, z,m, v) +

(
f2(z) + f2(y)

2

)2
∂2ux
∂v2

(tk+1, z,m, v)

+2
h(z) + h(y)

2

f2(z) + f2(y)

2

∂2ux
∂m∂v

(tk+1, z,m, v)

and

R0(z) =
∫ δN
0

(δN−t)2
2 dt

((
h(z)+h(y)

2

)3
∂3ux
∂m3

(
tk+1, z,m+ th(z)+h(y)

2 , v + t f
2(z)+f2(y)

2

)

+
(
f2(z)+f2(y)

2

)3
∂3ux
∂v3

(
tk+1, z,m+ th(z)+h(y)

2 , v + t f
2(z)+f2(y)

2

)

+3
(
f2(z)+f2(y)

2

)2 (
h(z)+h(y)

2

)
∂3ux
∂m∂v2

(
tk+1, z,m+ th(z)+h(y)

2 , v + t f
2(z)+f2(y)

2

)

+3
(
h(z)+h(y)

2

)2 (
f2(z)+f2(y)

2

)
∂3ux
∂m2∂v

(
tk+1, z,m+ th(z)+h(y)

2 , v + t f
2(z)+f2(y)

2

))

(22)
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So,

φx(tk+1, y,m, v) = E [Γy,1(Y N,yt1 )
]

︸ ︷︷ ︸
φx,1(tk+1,y,m,v)

+ δNE [Γy,2(Y N,yt1 )
]

︸ ︷︷ ︸
φx,2(tk+1,y,m,v)

+
δ2N
2
E [Γy,3(Y N,yt1 )

]

︸ ︷︷ ︸
φx,3(tk+1,y,m,v)

+E [R0(Y
N,y

t1 )
]

(23)

With a slight abuse of notations, we define the first order differential operators V0 and V acting on C1

functions by V0ξ(x) = V0(x)ξ
′(x) and V ξ(x) = V (x)ξ′(x) for ξ ∈ C1(R). We make the same expansions as

in Ninomiya and Victoir [2008] but with making the remainder terms explicit in order to check if they have
the good behavior with respect to x. We can show after tedious but simple computations that

φx,1(tk+1, y,m, v) = Γy,1(y) +
δN
2

(
V 2Γy,1(y) + 2V0Γy,1(y)

)

+
δ2N
8

(
4V0

2Γy,1(y) + 2V0V
2Γy,1(y) + 2V 2V0Γy,1(y) + V 4Γy,1(y)

)
+ E (R1(y))

φx,2(tk+1, y,m, v) = δNΓy,2(y) +
δ2N
2

(
V 2Γy,2(y) + 2V0Γy,2(y)

)
+ E (R2(y))

φx,3(tk+1, y,m, v) =
δ2N
2

Γy,3(y) + E (R3(y))

where

R1(y) =
∫ δN

2

0

∫ s1
0

∫ s2
0
V0

3Γy,1(e
s3V0eWδN

V e
δN
2 V0(y))ds3ds2ds1

+
∫WδN

0

∫ s1
0

∫ s2
0

∫ s3
0

∫ s4
0

∫ s5
0
V 6Γy,1(e

s6V e
δN
2 V0(y))ds6ds5ds4ds3ds2ds1

+ δN
2

∫WδN

0

∫ s1
0

∫ s2
0

∫ s3
0 V 4V0Γy,1(e

s4V e
δN
2 V0(y))ds4ds3ds2ds1

+
δ2N
8

∫WδN

0

∫ s1
0
V 2V0

2Γy,1(e
s2V e

δN
2 V0(y))ds2ds1

+
∫ δN

2

0

∫ s1
0

∫ s2
0
V0

3Γy,1(e
s3V0(y))ds3ds2ds1 + δN

2

∫ δN
2

0

∫ s1
0
V0

2V 2Γy,1(e
s2V0(y))ds2ds1

+
δ2N
8

∫ δN
2

0 V0V
4Γy,1(e

s1V0(y))ds1 + δN
2

∫ δN
2

0

∫ s1
0 V0

3Γy,1(e
s2V0(y))ds2ds1

+
δ2N
4

∫ δN
2

0 V0V
2V0Γy,1(e

s1V0(y))ds1 +
δ2N
8

∫ δN
2

0 V0
3Γy,1(e

s1V0(y))ds1

R2(y) = δN

(∫ δN
2

0

∫ s1
0
V0

2Γy,2(e
s2V0eWδN

V e
δN
2 V0(y))ds2ds1

+
∫WδN

0

∫ s1
0

∫ s2
0

∫ s3
0 V 4Γy,2(e

s4V e
δN
2 V0(y))ds4ds3ds2ds1

+ δN
2

∫WδN

0

∫ s1
0 V 2V0Γy,2(e

s2V e
δN
2 V0(y))ds2ds1 +

∫ δN
2

0

∫ s1
0 V0

2Γy,2(e
s2V0(y))ds2ds1

+ δN
2

∫ δN
2

0
V0V

2Γy,2(e
s1V0(y))ds1 + δN

2

∫ δN
2

0
V0

2Γy,2(e
s1V0(y))ds1

)

R3(y) =
δ2N
2

(∫ δN
2

0 V0Γy,3(e
s1V0eWδN

V e
δN
2 V0(y))ds1 +

∫WδN

0

∫ s1
0 V 2Γy,3(e

s2V e
δN
2 V0(y))ds2ds1

+
∫ δN

2

0
V0Γy,3(e

s1V0(y))ds1

)

(24)

Putting all the terms together, one can check that

φx(tk+1, y,m, v) = ux(tk+1, y,m, v) + δNLux(tk+1, y,m, v) +
δ2N
2
L2ux(tk+1, y,m, v) +R(y)
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where R(y) = E [R0(Y
N,y

t1 ) +R1(y) +R2(y) +R3(y)
]
. Finally,

∣∣∣E [γx(YT ,mT , vT ) − γx(Y
N

T ,m
N
T , v

N
T )
]∣∣∣ ≤

N−1∑

k=0

E [∣∣∣∣12 ∫ tk+1

tk

∂3ux
∂t3

(t, Y
N

tk ,m
N
tk , v

N
tk)(t− tk)

2dt

∣∣∣∣+
∣∣∣R(Y

N

tk)
∣∣∣
]

From Lemmas 14 and 15, we deduce that there exists C1,K1 > 0 and p1 ∈ N such that

N−1∑

k=0

E [∣∣∣∣12 ∫ tk+1

tk

∂3ux
∂t3

(t, Y
N

tk ,m
N
tk , v

N
tk)(t− tk)

2dt

∣∣∣∣
]
≤ 1

N2
C1e

−K1x
2

(1 + |x|p1 ) (25)

On the other hand, a close look to (22) and (24) convinces us that the term E [∣∣∣R(Y
N

tk)
∣∣∣
]

is of order 1
N3

and that it involves only derivatives of ux and of the coefficients of the SDE (20). So, thanks Lemmas 14
and 15, there exists C2,K2 > 0 and p2 ∈ N such that

N−1∑

k=0

E [∣∣∣R(Y
N

tk
)
∣∣∣
]
≤ 1

N2
C2e

−K2x
2

(1 + |x|p2) (26)

From (25) and (26) we deduce the desired result (19) to conclude.
2

Remark 16 —

• The theorem does not cover the case of perfectly correlated or uncorrelated stock and volatility which is
not very interesting from a practical point of view.

• Our scheme can be seen as a splitting scheme on a particular SDE. Indeed, if we define Zt = Xt −
ρF (Yt), then we obtain the following SDE :

{
dZt = h(Yt)dt+

√
1 − ρ2f(Yt)dBt

dYt = b(Yt)dt+ σ(Yt)dWt

(27)

The differential operator associated to (27) writes as

Lv(u, y) = h(y)
∂v

∂u
+ b(y)

∂v

∂y
+
σ2(y)

2

∂2v

∂y2
+

(1 − ρ2)

2
f2(y)

∂2v

∂u2
= LY v(y, u) + LZv(y, u)

where LY v(y, u) = b(y)∂v∂y + σ2(y)
2

∂2v
∂y2 and LZv(y, u) = h(y) ∂v∂u + (1−ρ2)

2 f2(y) ∂
2v
∂u2 . One can check that

our scheme amounts to first integrate exactly LZ over a half time step then apply the Ninomiya-Victoir
scheme to LY over a time step and finally integrate exactly LZ over a half time step. It is then a second
order weak scheme (see Alfonsi [2009] or Tanaka and Kohatsu-Higa [2009] for example).

We could have used this point of view to prove a second order weak convergence result for the couple
(Xt, Yt) but we prefer our approach because it allows us to deal with the stock price as mentioned in
the Corollary 13.

• As for plain vanilla options pricing, observe that, by the Romano and Touzi [1997] formula,E (e−rTα(ST )|(Yt)t∈[0,T ]

)
= BSα,T

(
s0e

ρ(F (YT )−F (y0))+mT+(
(1−ρ2)vT

2T −r)T ,
(1 − ρ2)vT

T

)
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where BSα,T (s, v) stands for the price of a European option with pay-off α and maturity T in the Black
& Scholes model with initial stock price s, volatility

√
v and constant interest rate r. When, like for a

call or a put option, BSα,T is available in a closed form, one should approximate E (e−rTα(ST )
)

by

1

M

M∑

i=1

BSα,T

(
s0e

ρ(F (Y
N,i

T )−F (y0))+m
N,i
T

+(
(1−ρ2)v

N,i
T

2T −r)T ,
(1 − ρ2)vN,iT

T

)

where M is the total number of Monte Carlo samples and the index i refers to independent draws.

Indeed, the conditioning provides a variance reduction. We also note that what is most important is to
have a scheme with a high order weak convergence on the triplet (Yt,mt, vt)t∈[0,T ] solution of the SDE
(20), which is the case for our scheme.

• In the special case of an Orstein-Uhlenbeck process driving the volatility (i.e (Yt)t∈[0,T ] is solution of
the SDE (9)), one should replace the Ninomiya-Victoir scheme by the true solution. We can then prove
more easily the same weak convergence result: at step (23) of the preceding proof, we apply Itô’s formula
instead of carrying out the Ninomiya-Victoir expansion. Moreover, we can prove, following the same
error analysis, that the OU Improved scheme (12) also exhibits a second order weak convergence prop-
erty. Better still, it achieves a weak trajectorial convergence of order 3

2 on the triplet (Yt,mt, vt)t∈[0,T ]

which allows for a significant improvement of the multilevel Monte Carlo method, as we shall check
numerically.

3 Numerical results

For numerical computations, we are going to consider Scott’s model (2). We use the same set of parame-

ters as in Kahl and Jäckel [2006] : S0 = 100, r = 0.05, T = 1, y0 = log(0.25), κ = 1, θ = 0, ν = 7
√

2
20 , ρ = −0.2

and f : y 7→ ey.
We are going to compare our schemes (WeakTraj 1, Weak 2 and OU Improved) to the Euler scheme with

exact simulation of the volatility (hereafter denoted Euler), the Kahl and Jäckel [2006] scheme (IJK) and
the Cruzeiro et al. [2004] scheme (CMT).

3.1 Numerical illustration of strong convergence properties

In order to illustrate the strong convergence rate of a discretization scheme X̂N , we consider the squared
L2-norm of the supremum of the difference between the scheme with time step T

N and the one with time

step T
2N : E [ max

0≤k≤N

∣∣∣X̂N
tk

− X̂2N
tk

∣∣∣
2
]

(28)

This quantity will exhibit the same asymptotic behavior with respect to N as the squared L2-norm of
the difference between the scheme with time step T

N and the limiting process towards which it converges (see
Alfonsi [2005]).

In Figure 1, we draw the logarithm of the Monte Carlo estimation of (28) as a function of the logarithm of
the number of time steps. The number of Monte Carlo samples used is equal to M = 10000 and the number
of discretization steps is a power of 2 varying from 2 to 256. We also consider the strong convergence of the

schemes on the asset itself (see Figure 2) by computing E [max0≤k≤N
∣∣∣e bXNtk − e

bX2N
tk

∣∣∣
2
]
.

The slopes of the regression lines are reported in Table 1. We see that, both for the logarithm of the
asset and for the asset itself, all the schemes exhibit a strong convergence of order 1

2 . Our schemes only have
a better constant.
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Figure 1: Strong convergence on the log-asset
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Figure 2: Strong convergence on the asset

WeakTraj 1 Weak 2 OU Improved IJK CMT Euler
Log-asset -1.01 -0.88 -0.94 -0.92 -0.98 -0.84

Asset -1.01 -0.91 -0.95 -0.88 -0.95 -0.85

Table 1: Slopes of the regression lines (Strong convergence)

3.1.1 Weak trajectorial convergence

Nevertheless, as explained in Remark 5, for the scheme with time step 1
N , one can replace the increments

of the Brownian motion (Bt)t∈[0,T ] by a sequence of Gaussian random variables smartly constructed from

the scheme with time step 1
2N . This particular coupling is possible whenever the independence structure

between (Bt)t∈[0,T ] and (Yt)t∈[0,T ] is preserved by the discretization of the latter process, which is the case for
all the schemes but the CMT scheme. So we carry out this coupling and we repeat the preceding numerical
experiment. The results are put together in Figures 3 and 4 and in Table 2.

As expected, we see that the WeakTraj 1 and the OU Improved schemes exhibit a first order convergence
rate whereas the other schemes exhibit a 1

2 order convergence rate. Note that the CMT scheme has a weak
trajectorial convergence of order one but it is much more difficult to implement the coupling for which the
convergence order is indeed equal to one.
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Figure 3: Weak trajectorial convergence on the
log-asset (with coupling)
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Figure 4: Weak trajectorial convergence on the
asset (with coupling)

WeakTraj 1 Weak 2 OU Improved IJK CMT Euler
Log-asset -1.92 -0.91 -1.99 -0.95 – -0.85

Asset -1.92 -0.95 -2 -0.91 – -0.87

Table 2: Slopes of the regression lines (Weak trajectorial convergence)

3.1.2 Convergence at terminal time

We consider now convergence at terminal time, precisely the squared L2-norm of the difference between
the terminal values of the schemes with time steps T

N and T
2N :E [∣∣∣X̂N

T − X̂2N
T

∣∣∣
2
]
. (29)

Note that we introduce a coupling : we write the schemes straight at the terminal time as we did for the
Weak 2 scheme (see (18)) and we generate the terminal values of the schemes with time steps T

N and T
2N

using the same single normal random variable to simulate the stochastic integral w.r.t. (Bt)t∈[0,T ]. Once
again, it is possible to proceed alike for all the schemes but the CMT scheme. For the latter, we simulate
the scheme at all the intermediate discretization times to obtain the value at terminal time.

We also consider the convergence at terminal time of the asset itself. We report the numerical results in
Figures 5 and 6 and give the slopes of the regression lines in Table 3.
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Figure 5: Convergence at terminal time for the
log-asset
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Figure 6: Convergence at terminal time for the
asset

WeakTraj 1 Weak 2 OU Improved IJK CMT Euler
Log-asset -2.03 -2 -2.97 -1.97 -1.05 -1.34

Asset -2.02 -1.98 -2.97 -1.95 -1.08 -1.34

Table 3: Slopes of the regression lines (Convergence at terminal time)

We observe that, as stated in Remark 10, the OU Improved scheme exhibits a convergence rate of order 3
2 ,

outperforming all the other schemes. As previously, the WeakTrak 1 scheme exhibits a first order convergence
rate. Note also that this new coupling at terminal time improved the convergence rate of the Weak 2 and
the IJK schemes up to order one and, surprisingly, it improved the convergence rate of the Euler scheme up
to an order strictly greater than the expected 1

2 , approximately 0.67.

3.2 Standard call pricing

3.2.1 Numerical illustration of weak convergence

We compute the price of a call option with strike K = 100 and maturity T = 1. For all the schemes but
the CMT scheme, we use the conditioning variance reduction technique presented in Remark 16.

In Figure 7, we draw the price as a function of the number of time steps for each scheme and in Figure
8 we draw the logarithm of the pricing error : log

(∣∣Pexact − PNscheme

∣∣) where Pexact ≈ 12.82603 is obtained
by a multilevel Monte Carlo with an accuracy of 5bp, as a function of the logarithm of the number of times
steps.

We see that, as expected, the Weak 2 scheme and the OU Improved scheme exhibit a weak convergence
of order two and converge much faster than the others. The weak scheme already gives an accurate price
with only four time steps. The WeakTraj 1 scheme has a weak convergence of order one like the Euler and
the IJK scheme, but it has a greater leading error term. Fortunately, its better strong convergence properties
enable it to catch up with the multilevel Monte Carlo method as we will see hereafter.

Finally, note that the weak scheme does not require the simulation of additional terms when compared
to the Euler or the IJK schemes. Combined with its second order weak convergence order, this makes the
Weak 2 scheme very competitive for the pricing of plain vanilla European option.
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Figure 7: Convergence of the call price with re-
spect to N
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Figure 8: Illustration of the convergence rate for
the call option

3.2.2 Multilevel monte carlo

Let us now apply the multilevel Monte Carlo method of Giles [2008a] to compute the Call price. As
previously, we consider the schemes straight at the terminal time and use a conditioning variance reduction
technique. We give the CPU time as a function of the root mean square error in Figure 9 (see Giles [2008a]
for details on the heuristic numerical algorithm which is used).

We observe that both the Weak 2 and the OU Improved scheme are great time-savers. For the OU Improved
scheme, the effect coming from its good strong convergence properties is somewhat offset by the additional
terms it requires to simulate. We can see nevertheless that it is going to overcome the Weak 2 scheme for
bigger accuracy levels.

3.3 Asian option pricing and multilevel Monte Carlo

Finally, we consider an example of path-dependent option pricing : the Asian option. More precisely, we

compute the price of the Asian call option with strike K = 100 whose pay-off is equal to
(

1
T

∫ T
0 Stdt−K

)

+

and we choose to discretize the integral of the stock price by a trapezoidal method for each scheme.
We first draw the price obtained by the different schemes with respect to the number of time steps N

(see Figure 10) and the logarithm of the pricing error : log
(∣∣Pexact − PNscheme

∣∣) where Pexact ≈ 7.0364 is
obtained by a multilevel Monte Carlo with an accuracy of 5bp, as a function of the logarithm of the number
of times steps (see Figure 11). For all the but the OU Improved scheme, the convergence rates seems to be
quite similar, around one. Surprisingly, the OU Improved scheme exhibits a second order convergence and
far outperforms all the other schemes. For example, it achieves the same precision for N = 16 as the other
schemes for N = 128. The WeakTraj 1 scheme is a little bit slower than the Weak 2, the IJK and the Euler
schemes.
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Figure 9: Multilevel Monte Carlo method for a Call option using different schemes

However, as explained in Remark 5, the main advantage of this scheme is that it improves the convergence
of the multilevel Monte Carlo method. In Figure 12, we draw the CPU time times the mean square error
against the root mean square error.
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Figure 10: Convergence of the Asian price with
respect to N
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Figure 11: Illustration of the convergence rate for
the Asian option
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We see that our schemes perform better than the others. Certainly, the gain obtained is not as important
as for the call pricing example. This is maybe due to the fact that the good strong convergence properties
of our schemes are hidden by the discretization bias coming from the approximation of the integral in time
of the asset price with a finite sum.
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Figure 12: Multilevel Monte Carlo method for an Asian option using different schemes.

4 Conclusion

In this article, we have capitalized on the particular structure of stochastic volatility models to propose
and discuss two simple and yet competitive discretization schemes. The first one exhibits first order weak
trajectorial convergence and has the advantage of improving multilevel Monte Carlo methods for the pricing
of path dependent options. The second one is rather useful for pricing European options since it has a second
order weak convergence rate.

We have also focused on the special case of an Orstein-Uhlenbeck process driving the volatility, which
encompasses many stochastic volatility models such as the Scott [1987]’s model or the quadratic Gaussian
model. Then the convergence properties of the previous schemes are preserved when simulating (Yt)0≤t≤T
exactly. We have also proposed an improved scheme exhibiting both weak trajectorial convergence of order
one and weak convergence of order two.

The numerical experiments show that our schemes are very competitive for the pricing of plain vanilla
and path-dependent options. Their use with multilevel Monte Carlo gives satisfactory results too.

To conclude, we should mention that the main purpose of our study was the convergence order with
respect to the time step. It would be of great interest to carry out an extensive numerical study of the
computational complexity of the schemes presented in this paper. This will be the subject of future research.
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A Proof of Lemma 1

We first suppose that p = 1. According to Theorem 5.2 page 72 of Milstein [1995], it suffices to check
that there exists a positive constant C independent of N such that

∣∣∣E(YδN − Y
N

δN

)∣∣∣ ≤ Cδ2N

∣∣∣∣E((YδN − Y
N

δN

)2
)∣∣∣∣

1
2

≤ Cδ
3
2

N

∣∣∣∣E((YδN − Y
N

δN

)4
)∣∣∣∣

1
4

≤ Cδ
5
4

N

(30)

30



First note that

YδN − Y
N

δN =

∫ δN

0

b(Ys) − b(y0)ds+

∫ δN

0

(∫ s

0

(bσ′ +
1

2
σ2σ′′)(Yr)dr + (σσ′(Yr) − σσ′(y0))dWr

)
dWs

Thanks to Itô’s formula and to assumption (H1), we have that

∣∣∣E(YδN − Y
N

δN

)∣∣∣ =

∣∣∣∣∣

∫ δN

0

∫ s

0

E((bb′ +
1

2
b′′σ2)(Yr)

)
drds

∣∣∣∣∣

≤ C

∣∣∣∣∣

∫ δN

0

∫ s

0

C(1 + E(|Yr|2))drds
∣∣∣∣∣

≤ Cδ2N

Using assumptions (H1) and (H2), we also have ∀p ≥ 1E(∣∣∣YδN − Y
N

δN

∣∣∣
2p
)

≤ 22p−1E∣∣∣∣∣∫ δN

0

b(Ys) − b(y0)ds

∣∣∣∣∣

2p

+

∣∣∣∣∣

∫ δN

0

(∫ s

0

(bσ′ +
1

2
σσ′′)(Yr)dr + (σσ′(Yr) − σσ′(y0))dWr

)
dWs

∣∣∣∣∣

2p



≤ 22p−1

[
δ2p−1
N

∫ δN

0

E (|b(Ys) − b(y0)|2p
)
ds

+Cδp−1
N

∫ δN

0

E(∣∣∣∣∫ s

0

(bσ′ +
1

2
σσ′′)(Yr)dr + (σσ′(Yr) − σσ′(y0))dWr

∣∣∣∣
2p
)
ds

]

≤ C

[
δ2p−1
N

∫ δN

0

spds+ δp−1
N

∫ δN

0

s2p−1

∫ s

0

E(∣∣∣∣(bσ′ +
1

2
σσ′′)(Yr)

∣∣∣∣
2p
)
dr ds

+δp−1
N

∫ δN

0

sp−1

∫ s

0

E(|σσ′(Yr) − σσ′(y0)|2p
)
dr ds

]

≤ Cδ3pN

This implies both the second and the third inequality of (30). This estimation is also sufficient to extend
the result of Milstein [1995] to the L2p norm and conclude the proof.

B Proof of Lemma 8

One can easily check that (Yt)0≤t≤T is a Gaussian process which has the same distribution law as the

process (y0e
−κt + θ(1 − e−κt) + νe−κt√

2κ
We2κt−1)0≤t≤T . So,E(ec1 sup0≤t≤T |Yt|1+c2

)
= E(ec1 sup0≤t≤T |y0e−κt+θ(1−e−κt)+ νe−κt√

2κ
We2κt−1|

1+c2

)

≤ CE(eC sup0≤t≤T |We2κt−1|
1+c2

)

Since sup0≤t≤e2κT−1 |Wt| =
(
sup0≤t≤e2κT−1Wt

)
∨
(
− inf0≤t≤e2κT−1Wt

)
, we deduce from the symmetry prop-

erty of the Brownian motion thatE(ec1 sup0≤t≤T |Yt|1+c2
)

≤ CE(eC| sup
0≤t≤e2κT−1

Wt|1+c2 + eC| inf
0≤t≤e2κT−1

Wt|1+c2
)

≤ 2CE(eC| sup0≤t≤e2κT−1Wt|1+c2
)

The probability density function of sup0≤t≤T Wt is equal to y 7→
√

2
πT e

− y2

2T 1{y>0} (see for example problem

8.2 p. 96 of Karatzas and Shreve [1991]) which permits to conclude.
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C Proof of Lemma 14

The first point is an obvious consequence of the Feynman-Kac theorem. In order to prove the second
one, let us first check the following result :

For any multi-index β ∈ N3 such that β1 ≤ 6, ∃Cβ,Kβ ≥ 0 and pβ ∈ N such that

∀(y,m, v) ∈ DT , |∂βγx(y,m, v)| ≤ Cβe
−Kβx2

(1 + |x|pβ ) (31)

Indeed, using Leibniz’s formula, one can show that ∂βγx(y,m, v) can be written as a weighted sum of terms
of the form

ζk =
(x− log(s0) + ρF (y0) − ρF (y) −m)k2

vk1+ 1
2

exp

(
− (x− log(s0) + ρF (y0) − ρF (y) −m)2

2(1 − ρ2)v

) k3∏

i=0

aiF
(i)(y)

where k = (k1, k2, k3) belongs to a finit set Iβ ⊂ N3 and (ai)0≤i≤k3 are constants taking value in {0, 1}.
Using assumption (H13) and (H14) and Young’s inequality, we show that ∃Ck,Kk > 0 and pk ∈ N such

that |ζk| ≤ Cke
−Kkx2

(1 + |x|pk) which yields the desired result.
Now, let us fix α ∈ N3, l ∈ N such that 2l + |α| ≤ 6 and (t, y,m, v) ∈ [0, T ] × Dt. Thanks to PDE (20),

∂lt∂αux(t, y,m, v) = (−1)l∂αLlux(t, y,m, v). One can check that the right hand side is equal to a weighted
sum of terms of the form ∂β1ux(t, y,m, v)× πβ2(b, σ, f, h) where β1 ∈ N3 is multi-index belonging to a finite
set I1

α,l, β2 is a suffix belonging to a finite set I2
α,l and πβ2(b, σ, f, h) is a product of terms involving the

functions b, σ, f, h and their derivatives up to order 4.
On the first hand, assumptions (H12) and (H13) yield that ∃c2l,α ≥ 0 and ql,α ∈ N such that

∀β2 ∈ I2
α,l, |πβ2(b, σ, f, h)| ≤ c2l,α(1 + |y|ql,α). (32)

On the other hand, by inverting expectation and differentiations, we see that ∂β1ux(t, y,m, v) is equal
to the expectation of a product between derivatives of the flow (y,m, v) → (YT−t,mT−t, vT−t)(y,m,v) and
derivatives of the function γx evaluated at (YT−t,mT−t, vT−t)(y,m,v) ∈ DT . Using result (31) and the fact
that, under assumptions (H12) and (H13), the derivatives of the flow satisfy a system of SDEs with Lipschitz
continuous coefficients (see for example Kunita [1984]) we show that ∃c1l,α,Kl,α > 0 and pl,α ∈ N such that

∀β1 ∈ I1
α,l, |∂β1ux(t, y,m, v)| ≤ c1l,αe

−Kl,αx2

(1 + |x|pl,α). (33)

Gathering (32) and (33) enables us to conclude.

D Proof of Lemma 15

Making the link between ODEs and SDEs (see Doss [1977]), one can check that (Y
N

t1 , . . . , Y
N

tN ) has the

same distribution law as (Y 2t1 , . . . , Y 2tN ) where (Y t)t∈[0,2T ] is solution of the following inhomogeneous SDE

Y t = y0 +
∫ t
0
b(s, Y s)ds+

∫ t
0
σ(s, Y s)dWs with,

∀(s, y) ∈ [0, 2T ]× R,

b(s, y) =





b(y) − 1

2
σσ′(y) if s ∈

N−1⋃

k=0

[
(4k + 1)T

2N
,
(4k + 3)T

2N

]

−1

2
σσ′(y) otherwise

and

σ(s, y) =





0 if s ∈

N−1⋃

k=0

[
(4k + 1)T

2N
,
(4k + 3)T

2N

]

σ(y) otherwise

Since these coefficient have a uniform in time linear growth in the spatial variable, one easily concludes.
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