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High order discretization schemes for stochastic volatility models

Benjamin Jourdain and Mohamed Sbai1

Abstract

In typical stochastic volatility models, the process driving the volatility of the asset price evolves
according to an autonomous one-dimensional stochastic differential equation. We assume that the co-
efficients of this equation are smooth. Using Itô’s formula, we get rid, in the asset price dynamics, of
the stochastic integral with respect to the Brownian motion driving this SDE. Taking advantage of this
structure, we propose

- a scheme, based on the Milstein discretization of this SDE, which converges with order one to
the asset price dynamics for an appropriate notion of convergence that we call weak trajectorial
convergence,

- a scheme, based on the Ninomiya-Victoir discretization of this SDE, with order two of weak con-
vergence to the asset price.

We also propose a specific scheme with improved convergence properties when the volatility of the asset
price is driven by an Ornstein-Uhlenbeck process. We confirm the theoretical rates of convergence by
numerical experiments and show that our schemes are well adapted to the multilevel Monte Carlo method
introduced by Giles (Multilevel Monte Carlo path simulation. Operations Research, 56:607-617, 2008).

Introduction

There exists an extensive literature on numerical integration schemes for stochastic differential equations.
To start with, we mention, among many others, the work of Talay and Tubaro [29] who first established
an expansion of the weak error of the Euler scheme for polynomially growing functions allowing for the
use of Romberg extrapolation. Bally and Talay [4] extended this result to bounded measurable functions
and Guyon [12] extended it to tempered stable distributions. More recently, many discretization schemes of
higher weak convergence order have appeared in the literature. Among others, we cite the work of Kusuoka
[18, 19], the Ninomiya and Victoir [25] scheme which we will use hereafter, the Ninomiya and Ninomiya [24]
scheme and the scheme based on cubature on Wiener spaces of Lyons and Victoir [22].
Concerning strong approximation, the Milstein scheme has order one of strong convergence. Unfortunately,
it involves the simulation of iterated Brownian integrals unless a restrictive commutativity condition is
satisfied. Under ellipticity, Cruzeiro et al. [7] have recently proposed a discretization scheme which gets rid
of these iterated integrals and has nice strong convergence properties. More precisely, for each number of
time steps, there exists a Brownian motion different from the one giving the Brownian increments involved
in the scheme such that the strong error between the scheme and the stochastic differential equation driven
by this new Brownian motion is of order one. We call such a property weak trajectorial convergence of order
one. Weak trajectorial error estimation is exactly what is needed to control the discretization bias for the
computation of path dependent option prices.

Stochastic volatility models, which have now become a standard in the market, are an eloquent example of
the use of stochastic differential equations in finance. In our study, we will consider the following specification
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which nests many current stochastic volatility models :

{
dSt = rStdt+ f(Yt)St

(
ρdWt +

√
1− ρ2dBt

)
; S0 = s0 > 0

dYt = b(Yt)dt+ σ(Yt)dWt; Y0 = y0,
(1)

where (St)t∈[0,T ] is the asset price, r the instantaneous interest rate, (Bt)t∈[0,T ] and (Wt)t∈[0,T ] are inde-
pendent standard one-dimensional Brownian motions, ρ ∈ [−1, 1] is the correlation between the Brownian
motions respectively driving the asset price and the process (Yt)t∈[0,T ] which solves a one-dimensional au-
tonomous stochastic differential equation. The volatility process is (f(Yt))t∈[0,T ] where the transformation
function f is usually taken positive and strictly monotonic in order to ensure that the effective correlation
between the stock price and the volatility keeps the same sign (the function σ usually takes nonnegative
values). In the literature, the development of specific discretization schemes for stochastic volatility models
has only received little attention. We mention nevertheless the work of Kahl and Jäckel [14] who discussed
various numerical integration methods and proposed a simple scheme with order 1/2 of strong convergence
like the standard Euler scheme but with a smaller multiplicative constant. Also the numerical integration
of the CIR process and of the Heston model received a particular attention because of the inadequacy of
the Euler scheme due to the fact that both f and σ are equal to the square root function (see for example
Deelstra and Delbaen [8], Alfonsi [1], Kahl and Schurz [15], Andersen [3], Berkaoui et al. [5], Ninomiya and
Victoir [25], Lord et al. [21], Alfonsi [2]). An exact simulation technique for the Heston model was also
proposed by Broadie and Kaya [6].

In the present paper, we assume that the functions f , σ and b are smooth which means that we do not
deal with the Heston model where f(y) =

√
y, b(y) = κ(θ− y) and σ(y) = ν

√
y. As an example of stochastic

volatility models that fall within the scope of our study, let us mention

• Hull&White [13] model (ρ = 0) and Wiggins [31] (ρ 6= 0)

{
dSt = rStdt+

√
YtSt

(
ρdWt +

√
1− ρ2dBt

)

dYt = µYtdt+ ζYtdWt

which can be expressed as (1) with f(y) =
√
y, b(y) = µy and σ(y) = ζy. Note that it can also be seen

as (1) with f(y) = ey, b(y) = µ
2 − ζ2

4 and σ(y) = ζ
2 .

• Scott’s model [27] which generalizes the Hull&White model

{
dSt = rStdt+ σ0e

YtSt

(
ρdWt +

√
1− ρ2dBt

)

dYt = κ(θ − Yt)dt+ νdWt

⇒ f(y) = σ0e
y, b(y) = κ(θ − y) and σ(y) = ν.

(2)

• Stein&Stein model [28]

{
dSt = rStdt+ YtSt

(
ρdWt +

√
1− ρ2dBt

)

dYt = κ(θ − Yt)dt+ νdWt

⇒ f(y) = y, b(y) = κ(θ − y) and σ(y) = ν.

• Quadratic Gaussian model

{
dSt = rStdt+ Y 2

t St

(
ρdWt +

√
1− ρ2dBt

)

dYt = κ(θ − Yt)dt+ νdWt

⇒ f(y) = y2, b(y) = κ(θ − y) and σ(y) = ν.
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Our aim is to take advantage of the structure of (1) to construct and analyse simple and robust ad hoc
discretization schemes which have nice convergence properties. For a start, we make a logarithmic change
of variables for the asset : the two-dimensional process (Xt := log (St) , Yt)t∈[0,T ] solves the following SDE

{
dXt = (r − 1

2
f2(Yt))dt+ f(Yt)

(
ρdWt +

√
1− ρ2dBt

)
; X0 = log(s0).

dYt = b(Yt)dt+ σ(Yt)dWt; Y0 = y0.
(3)

Our main idea is to get rid in the first equality of the stochastic integral involving the common Brownian
motion (Wt)t∈[0,T ]. In all what follows, we assume that

(A) f and σ are C1 functions and σ > 0.

One can then define the primitive F (y) =
∫ y
0
f
σ
(z)dz and apply Itô’s formula to get

dF (Yt) =
f

σ
(Yt)dYt +

1

2
(σf ′ − fσ′)(Yt)dt.

Therefore (Xt, Yt)t∈[0,T ] solves

{
dXt = ρdF (Yt) + h(Yt)dt+

√
1− ρ2f(Yt)dBt

dYt = b(Yt)dt+ σ(Yt)dWt

, (4)

where h : y 7→ r− 1
2f

2(y)−ρ( b
σ
f + 1

2 (σf
′−fσ′))(y). We discretize the autonomous SDE satisfied by Y using

a scheme with high order of strong or weak convergence depending on whether one is interested in path-
dependent or vanilla options. Then, in the dynamics of X , we only need to discretize the standard integral∫ T
0 h(Ys)ds and the stochastic integral

∫ T
0 f(Yt)dBt where (Yt)t∈[0,T ] and (Bt)t∈[0,T ] are independent.

We recall that weak convergence is the right notion to analyse the discretization bias for plain vanilla
options whereas weak trajectorial convergence permits to deal with path-dependent options. The first sec-
tion of the paper is devoted to path-dependent options. Combining the Milstein discretization of the one-

dimensional SDE satisfied by (Yt)t∈[0,T ] with an appropriate discretization of the integral
∫ T
0
f(Yt)dBt based

on the independence of (Yt)t∈[0,T ] and (Bt)t∈[0,T ], we obtain a scheme with order one of weak trajectorial
convergence under several assumptions, the most restrictive one being that f2 is bounded away from 0.
When (Yt)t∈[0,T ] follows an Ornstein-Uhlenbeck process, which is the case for all the models cited above,
the order one is preserved when replacing the Milstein discretization with exact simulation. Unfortunately,
the assumption f2 bounded away from 0 is not satisfied by the stochastic volatility models cited above. For
Scott and Hull & White models, where f is positive, we manage to prove that the order one is preserved.
For the quadratic Gaussian model, taking advantage of the flatness of f(y) = y2 around the origin where
this function vanishes, we are able to prove that the order of convergence is 1− ε for any ε > 0. Finally, in
the Stein & Stein model, the fact that the derivative of f(y) = y does not vanish where this function is zero
weakens the order of convergence : the order 3

4 − ε in L2 obtained by our theoretical analysis is confirmed
by our numerical experiments.

In the second section, using the Ninomiya-Victoir discretization of the SDE satisfied by (Yt)t∈[0,T ], we
construct a scheme with order two of weak convergence. Since the SDE satisfied by Y is one-dimensional,
the Ninomiya-Victoir scheme only involves two one-dimensional ODEs whose solutions are available in closed
form. The last section is devoted to numerical experiments which confirm the theoretical rates of convergence.
We also compare the time needed by the different schemes to achieve a given precision in the multilevel
Monte Carlo computation of a plain vanilla Call option and a lookback option. The multilevel Monte Carlo
method proposed recently by Giles [9] automatically balances the bias and the statistical error and optimally
takes advantage of both the weak and the strong convergence properties of the schemes to accelerate the
computation. Somehow surprisingly, the strong convergence order has a dominating effect on its efficiency.
We are able to exhibit an explicit coupling with order one of convergence between our weak trajectorial
schemes with N and 2N steps (see Remark 5). With this coupling, the multilevel Monte Carlo estimator

3



behaves as if the scheme had order one of strong convergence and the computation time needed to achieve
the root-mean-square error ǫ > 0 is O(ǫ−2) (see [9]). For high levels of precision our schemes turn out to be
more efficient than the Euler and the Kahl-Jäckel schemes for both the vanilla Call and the lookback option.
The reason is that their better convergence properties compensate for the increase of computation effort at
each step.

Notations

We will consider, for a number of time steps N ≥ 1, the uniform subdivision
∏
N = {0 = t0 < t1 < · · · <

tN = T } of [0, T ] with the discretization step δN = T
N
.

We denote by ψ the greatest lower bound of the function ψ : y 7→ f2(y) and by ψ its lowest upper bound.
We also introduce the following notation :

ψ̂(y) =





3
2f

2(y) if ψ = ∞

ψ otherwise.

1 An efficient scheme for path dependent options pricing

Building a first order strong convergence scheme for a two dimensional SDE is not an obvious task. Even
the ad hoc schemes provided by Kahl and Jäckel [14] exhibit a strong convergence of order 1

2 .
Actually, the natural candidate for this purpose is the Milstein scheme. Unfortunately, the commutativity

condition which permits to implement it amounts to σf ′ = 0 in our setting. This condition is typically true
when either f is constant or σ = 0. Both cases are of no practical interest since they lead to a deterministic
volatility.

However, since the inherent Brownian motion is not essential for applications in finance, the usual strong
convergence criterion is not crucial for estimating the error of a scheme in pricing a path dependent option.
What is more relevant is the approximation in law of the whole trajectory of the process considered for
instance by Cruzeiro et al. [7]. Using an ingenious rotation of the Brownian motion, these authors have
constructed a discretization scheme allowing for a weak convergence on the whole trajectory of order one
which avoids the simulation of the iterated stochastic integrals.

For the SDE (3), the discretization scheme of Cruzeiro, Malliavin and Thalmaier writes as

XCMT
tk+1

= XCMT
tk

+

(
r − f2(Y CMT

tk
)

2

)
δN + ρf(Y CMT

tk
)∆Wk+1 +

ρ
2σf

′(Y CMT
tk

)∆W 2
k+1

+
√
1− ρ2σf ′(Y CMT

tk
)∆Wk+1∆Bk+1 +

√
1− ρ2f(Y CMT

tk
)∆Bk+1 − ρ

2σf
′(Y CMT

tk
)∆B2

k+1

Y CMT
tk+1

= Y CMT
tk

+
(
b(Y CMT

tk
) + 1

2 (
σ2f ′

f
− σσ′)(Y CMT

tk
)
)
δN + σ(Y CMT

tk
)∆Wk+1

+ 1
2σσ

′(Y CMT
tk

)∆W 2
k+1 − σ2f ′

2f ∆B2
k+1

(5)

where ∆Wk+1 =Wtk+1
−Wtk and ∆Bk+1 = Btk+1

−Btk correspond to the Brownian increments.
We set out to construct a much simpler scheme having the same order of weak trajectorial convergence

by taking advantage of the particular structure of the SDE defining stochastic volatility models. We first
begin with the general case of any process (Yt)t∈[0,T ] driving the volatility and then consider the case of an
Ornstein-Uhlenbeck process where we obtain more precise results.

1.1 General case

A discretization scheme will naturally involve the Brownian increments. Thanks to the independence
between (Yt)t∈[0,T ] and (Bt)t∈[0,T ], we can construct a vector (X̃t0 , . . . , X̃tN ) using only (∆B1, . . . ,∆BN )
and (Yt)t∈[0,T ], which has exactly the same law as (Xt0 , . . . , XtN ) :
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Lemma 1 — ∀0 ≤ l < N, let vl =
1
δN

∫ tl+1

tl
ψ(Ys)ds. The vector (X̃t0 , . . . , X̃tN ) defined by

X̃t0 = Xt0

∀1 ≤ k ≤ N, X̃tk = X̃t0 + ρ(F (Ytk)− F (Yt0)) +

∫ tk

0

h(Ys)ds+
√
1− ρ2

k−1∑

l=0

√
vl∆Bl+1

has the same law as (Xt0 , . . . , XtN ).

Proof : The proof is elementary. Conditionally on Y , the two vectors are Gaussian vectors with the same
mean and covariance matrix. 2

In order to approximate (X̃tk)0≤k≤N , one needs to discretize vk for k ∈ {0, . . . , N − 1}. If (vNk )0≤k≤N−1

is an approximation of (vk)0≤k≤N−1, then by Doob’s inequalityE sup
0≤k≤N−1

(
k∑

l=0

(√
vl −

√
vNl

)
∆Bl+1

)2

 ≤ 4δN

N−1∑

k=0

E[(√vl −√vNl )2
]

≤ 1

ψ
δN

N−1∑

k=0

E [(vl − vNl
)2]

as soon as ψ = infx ψ(x) is assumed to be positive and, ∀0 ≤ k ≤ N −1, vNk is greater than ψ. Consequently,

to obtain a scheme with order one of strong convergence for (X̃tk)0≤k≤N , one needs that ∀0 ≤ k ≤ N −
1,E [(vk − vNk

)2]
= O

(
1
N2

)
. According to the treatment of the term I

j

2 defined by (9) in the proof of the

Theorem 2 below, one has ∀0 ≤ k ≤ N − 1,E[(vk − (ψ(Ytk) + σψ′(Ytk)

δN

∫ tk+1

tk

(Ws −Wtk)ds

))2
]
= O

(
1

N2

)
. (6)

This equality still holds true when replacing Y by a scheme with order one of strong convergence in the

term with sign minus of the left hand side. Better still,
(
F (Ytk) +

∫ tk
0 h(Ys)ds

)
0≤k≤N

is approximated with

strong order one when replacing Y by such a scheme and using a rectangular discretization for the integral
in time.

For all these reasons, we choose the Milstein scheme for Y :

∀0 ≤ k ≤ N − 1, Ỹ Ntk+1
= Ỹ Ntk + b(Ỹ Ntk )δN + σ(Ỹ Ntk )∆Wk+1 +

1

2
σσ′(Ỹ Ntk )

(
∆W 2

k+1 − δN
)
; Ỹ Nt0 = y0.

and we write our scheme as follows

WeakTraj 1 scheme

X̃N
tk+1

= X̃N
tk

+ ρ
(
F (Ỹ Ntk+1

)− F (Ỹ Ntk )
)
+ δNh(Ỹ

N
tk
)

+
√
1− ρ2

√√√√
(
ψ(Ỹ Ntk ) +

σψ′(Ỹ Ntk )

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∨ ψ ∆Bk+1.

(7)

Note that in order to implement this scheme, one needs to simulate both the Brownian increment ∆Wk+1

and the random variable
∫ tk+1

tk
(Ws −Wtk)ds. This is straightforward as one can easily check that
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∆Wk+1∫ tk+1

tk

(Ws −Wtk)ds


 ∼ N

((
0

0

)
,

(
δN δ2N/2

δ2N/2 δ3N/3

))
.

We can now state our first main result :

Theorem 2 — Under the following assumptions

(H1) f and σ are C3 functions, f
σ
and ff ′ are bounded

(H2) ψ > 0

(H3) there exists a constant K1 such that, ∀(x, y) ∈ R2,

∣∣∣(bh′ + σ2

2
h′′)(y)

∣∣∣ ≤ K1(1 + |y|)
∣∣σh′(y)

∣∣ ≤ K1(1 + |y|)
∣∣∣h(y)− h(x)

∣∣∣ ≤ K1|y − x|

(H4) there exists a constant K2 such that, ∀(x, y) ∈ R2,

∣∣∣(bψ′ +
σ2

2
ψ′′)(y)

∣∣∣ ≤ K2(1 + |y|)
∣∣σψ′(y)− σψ′(x)

∣∣ ≤ K2|y − x|

(H5) b and σ are C2 functions with bounded first and second derivatives

(H6) there exists a positive constant K such that ∀(x, y) ∈ R2

|σσ′(x)− σσ′(y)| ≤ K|x− y|

the WeakTraj 1 scheme has order one of weak trajectorial convergence. More precisely, for each p ≥ 1,
there exists a constant C independent of the number of time steps N such thatE [ max

0≤k≤N

∣∣∣
∣∣∣
(
X̃tk , Ytk

)
−
(
X̃N
tk
, Ỹ Ntk

) ∣∣∣
∣∣∣
2p
]
≤ C

N2p
.

The proof of the theorem relies on the order one of strong convergence of the Milstein scheme (see Milstein
[23] for the particular case p = 1) :

Lemma 3 — Under the assumptions (H5) and (H6), one has that, ∀p ≥ 1, there exists a positive constant
Cp independent of N such that E( max

0≤k≤N

∣∣∣Ytk − Ỹ Ntk

∣∣∣
2p
)

≤ Cpδ
2p
N .

The proof for general p is postponed to the appendix.
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Remark 4 — Before giving the proof of the theorem, we make a few comments on its assumptions. (H1)
implies that h and ψ are C2 functions which was implicitly assumed in (H3) and (H4). The latter assumptions
are expressed in a reduced form. One can check that the following conditions on the coefficients of the original
SDE are sufficient for them to hold :

• f and σ are bounded C4 functions with bounded derivatives.

• b is a bounded C3 function with bounded derivatives.

• ∃σ0 > 0 such that ∀y ∈ R, σ(y) ≥ σ0.

Proof of the theorem : Throughout the proof, we denote by C a constant which can change from one
line to another while always being independent of N . Thanks to Lemma 3, we just have to control the error
on X̃ :E[ max

0≤k≤N
|X̃tk − X̃N

tk
|2p
]
= E max

0≤k≤N

∣∣∣ρ(F (Ytk)− F (Ỹ Ntk )) +

k−1∑

j=0

(∫ tj+1

tj

h(Ys)ds− δNh(Ỹ
N
tj
)

+

√
1− ρ2

δN

∫ tj+1

tj

ψ(Ys)ds∆Bj+1

−
√
1− ρ2

√√√√
(
ψ(Ỹ Ntj ) +

σψ′(Ỹ Ntj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∨ ψ ∆Bj+1

∣∣∣
2p






≤ 32p−1 (ρ2pI0 + I1 + (1− ρ2)pI2)

where

I0 = E [ max
0≤k≤N

∣∣∣F (Ytk)− F (Ỹ Ntk )
∣∣∣
2p
]

I1 = E max
0≤k≤N

∣∣∣
k−1∑

j=0

(∫ tj+1

tj

h(Ys)ds− δNh(Ỹ
N
tj
)

) ∣∣∣
2p




and

I2 = E max
0≤k≤N

∣∣∣
k−1∑

j=0

(√
1

δN

∫ tj+1

tj

ψ(Ys)ds −
√√√√
(
ψ(Ỹ Ntj ) +

σψ′(Ỹ Ntj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∨ ψ


∆Bj+1

∣∣∣
2p


 .

(H1) yields that F is Lipschitz continuous so using Lemma 3 we show that I0 ≤ C
N2p . Next, we have that

I1 ≤ C


E max

0≤k≤N

∣∣∣
k−1∑

j=0

∫ tj+1

tj

h(Ys)ds− δNh(Ytj )
∣∣∣
2p


+ δ2pN E max

0≤k≤N

∣∣∣
k−1∑

j=0

h(Ytj )− h(Ỹ Ntj )
∣∣∣
2p




 .

On one hand, thanks to assumption (H3) and Lemma 3,

δ2pN E max
0≤k≤N

∣∣∣
k−1∑

j=0

h(Ytj )− h(Ỹ Ntj )
∣∣∣
2p


 ≤ CδN

N−1∑

j=0

E [∣∣∣h(Ytj )− h(Ỹ Ntj )
∣∣∣
2p
]
≤ C

N2p
.

On the other hand, using an integration by parts formula,
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I1 := E max
0≤k≤N

∣∣∣
k−1∑

j=0

∫ tj+1

tj

h(Ys)− h(Ytj )ds
∣∣∣
2p




= E max
0≤k≤N

∣∣∣
k−1∑

j=0

∫ tj+1

tj

(tj+1 − s)

(
(bh′ +

σ2h′′

2
)(Ys)ds+ σh′(Ys)dWs

) ∣∣∣
2p




≤ 22p−1

(E [ max
0≤k≤N

∣∣∣
∫ tk

0

(τs − s)(bh′ +
σ2h′′

2
)(Ys)ds

∣∣∣
2p
]
+E [ max

0≤k≤N

∣∣∣
∫ tk

0

(τs − s)σh′(Ys)dWs

∣∣∣
2p
])

where we denoted by τs the lowest discretization point greater than s : τs = ⌈ s
δN

⌉δN . Using Jensen’s
inequality for the first integral and the Burkholder-Davis-Gundy inequality for the second, we obtain

I1 ≤ C

(E[ max
0≤k≤N

t2p−1
k

∫ tk

0

(τs − s)2p
∣∣∣∣(bh

′ +
σ2h′′

2
)(Ys)

∣∣∣∣
2p

ds

]

+E[(∫ T

0

(τs − s)2 |σh′(Ys)|2 ds
)p])

≤ C

N2p

∫ T

0

E[∣∣∣∣(bh′ + σ2h′′

2
)(Ys)

∣∣∣∣
2p

+ |σh′(Ys)|2p
]
ds.

Under the assumptions of Lemma 3, sup0≤t≤T E(|Ys|2p) <∞ (see Problem 3.15 p. 306 of Karatzas and Shreve

[16] for example) so, with the help of assumption (H3), we conclude that I1 ≤ C
N2p and hence I1 ≤ C

N2p . We
now turn to the last term. Using the Burkholder-Davis-Gundy inequality, we get

I2 ≤ CδpNEN−1∑

j=0



√

1

δN

∫ tj+1

tj

ψ(Ys)ds−

√√√√
(
ψ(Ỹ Ntj ) +

σψ′(Ỹ Ntj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∨ ψ



2


p


≤ δN

N−1∑

j=0

E∣∣∣∣∣∣√ 1

δN

∫ tj+1

tj

ψ(Ys)ds−

√√√√
(
ψ(Ỹ Ntj ) +

σψ′(Ỹ Ntj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∨ ψ

∣∣∣∣∣∣

2p
 .

(8)

Assumption (H2) yields that the two terms appearing in the square root are bounded from below by ψ > 0
so we have that

I2 ≤ CδN

N−1∑

j=0

E∣∣∣∣∣ 1δN ∫ tj+1

tj

ψ(Ys)ds−
(
ψ(Ỹ Ntj ) +

σψ′(Ỹ Ntj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∨ ψ
∣∣∣∣∣

2p



≤ CN2p−1
N−1∑

j=0

E∣∣∣∣∣∫ tj+1

tj

ψ(Ys)ds−
(
ψ(Ỹ Ntj )δN + σψ′(Ỹ Ntj )

∫ tj+1

tj

(Ws −Wtj )ds

)∣∣∣∣∣

2p



≤ CN2p−1
N−1∑

j=0

(
I
j

2 + Ĩj2

)

where

I
j

2 = E∣∣∣∣∣∫ tj+1

tj

ψ(Ys)ds−
(
ψ(Ytj )δN + σψ′(Ytj )

∫ tj+1

tj

(Ws −Wtj )ds

)∣∣∣∣∣

2p

 (9)

8



and

Ĩj2 = E∣∣∣∣∣δN (ψ(Ytj )− ψ(Ỹ Ntj )
)
+
(
σψ′(Ytj )− σψ′(Ỹ Ntj )

) ∫ tj+1

tj

(Ws −Wtj )ds

∣∣∣∣∣

2p

 .

Again, integrating by parts yields that

I
j

2 = E∣∣∣∣∣∫ tj+1

tj

(tj+1 − s)

(
(σψ′(Ys)− σψ′(Ytj ))dWs + ((bψ′ +

σ2

2
ψ′′)(Ys))ds

)∣∣∣∣∣

2p



We control the stochastic integral term as followsE∣∣∣∣∣∫ tj+1

tj

(tj+1 − s)(σψ′(Ys)− σψ′(Ytj ))dWs

∣∣∣∣∣

2p

≤Cδp−1

N E[∫ tj+1

tj

(tj+1 − s)2p|σψ′(Ys)− σψ′(Ytj )|2pds
]

≤Cδ3p−1
N

∫ tj+1

tj

E [∣∣σψ′(Ys)− σψ′(Ytj )
∣∣2p
]
ds

≤Cδ3p−1
N

∫ tj+1

tj

E [∣∣Ys − Ytj
∣∣2p
]
ds

≤Cδ3p−1
N

∫ tj+1

tj

|s− tj |p ds

≤Cδ4pN .

The third inequality is due to assumption (H4) and the fourth one is a standard result on the control of the
moments of the increments of the solution of a SDE with Lipschitz continuous coefficients (see Problem 3.15
p. 306 of Karatzas and Shreve [16] for example).

We also control the other term thanks to assumption (H4) :E∣∣∣∣∣∫ tj+1

tj

(tj+1 − s)(bψ′ +
σ2

2
ψ′′)(Ys)ds

∣∣∣∣∣

2p

 ≤ δ2p−1

N E[∫ tj+1

tj

(tj+1 − s)2p|(bψ′ +
σ2

2
ψ′′)(Ys)|2pds

]

≤ δ4p−1
N

∫ tj+1

tj

E[∣∣∣∣(bψ′ +
σ2

2
ψ′′)(Ys)

∣∣∣∣
2p
]
ds

≤ Cδ4pN .

Hence, I
j

2 ≤ C
N4p . To conclude the proof of the theorem, it remains to show a similar result for Ĩj2 :

Ĩj2 ≤ 22p−1E∣∣∣δN (ψ(Ytj )− ψ(Ỹ Ntj )
)∣∣∣

2p

+

∣∣∣∣∣
(
σψ′(Ytj )− σψ′(Ỹ Ntj )

) ∫ tj+1

tj

(Ws −Wtj )ds

∣∣∣∣∣

2p



≤ C

(
δ2pN E [∣∣∣Ytj − Ỹ Ntj

∣∣∣
2p
]
+
δ3pN
3p

E [∣∣∣Ytj − Ỹ Ntj

∣∣∣
2p
])

≤ C

N4p
.

The second inequality is due to the fact that ψ is Lipschitz continuous (thanks to assumption (H1)) for the

first term and to the independence of
(
σψ′(Ytj )− σψ′(Ỹ Ntj )

)
and

∫ tj+1

tj
(Ws−Wtj )ds for the second term. 2
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Remark 5 — Our scheme exhibits the same convergence properties as the Cruzeiro et al. [7] scheme. In
addition to the fact that it involves fewer terms, it presents the advantage of improving the multilevel Monte
Carlo convergence. This method, which is a generalization of the statistical Romberg extrapolation method
of Kebaier [17], was introduced by Giles [9, 10].

Indeed, consider the discretization scheme with time step δ2N = T
2N :

∀0 ≤ k ≤ 2N − 1, X̃2N
(k+1)T

2N

= X̃2N
kT
2N

+ ρ
(
F (Ỹ 2N

(k+1)T
2N

)− F (Ỹ 2N
kT
2N

)
)
+ δ2Nh(Ỹ

2N
kT
2N

) +
√
1− ρ2

×

√√√√√


ψ(Ỹ 2N

kT
2N

) +
σψ′(Ỹ 2N

kT
2N

)

δ2N

∫ (k+1)T
2N

kT
2N

(Ws −W kT
2N

)ds


 ∨ ψ

(
B (k+1)T

2N
−B kT

2N

)
.

Denote by v2Nk =
√
1− ρ2

√√√√
(
ψ(Ỹ 2N

kT
2N

) +
σψ′(Ỹ 2N

kT
2N

)

δ2N

∫ (k+1)T
2N

kT
2N

(Ws −W kT
2N

)ds

)
∨ ψ the random variable which

multiplies the increment of the Brownian motion
(
B (k+1)T

2N
−B kT

2N

)
. Because of the independence properties,

(
X̃N
tk

)
0≤k≤N

has the same distribution law as the vector

(
˜̃
X
N

tk

)

0≤k≤N
defined inductively by

˜̃
X
N

t0
= log(s0)

and

∀0 ≤ k ≤ N − 1,
˜̃
X
N

tk+1
=
˜̃
X
N

tk
+ ρ

(
F (Ỹ Ntk+1

)− F (Ỹ Ntk )
)
+ δNh(Ỹ

N
tk
)

+
√
1− ρ2

√√√√
(
ψ(Ỹ Ntk ) +

σψ′(Ỹ Ntk )

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∨ ψ ∆B̃Nk+1

where

∆B̃Nk+1 =
√
2



v2N2k

(
B (2k+1)T

2N

−B 2kT
2N

)
+ v2N2k+1

(
B (2k+2)T

2N

−B (2k+1)T
2N

)

√(
v2N2k

)2
+
(
v2N2k+1

)2


 . (10)

Going over the proof of the theorem, one can show in the same way thatE[ max
0≤k≤N

∣∣∣∣
˜̃
X
N

tk
− X̃2N

tk

∣∣∣∣
2
]
= O(N−2). (11)

Hence, one can apply the multilevel Monte Carlo method to compute the expectation of a Lipschitz continuous
functional of X and reduce the computational cost to achieve a desired root-mean-square error of ǫ > 0 to a
O(ǫ−2).

To summarize, the particular structure of our scheme enabled us to reconstruct the coupling which allows
to efficiently control the error between the scheme with time step T

N
and the one with time step T

2N . This
does not seem possible with the Cruzeiro et al. [7] scheme.

From a practical point of view, it is more interesting to obtain a convergence result for the stock price.
It is also more challenging because the exponential function is not globally Lipschitz continuous. We can
nevertheless state the following corollary with some general assumptions and we will see in the next section
that we can make them more precise in the case where (Yt)t∈[0,T ] is an Ornstein-Uhlenbeck process.

Corollary 6 — Let p ≥ 1. Under the assumptions of Theorem 2 and if

10



(H7) ∃ǫ > 0 such that E [ max
0≤k≤N

S2p+ǫ
tk

]
+ E [ max

0≤k≤N
e(2p+ǫ)X̃

N
tk

]
<∞

then there exists a positive constant C independent of N such thatE [ max
0≤k≤N

∣∣∣eX̃tk − eX̃
N
tk

∣∣∣
2p
]
≤ C

N2p
.

Proof : Using Hölder inequality we have thatE [ max
0≤k≤N

∣∣∣eX̃tk − eX̃
N
tk

∣∣∣
2p
]

≤ E [ max
0≤k≤N

(
e2pX̃tk ∨ e2pX̃

N
tk

) ∣∣∣X̃tk − X̃N
tk

∣∣∣
2p
]

≤
(E [ max

0≤k≤N
S2p+ǫ
tk

]
+ E [ max

0≤k≤N
e(2p+ǫ)X̃

N
tk

]) 2p
2p+ǫ

×
(E[ max

0≤k≤N

∣∣∣X̃tk − X̃N
tk

∣∣∣
2pǫ+4p2

ǫ

]) ǫ
2p+ǫ

.

We conclude by assumption (H7) and Theorem 2. 2

Remark 7 — Had we introduced a new cut-off to our scheme as follows

X̃N
tk+1

= X̃N
tk

+ ρ
(
F (Ỹ Ntk+1

)− F (Ỹ Ntk )
)
+ δNh(Ỹ

N
tk
)

+
√
1− ρ2

√√√√
(
ψ(Ỹ Ntk ) +

σψ′(Ỹ Ntk )

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∧ ψ ∨ ψ ∆Bk+1

assumption (H7) would have been induced by assuming that the functions F, f and h are bounded.

1.2 Special case of an Ornstein-Uhlenbeck process driving the volatility

For many stochastic volatility models, the process (Yt)t∈[0,T ] which drives the volatility is an Ornstein-
Uhlenbeck process. For example, this is the case for all the models cited in the introduction but the Heston
model. Therefore, it is useful to focus on this particular case. We will hereafter suppose that (Yt)t∈[0,T ] is
the solution of the following SDE

dYt = νdWt + κ(θ − Yt)dt, Y0 = y0 (12)

with ν > 0 and κ, θ ∈ R. Since exact simulation is possible, we can replace the Milstein discretization by the
true solution in our previous scheme :

WeakTraj 1 scheme when Y is an O-U process

X̃N
tk+1

= X̃N
tk

+ ρ
(
F (Ytk+1

)− F (Ytk)
)
+ δNh(Ytk)

+
√
1− ρ2

√(
ψ(Ytk) +

νψ′(Ytk)

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∨ ψ ∆Bk+1.

(13)
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Note that we require the exact simulation of both (Ytk , Ytk+1
) and

∫ tk+1

tk
(Ws −Wtk)ds. The unique solution

of (12) is Yt = y0e
−κt+ θ(1− e−κt) + ν

∫ t
0 e

−κ(t−s)dWs and one can easily deduce that, ∀k ∈ {0, . . . , N − 1},



Ytk+1
− e−κδNYtk

∫ tk+1

tk
(Ws −Wtk)ds


 ∼ N (M,Γ)

where M =

(
θ(1− e−κδN )

0

)
and Γ =




ν2

2κ (1− e−2κδN ) ν
κ2 (1− e−κδN (1 + κδN ))

ν
κ2 (1− e−κδN (1 + κδN ))

δ3N
3


.

We first state the following technical lemma whose proof is postponed to the appendix :

Lemma 8 — ∀ c1 > 0, c2 ∈ [0, 1), E(ec1 sup0≤t≤T |Yt|1+c2
)
<∞.

Moreover, when y0 6= 0, ∀α > 0, ∃C < +∞, ∀N ∈ N∗, sup
t∈[0,T ]

P [|Yt| ≤ N−α] ≤ CN−α. (14)

As might be expected, it is possible to weaken the assumptions of Theorem 2. In particular, we relax
the assumption on the lower bound of the volatility (H2) and replace it with a weaker one (see assumption
(H10) below). The following theorem applies for Scott’s model [27] (and therefore for the Hull and White

[13] model) where we have h(y) = r − σ2
0e

2y

2 − ρσ0e
y(κ
ν
(θ − y) + ν

2 ) and ψ(y) = σ2
0e

2y.

Theorem 9 — Let p ≥ 1. Suppose that Y is solution of (12) and that the scheme is defined by (13). Under
assumption (H2) of Theorem 2 and if

(H8) f is a C3 function

(H9) there exist three constants c0 > 0, c1 > 0 and c2 ∈ [0, 1) such that, ∀y ∈ R,
∣∣∣κ(θ − y)h′(y) +

ν2

2
h′′(y)

∣∣∣ ≤ c0e
c1|y|1+c2

∣∣h′(y)
∣∣ ≤ c0e

c1|y|1+c2

∣∣∣κ(θ − y)ψ′(y) +
ν2

2
ψ′′(y)

∣∣∣ ≤ c0e
c1|y|1+c2

∣∣ψ′′(y)
∣∣ ≤ c0e

c1|y|1+c2

then there exists a constant C independent of the number of time steps N such thatE [ max
0≤k≤N

∣∣∣X̃tk − X̃N
tk

∣∣∣
2p
]
≤ C

N2p

The same result holds true when we replace assumption (H2) by

(H10)
∀y ∈ R, ψ(y) > 0

sup
t≤T

E( 1

ψp(1+ǫ)(Yt)

)
< ∞.
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Proof : The proof of the first part of the theorem repeats the proof of Theorem 2 with fewer terms to
control because of the exact simulation of (Yt)t∈[0,T ]. At the places where we used assumptions (H3) and
(H4), we use assumption (H9) together with Lemma 8.

We now focus on the second part of the theorem. According to equation (8), all we have to show is the
existence of a positive constant C independent of N such that ∀j ∈ {0, . . . , N − 1}E [∣∣∣√Aj −√Dj

∣∣∣
2p
]
≤ C

N2p

where

- Aj =
1
δN

∫ tj+1

tj
ψ(Ys)ds,

- Dj =
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj
(Ws −Wtj )ds

)
∨ ψ.

One has

|
√
Aj −

√
Dj |2p =

|Aj −Dj |2p
(
√
Aj +

√
Dj)2p

≤ |Aj −Dj |2p
Apj

.

Hence by Hölder’s and Jensen’s inequalities,E [|√Aj −√Dj |2p
]
≤
(E[ 1

A
p(1+ǫ)
j

]) 1
1+ǫ (E [|Aj −Dj|2p

1+ǫ
ǫ

]) ǫ
1+ǫ

≤
(

1

δN

∫ tj+1

tj

E( 1

ψp(1+ǫ)(Ys)

)
ds

) 1
1+ǫ (E [|Aj −Dj |2p

1+ǫ
ǫ

]) ǫ
1+ǫ

.

Thanks to assumption (H10), the first term in the right-hand-side is smaller than a finite constant not

depending on N whereas the second term is smaller than Cδ2pN according to the estimation of I
j

2 in the proof
of Theorem 2. 2

The following proposition is dedicated to the Stein and Stein [28] and the quadratic Gaussian models which

satisfy neither assumption (H2) nor assumption (H10) since ψ(y) vanishes at the origin.

Proposition 10 — Suppose that Y is solution of (12) starting from y0 and that the scheme is defined by
(13). Then for p ≥ 1 and ε > 0, there is a constant C not depending on N such thatE [ max

0≤k≤N

∣∣∣X̃tk − X̃N
tk

∣∣∣
2p
]
≤
{

C

N
2p+1

2
−ε

in the Stein and Stein model when y0 6= 0

C
N2p−ε in the quadratic Gaussian model

.

In particular, the order of convergence in L2 is not smaller that 3/4− ε in the Stein and Stein model.

Proof : In both the Stein and Stein and the quadratic Gaussian models the function h(y), respectively

equal to r − y2

2 − ρ
(
κy
ν
(θ − y) + ν

2

)
and r − y4

2 − ρ
(
κy2

ν
(θ − y) + νy

)
satisfies the first two inequalities of

assumption (H9). So we only need to focus on E [∣∣√Aj −√Dj

∣∣2p
]
with

(Aj , Dj, ψ(y)) =





(
1
δN

∫ tj+1

tj
Y 2
s ds,

(
Y 2
tj
+

2νYtj
δN

∫ tj+1

tj
(Ws −Wtj )ds

)+
, y2
)

in the Stein and Stein model
(

1
δN

∫ tj+1

tj
Y 4
s ds,

(
Y 4
tj
+

4νY 3
tj

δN

∫ tj+1

tj
(Ws −Wtj )ds

)+

, y4

)
in the quadratic Gaussian model

.
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So in both cases Dj ≤ ψ(Ytj )

2 ⇒
∣∣∣ 4νδN

∫ tj+1

tj
(Ws −Wtj )ds

∣∣∣ ≥ |Ytj |
2 . In what follows, we use repeatedly that

the power function ψ is non-decreasing on the positive half line and commutes with other power functions.
Let (αl)1≤l≤L be a decreasing sequence in (0, 12 ). Using the convention N−αL+1 = +∞, one hasE [∣∣∣√Aj −√Dj

∣∣∣
2p
]

≤ E [∣∣∣√Aj −√Dj

∣∣∣
2p 1{|Ytj |<N−α1}

]

+

L∑

l=1

E[ |Aj −Dj |2p

(
√
Aj +

√
Dj)2p

1
{N−αl≤|Ytj |<N

−αl+1 ,Dj≥
ψ(Ytj

)

2 }

]

+

L∑

l=1

E[∣∣∣√Aj −
√
Dj

∣∣∣
2p 1

{N−αl≤|Ytj |<N
−αl+1 ,

∣∣∣ 4ν
δN

∫ tj+1
tj

(Ws−Wtj
)ds

∣∣∣≥
|Ytj |

2 }

]

≤ E [(Apj +Dp
j )1{|Ytj |<N−α1}

]
+ C

L∑

l=1

ψ(Npαl)E [|Aj −Dj |2p 1{|Ytj |<N−αl+1}

]

+E [(Apj +Dp
j )1{| 4ν

δN

∫ tj+1
tj

(Ws−Wtj
)ds|>N−α1

2 }

]
.

(15)

Since conditionally on Ytj , for s ∈ [tj , tj+1], Ys ∼ N1(Ytj e
−κ(s−tj) + θ(1 − e−κ(s−tj)), ν

2

2κ (1 − e−2κ(s−tj)))

(convention : ν2

2κ (1 − e−2κ(s−tj)) = ν2(s − tj) when κ = 0) and 1
δN

∫ tj+1

tj
(Ws − Wtj )ds ∼ N1(0,

δN
3 ) is

independent from Ytj the first term in the right-hand-side of (15) is not greater thanE[ 1

δN

∫ tj+1

tj

E [ψ(Ys)p|Ytj ] ds1{|Ytj |<N−α1}

]
+2p−1E[(ψ(Ytj )p+∣∣∣∣∣νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

∣∣∣∣∣

p)1{|Ytj |<N−α1}

]

≤ CE [(ψ(Ytj )p + ψ(δ
p
2

N ))1{|Ytj |<N−α1}

]
+ C(ψ(N−pα1) + ψ′(N−pα1)N− p

2 )P(|Ytj | < N−α1)

≤ Cψ(N−pα1)P(|Ytj | < N−α1),

where we used α1 < 1
2 for the last inequality. By Hölder’s inequality and since α1 < 1

2 and G =√
3
δ3N

∫ tj+1

tj
(Ws − Wtj )ds ∼ N1(0, 1), the third term in the right-hand-side of (15) is not greater than a

constant multiplyingE 1
1+ξ

[
1

δN

∫ tj+1

tj

ψ(Ys)
p(1+ξ)ds+ ψ(Ytj )

p(1+ξ) +
|ψ′(Ytj )|p(1+ξ)

δN

∫ tj+1

tj

ψ((s− tj)
p(1+ξ)

4 )ds

]P ξ
1+ξ

(
|G| ≥ CN

1
2−α1

)
.

The first term of the product is bounded whereas, by the usual bound of the tail of the normal law ∀t >
0,P(|G| ≥ t) ≤ 2e−

t2

2

t
√
2π

, the product of the second term by any polynomial function of N is bounded.

Now for l ∈ {1, . . . , L}, E [|Aj −Dj |2p 1{|Ytj |<N−αl+1}

]
is not greater than

1

δ2pN
E∣∣∣∣∣∫ tj+1

tj

(tj+1 − s)

(
(νψ′(Ys)− νψ′(Ytj ))dWs + ((bψ′ +

ν2

2
ψ′′)(Ys))ds

)∣∣∣∣∣

2p 1{|Ytj |<N−αl+1}


 ,

with b(y) = κ(θ − y). As, by convention, N−αL+1 = +∞, reasoning like in the estimation of I
j

2 in the proof
of Theorem 2, one checks that the term with index l = L in the sum in the right-hand-side of (15) is smaller
than Cψ(NpαL)N−2p. In the quadratic Gaussian model, since ψ′(y) = 3y3, using Burckholder-Davis-Gundy
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inequality then Hölder’s inequality, one obtains that for ξ > 0,E∣∣∣∣∣∫ tj+1

tj

(tj+1 − s)(ψ′(Ys)− ψ′(Ytj ))dWs

∣∣∣∣∣

2p 1{|Ytj |<N−αl+1}




≤ C

Np−1

∫ tj+1

tj

(tj+1 − s)2pE [|Ys − Ytj |2p(|Ys|4p + |Ytj |4p)1{|Ytj |<N−αl+1}

]
ds

≤ C

N3p−1

∫ tj+1

tj

E ξ
1+ξ

[∣∣Ys − Ytj
∣∣ 2p(1+ξ)ξ

]E 1
1+ξ

[
(|Ys|4p(1+ξ) + |Ytj |4p(1+ξ))1{|Ytj |<N−αl+1}

]
ds

≤ C

N3p−1

∫ tj+1

tj

C

Np
× CP 1

1+ξ
(
|Ytj | < N−αl+1

)

N4pαl+1
ds ≤ C

P 1
1+ξ
(
|Ytj | < N−αl+1

)

N4p(1+αl+1)
.

In the Stein and Stein model, since ψ′(y) = 2y, one can only take advantage of the indicator function in the
probability in the numerator and the power of N in the denominator is reduced to 4p. In both models, the

same bound with ξ = 0 can be derived for E [∣∣∣∫ tj+1

tj
(tj+1 − s)((bψ′ + ν2

2 ψ
′′)(Ys))ds

∣∣∣
2p 1{|Ytj |<N−αl+1}

]
and

one concludes thatE [|Aj −Dj |2p 1{|Ytj |<N−αl+1}

]
≤




C
P 1

1+ξ (|Ytj |<N
−αl+1)

N2p in the Stein and Stein model

C
P 1

1+ξ (|Ytj |<N
−αl+1)

N
2p(1+2αl+1) in the quadratic Gaussian model

.

Plugging the three estimations together with (14) in (15), one deduces that in the Stein and Stein model,
when y0 6= 0, E [∣∣∣√Aj −√Dj

∣∣∣
2p
]
≤ C

(
N−(2p+1)α1 +

L−1∑

l=1

N−2p(1−αl)−
αl+1
1+ξ +N−2p(1−αL)

)
.

Now we may suppose that ε < 1
2 since the smaller ε is the stronger the statement of the proposition

is. We choose αl = 1
2 − lε

2p+1 for l ∈ {1, . . . , L − 1} with L = ⌈ (2p+1)(1−2ε)
4pε ⌉ and αL = 2p−1+2ε

4p and

ξ = 2ε
1−2ε . Then (2p + 1)α1 = 2p(1 − αL) = 2p+1

2 − ε and for l ∈ {1, . . . , L − 1}, 2p(1 − αl) +
αl+1

1+ξ ≥
2p+1

2 + (2pl− l+1
1+ξ )

ε
2p+1 − ξ

2(1+ξ) ≥ 2p+1
2 + 0− ε.

In the quadratic Gaussian model, plugging the three estimations in (15), one obtains thatE [∣∣∣√Aj −√Dj

∣∣∣
2p
]
≤ C

(
N−(4p+1{y0 6=0})α1 +

L−1∑

l=1

N−2p(1+2(αl+1−αl))−1{y0 6=0}
αl+1
1+ξ +N−2p(1−2αL)

)
. (16)

We choose αl =
2p−lε
4p for l ∈ {1, . . . , L − 1} with L = ⌈ 2p

ε
⌉ − 1 and αL = ε

4p . Then 4pα1 = 2p(1 − 2αL) =

2p− ε = 2p(1 + 2(αl+1 − αl)) for l ∈ {1, . . . , L− 2} and 2p(1 + 2(αL − αL−1)) =
(
⌈ 2p
ε
⌉ − 1

)
ε ≥ 2p− ε. 2

Remark 11 —

• In the quadratic Gaussian model, when y0 6= 0, choosing ξ = 1, αl =
2p

4p+1

(
8p

8p+1

)l−1

for l ∈ {1, . . . , L}

with L = ⌈ 2 log logN

log 8p+1
8p

⌉ in (16), one obtains that E [max0≤k≤N
∣∣∣X̃tk − X̃N

tk

∣∣∣
2p
]
≤ C log logN

N2p .
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• The fact that we can simulate exactly the volatility process without affecting the order of convergence
of the scheme is yet another advantage of our approach over the Cruzeiro et al. [7] scheme. On the
other hand, the Kahl and Jäckel [14] scheme allows the exact simulation of (Yt)t∈[0,T ]. Applied to the
SDE (3), it writes as

XIJK
tk+1

= XIJK
tk

+

(
r − f2(Ytk+1

) + f2(Ytk)

4

)
δN + ρf(Ytk)∆Wk+1

+
√
1− ρ2

f(Ytk+1
) + f(Ytk)

2
∆Bk+1 +

ρν

2
f ′(Ytk)

(
(∆Wk+1)

2 − δN

)
.

(17)

Note that it is close to our scheme insofar as it takes advantage of the structure of the SDE (for example,
unlike the Cruzeiro et al. [7] scheme, it allows the use of the coupling introduced in Remark 5). The
main difference, which explains why our scheme has better weak trajectorial convergence order, is that
we discretize more accurately the integral of f(Yt) with respect to the Brownian motion (Bt)t∈[0,T ]. If,
instead of a trapezoidal method, one uses the same discretization as for the WeakTraj 1 scheme, then
it can be shown that this modified IJK scheme will exhibit a first order weak trajectorial convergence.

• It is possible to improve the convergence at fixed times up to the order 3
2 . Following Lapeyre and

Temam [20] who approximate an integral of the form
∫ tk+1

tk
g(Ys)ds for a twice differentiable function g

by δNg(Ytk)+ νg′(Ytk)
∫ tk+1

tk
(Ws−Wtk)ds+(κ(θ−Ytk)g

′(Ytk)+
ν2

2 g
′′(Ytk))

δ2N
2 , we obtain the following

scheme

OU Improved scheme

X̃N
tk+1

= X̃N
tk

+ ρ
(
F (Ytk+1

)− F (Ytk)
)
+ h̃k +

√
1− ρ2

√
ψ̃k ∆Bk+1, (18)

where h̃k = δNh(Ytk) + νh′(Ytk)
∫ tk+1

tk
(Ws −Wtk)ds+ (κ(θ − Ytk)h

′(Ytk) +
ν2

2 h
′′(Ytk))

δ2N
2 and

ψ̃k =
(
ψ(Ytk) +

νψ′(Ytk )

δN

∫ tk+1

tk
(Ws −Wtk)ds+ (κ(θ − Ytk)ψ

′(Ytk) +
ν2

2 ψ
′′(Ytk))

δN
2

)
∨ ψ.

Mimicking the proof of Theorem 2, one can show that

max
0≤k≤N

E [∣∣∣X̂tk − X̂N
tk+1

∣∣∣
2
]
= O

(
N−3

)
,

where X̂tk and X̂N
tk+1

have respectively the same distribution as Xtk and X̃N
tk

:

X̂tk = X0 + ρ(F (Ytk)− F (y0)) +

∫ tk

0

h(Ys)ds+
√
1− ρ2

√
1

tk

∫ tk

0

ψ(Ys)ds Btk

and

X̂N
tk

= X0 + ρ (F (Ytk)− F (y0)) +

k−1∑

j=0

h̃j +
√
1− ρ2

√√√√δN
tk

k−1∑

j=0

ψ̃j Btk .

As for the stock, we can prove the same convergence result under some additional assumptions which
are more explicit than assumption (H7) of Corollary 6. To do so, let us make the following changes in our
scheme so that we can control its exponential moments :

X̃N
tk+1

= X̃N
tk

+ ρ
(
F (Ytk+1

)− F (Ytk)
)
+ δNh(Ytk)

+
√
1− ρ2

√(
ψ(Ytk) +

νψ′(Ytk )

δN

∫ tk+1

tk

(Ws −Wtk)ds

)
∧ ψ̂(Ytk) ∨ ψ ∆Bk+1.

(19)
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Proposition 12 — Suppose that Y is solution of (12) and that the scheme is defined by (19).
Under the assumptions (H8), (H9) and (H10) of Theorem 9 and if

(H11) there exists β ∈ (0, 1) and K > 0 such that ∀y ∈ R
|h(y)|+ |F (y)| ≤ K(1 + |y|1+β)

|f(y)| ≤ K(1 + |y|β)

|f ′(y)| ≤ K|f(y)|

then, ∀p ≥ 1, there exists a positive constant C independent of N such thatE [ max
0≤k≤N

∣∣∣eX̃tk − eX̃
N
tk

∣∣∣
2p
]
≤ C

N2p
.

The same result holds true if one replaces assumption (H10) by assumption (H2).

Proof : We go over the proof of Corollary 6. The fact that E [max0≤k≤N
∣∣∣X̃tk − X̃N

tk

∣∣∣
4p
]
= O( 1

N4p )

is not a straightforward consequence of Theorem 9 anymore because we have introduced some changes in
our scheme. However, looking through the proof of the theorem, one can see that it is enough to prove the
following inequality : ∀j ∈ {0, . . . , N − 1}E∣∣∣∣∣∣√ 1

δN

∫ tj+1

tj

ψ(Ys)ds−

√√√√
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∧ ψ̂(Ytj ) ∨ ψ

∣∣∣∣∣∣

2p

 ≤ C

N2p
. (20)

When ψ is finite, since 1
δN

∫ tj+1

tj
ψ(Ys)ds is smaller than ψ̂(Ytj ) = ψ, the expectation is not greater than the

similar one without the new cut-off and (20) holds by the proof of Theorem 9. When ψ = +∞, for ǫ > 0,
the expectation of interest is smaller thanE∣∣∣∣∣∣√ 1

δN

∫ tj+1

tj

ψ(Ys)ds−

√√√√
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∨ ψ

∣∣∣∣∣∣

2p



+ E 1
1+ǫ



(

1

δN

∫ tj+1

tj

ψ(Ys)
pds+ (

3

2
ψ(Ytj ))

p

)1+ǫ

P ǫ

1+ǫ

[
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds ≥
3

2
ψ(Ytj )

]
.

We estimate the first term like in the proof of Theorem 9. The expectation in the second term is bounded
uniformly in N . By hypothesis (H11), ∃K < +∞, ∀y ∈ R, |ψ′(y)| ≤ Kψ(y) and, for G normally distributed,

the probability in this second term is smaller than P(|G| ≥ C√
δN

)
which decreases quicker than polynomially

to 0 as N → ∞. Therefore (20) holds.

Now, what is left to prove is that assumption (H7) is satisfied. On the one hand, we have thatE [ max
0≤k≤N

S4p
tk

]
= E[ max

0≤k≤N

(
S0 +

∫ tk

0

rSsds+

∫ tk

0

f(Ys)Ss

(
ρdWs +

√
1− ρ2dBs

))4p
]

≤ C

(
1 +

∫ T

0

E(S4p
t (1 + f4p(Yt))

)
dt

)

≤ C

(
1 +

∫ T

0

√E(S8p
t )
√E ((1 + f4p(Yt))2)dt

)
.
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Thanks to assumption (H11) and Lemma 8, there exists C > 0 such that
√E ((1 + f4p(Yt))2) ≤ C. Observe

that conditionally on (Yt)t∈[0,T ],

Xt ∼ N
(
log(s0) + ρ(F (Yt)− F (y0)) +

∫ t

0

h(Ys)ds , (1− ρ2)

∫ t

0

f2(Ys)ds

)
, (21)

so, by Jensen’s inequality and assumption (H11)E(S8p
t

)
= E(e8p(log(s0)+ρ(F (Yt)−F (y0))+

∫
t
0
h(Ys)ds)e32p

2(1−ρ2)
∫
t
0
f2(Ys)ds

)

≤ E(e8p(log(s0)+ρ(F (Yt)−F (y0)))
1

t

∫ t

0

et(8ph(Ys)+32p2(1−ρ2)f2(Ys))ds

)

≤ CE(eC sup0≤t≤T |Yt|1+β
)
.

Using Lemma 8, we deduce that E [max0≤k≤N S
4p
tk

]
<∞.

On the other hand, using Cauchy-Schwarz inequality, we have thatE [ max
0≤k≤N

e4pX̃
N
tk

]
= E max

0≤k≤N
exp


4p


X0 + ρ(F (Ytk)− F (y0)) +

k−1∑

j=0

δNh(Ytj ) +
k−1∑

j=0

√
1− ρ2

×

√√√√
(
ψ(Ytj ) +

νψ′(Ytj )

δN

∫ tj+1

tj

(Ws −Wtj )ds

)
∧ ψ̂(Ytj ) ∨ ψ∆Bj+1








≤
√
ẼN1

√
ẼN2 ,

where

ẼN1 = E [ max
0≤k≤N

e8p(X0+ρ(F (Ytk )−F (y0))+
∑k−1
j=0 δNh(Ytj ))

]

and

ẼN2 = E max
0≤k≤N

e
8p
√

1−ρ2 ∑k−1
j=0

√(
ψ(Ytj )+

νψ′(Ytj )

δN

∫ tj+1
tj

(Ws−Wtj
)ds

)
∧ψ̂(Ytj )∨ψ∆Bj+1


 .

Using the same argument as before, we show that ẼN1 ≤ CE(eC sup0≤t≤T |Yt|1+β
)
<∞.

Denote by Dj =
(
ψ(Ytj ) +

σψ′(Ytj )

δN

∫ tj+1

tj
(Ws −Wtj )ds

)
∧ ψ̂(Ytj ) ∨ ψ. Using Doob’s maximal inequality

for the positive submartingale
(
e4p

√
1−ρ2

∑k−1
j=0

√
Dj∆Bj+1

)
0≤k≤N

(see Theorem 3.8 p. 13 of Karatzas and

Shreve [16] for example), we also have that

ẼN2 ≤ 4E(e8p√1−ρ2
∑N−1
j=0

√
Dj ∆Bj+1

)

= 4EN−1∏

j=0

e32p
2δN (1−ρ2)Dj




≤ 4E( max
0≤k≤N−1

e32p
2(1−ρ2)ψ̂(Ytj )

)
.

By virtue of assumption (H11), ẼN2 <∞ which concludes the proof. 2
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2 A second order weak scheme

Integrating the first stochastic differential equation in (4) gives

Xt = log(s0) + ρ(F (Yt)− F (y0)) +

∫ t

0

h(Ys)ds+
√
1− ρ2

∫ t

0

f(Ys)dBs. (22)

We are only left with an integral with respect to time which can be handled by the use of a trape-
zoidal scheme and a stochastic integral where the integrand is independent of the Brownian motion. Hence,
conditionally on (Yt)t∈[0,T ],

XT ∼ N
(
log(s0) + ρ(F (YT )− F (y0)) +mT , (1− ρ2)vT

)
, (23)

where mT =
∫ T
0
h(Ys)ds and vT =

∫ T
0
f2(Ys)ds. This suggests that, in order to properly approximate the

law of XT , one should accurately approximate the law of YT and carefully handle integrals with respect to
time of functions of the process (Yt)t∈[0,T ]. We thus define our weak scheme as follows

Weak 2 scheme

X
N

T = log(s0) + ρ(F (Y
N

T )− F (y0)) +mN
T +

√
(1 − ρ2)vNT G (24)

where mN
T = δN

∑N−1
k=0

h(Y
N

tk
)+h(Y

N

tk+1
)

2 , vNT = δN
∑N−1
k=0

f2(Y
N

tk
)+f2(Y

N

tk+1
)

2 , (Y
N

tk
)0≤k≤N is the Ninomiya-

Victoir scheme of (Yt)t∈[0,T ] and G is an independent centered reduced Gaussian random variable. Note

that, conditionally on (Y
N

tk
)0≤k≤N , X

N

t is also a Gaussian random variable with mean log(s0) + ρ(F (Y
N

T )−
F (y0)) +mN

T and variance (1− ρ2)vNT .

It is well known that the Ninomiya and Victoir [25] scheme is of weak order two. For the sake of
completeness, we give its definition in our setting :

{
Y
N

0 = y0

∀0 ≤ k ≤ N − 1, Y
N

tk+1
= exp

(
T
2N V0

)
exp

(
(Wtk+1

−Wtk)V
)
exp

(
T
2N V0

)
(Y

N

tk
),

where V0 : x 7→ b(x)− 1
2σσ

′(x) and V : x 7→ σ(x). The notation exp(tV )(x) stands for the solution, at time t
and starting from x, of the ODE η′(t) = V (η(t)). What is nice with our setting is that we are in dimension

one and thus such ODEs can be solved explicitly. Indeed, if ζ is a primitive of 1
V

: ζ(t) =
∫ t
0

1
V (s)ds, then

the solution writes as η(t) = ζ−1 (t+ ζ(x)).
Note that our scheme can be seen as a splitting scheme for the SDE satisfied by (Zt = Xt − ρF (Yt), Yt) :

{
dZt = h(Yt)dt+

√
1− ρ2f(Yt)dBt

dYt = b(Yt)dt+ σ(Yt)dWt.
(25)

The differential operator associated to (25) writes as

Lv(z, y) = h(y)
∂v

∂z
+ b(y)

∂v

∂y
+
σ2(y)

2

∂2v

∂y2
+

(1 − ρ2)

2
f2(y)

∂2v

∂z2
= LY v(z, y) + LZv(z, y),

where LY v(z, y) = b(y)∂v
∂y

+ σ2(y)
2

∂2v
∂y2

and LZv(z, y) = h(y)∂v
∂z

+ (1−ρ2)
2 f2(y)∂

2v
∂z2

. One can check that our
scheme amounts to first integrate exactly LZ over a half time step then apply the Ninomiya-Victoir scheme
to LY over a time step and finally integrate exactly LZ over a half time step. According to results on
splitting (see Alfonsi [2] or Tanaka and Kohatsu-Higa [30] for example) one expects this scheme to exhibit
second order weak convergence. Actually, according to Theorem 1.17 in Alfonsi [2], our scheme has potential
second order of weak convergence. To deduce formally the order two of weak convergence, one only needs
to check regularity of the solution of the backward Kolmogorov equation associated with the model.
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Remark 13 —

• As for plain vanilla options pricing, observe that, by the Romano and Touzi [26] formula,E (e−rTα(ST )|(Yt)t∈[0,T ]

)
= BSα,T

(
s0e

ρ(F (YT )−F (y0))+mT+(
(1−ρ2)vT

2T −r)T ,
(1− ρ2)vT

T

)
,

where BSα,T (s, v) stands for the price of a European option with pay-off α and maturity T in the Black
& Scholes model with initial stock price s, volatility

√
v and constant interest rate r. When, like for

a call or a put option, BSα,T is available in a closed form, one should approximate E (e−rTα(ST )) by
1

M

M∑

i=1

BSα,T

(
s0e

ρ(F (Y
N,i

T )−F (y0))+m
N,i
T +(

(1−ρ2)v
N,i
T

2T −r)T ,
(1− ρ2)vN,iT

T

)
,

where M is the total number of Monte Carlo samples and the index i refers to independent draws.

Indeed, the conditioning provides a variance reduction.

• In the special case of an Ornstein-Uhlenbeck process driving the volatility (i.e (Yt)t∈[0,T ] is solution of
the SDE (12)), one should replace the Ninomiya-Victoir scheme by the true solution. The order two
of weak convergence should then be preserved. Moreover, one can check that the OU Improved scheme
(18) has also potential second order of weak convergence. Better still, it achieves a weak trajectorial
convergence of order 3

2 on the triplet (Yt,mt, vt)t∈[0,T ] which allows for a significant improvement of
the multilevel Monte Carlo method, as we shall check numerically.

3 Numerical comparative analysis of the proposed schemes with

standard discretization methods

We focus on the case where (Yt)t∈[0,T ] is an Ornstein-Uhlenbeck process since, as mentioned in the
introduction, it encompasses several standard stochastic volatility models.

We are going to compare our schemes (WeakTraj 1, Weak 2 and OU Improved) to the Euler scheme
with exact simulation of the process (Yt)t∈[0,T ] driving the volatility (hereafter denoted Euler), the Kahl and
Jäckel [14] scheme (IJK) and the Cruzeiro et al. [7] scheme (CMT).

For the following numerical computations, unless otherwise stated, we are going to consider Scott’s model
(2). We use the same set of parameters as in Kahl and Jäckel [14] : S0 = 100, r = 0.05, T = 1, σ0 = 0.25, y0 =

0, κ = 1, θ = 0, ν = 7
√
2

20 , ρ = −0.2 and f : y 7→ σ0e
y.

3.1 Theoretical computational cost per timestep

The following table gives the computational cost per timestep for each scheme in terms of function
evaluations and random samples needed. Except for the CMT scheme, we consider exact simulation of
(Yt)t∈[0,T ] which requires the simulation of one Gaussian variable at each timestep. For the Weak2 scheme,
no other simulation per timestep is required since we only need to simulate one Gaussian variable at the
terminal time (see equation (24). The IJK scheme, as we can see according to (17), requires the simulation
of the two Brownian increments.

Certainly, our schemes require more computational effort per timestep but we will see hereafter that their
higher order of convergence suffices to have better efficiency.
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Schemes Function evaluations Random number samples
WeakTraj 1 3 (f, f ′ and F ) 3 Gaussian simulations
Weak 2 2 (f and f ′) 1 Gaussian simulation

OU Improved 5 (f, f ′, f ′′, f ′′′ and F ) 3 Gaussian simulations
IJK 2 (f and f ′) 3 Gaussian simulations
CMT 2 (f and f ′) 2 Gaussian simulations
Euler 1 (f) 2 Gaussian simulations

Table 1: Computation effort per timestep

3.2 Numerical illustration of strong convergence properties

In order to illustrate the strong convergence rate of a discretization scheme X̂N , we consider the squared
L2-norm of the supremum of the difference between the scheme with time step T

N
and the one with time

step T
2N : E [ max

0≤k≤N

∣∣∣X̂N
tk

− X̂2N
tk

∣∣∣
2
]
. (26)

This quantity will exhibit the same asymptotic behavior with respect to N as the squared L2-norm of
the difference between the scheme with time step T

N
and the limiting process towards which it converges (see

Alfonsi [1]).
In Figure 1, we draw the logarithm of the Monte Carlo estimation of (26) as a function of the logarithm

of the number of time steps. The number of discretization steps is a power of 2 varying from 2 to 256 and
the number of Monte Carlo samples used is equal to M = 10 000. We also consider the strong convergence

of the schemes on the asset itself (see Figure 2) by computing E [max0≤k≤N
∣∣∣eX̂

N
tk − eX̂

2N
tk

∣∣∣
2
]
.

The confidence intervals of the estimations are reported in error bars in the figures : as one can see,
the number of simulations considered suffices to have precise results. The average width of the confidence
intervals reported in figures 1 and 2 is equal to 0.07. Note that, since the width of the confidence interval
in the estimation of (26) is proportional to the standard error which should theoretically be proportional to
N too, then the width of the confidence interval expressed in logarithmic scale should be constant. We can
see that this is indeed the case, especially when the number of time-steps is large enough.

The slopes of the regression lines are reported in Table 2. For completeness sake, we give the standard
deviation of the residuals in the regression. We see that, both for the logarithm of the asset and for the asset
itself, all the schemes exhibit a strong convergence of order 1

2 . Our schemes only have a better constant.

WeakTraj 1 Weak 2 OU Improved IJK CMT Euler
Log-asset -1.01 (0.06) -0.88 (0.03) -0.94 (0.04) -0.92 (0.07) -0.98 (0.02) -0.84 (0.08)
Asset -1.01 (0.06) -0.91 (0.05) -0.95 (0.02) -0.88 (0.08) -0.95 (0.06) -0.85 (0.09)

Table 2: Slopes of the regression lines (Strong convergence)

3.2.1 Weak trajectorial convergence

Nevertheless, as explained in Remark 5, for the scheme with time step 1
N
, one can replace the increments

of the Brownian motion (Bt)t∈[0,T ] by a sequence of Gaussian random variables smartly constructed from

the scheme with time step 1
2N . This particular coupling is possible whenever the independence structure

between (Bt)t∈[0,T ] and (Yt)t∈[0,T ] is preserved by the discretization of the latter process, which is the case for
all the schemes but the CMT scheme. So we carry out this coupling and we repeat the preceding numerical
experiment. The results are put together in Figures 3 and 4 and in Table 3. The average width of the
confidence intervals is equal to 0.09.

As expected, we see that the WeakTraj 1 and the OU Improved schemes exhibit a first order convergence
rate whereas the other schemes exhibit a 1

2 order convergence rate. Note that the CMT scheme has a weak
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Figure 1: Strong convergence on the log-asset
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Figure 2: Strong convergence on the asset

trajectorial convergence of order one but it is much more difficult to implement the coupling for which the
convergence order is indeed equal to one.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
−18

−16

−14

−12

−10

−8

−6

−4

 WeakTraj_1 (C)

 Weak_2 (C)

 OU_Improved (C)

 IJK (C)

 Euler (C)

Figure 3: Weak trajectorial convergence on the
log-asset (with coupling)
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Figure 4: Weak trajectorial convergence on the
asset (with coupling)

WeakTraj 1 Weak 2 OU Improved IJK CMT Euler
Log-asset -1.92 (0.03) -0.91 (0.02) -1.99 (0.06) -0.95 (0.03) – -0.85 (0.05)
Asset -1.92 (0.04) -0.95 (0.03) -2 (0.05) -0.91 (0.06) – -0.87 (0.09)

Table 3: Slopes of the regression lines (Weak trajectorial convergence)

We repeat the same numerical experiments for the Stein & Stein and the quadratic Gaussian model.
The results are reported in figures 5 and 6 and in Table 4. We observe that the theoretical results stated in
Proposition (10) are confirmed by the numerical findings : the slope of the regression line is approximately
equal to 1.3 for both Weak Traj1 and OU Improved schemes in the Stein&Stein model whereas for the
quadratic Gaussian model, it is approximately equal to 2.

3.2.2 Convergence at terminal time

We consider now convergence at terminal time, precisely the squared L2-norm of the difference between
the terminal values of the schemes with time steps T

N
and T

2N :E [∣∣∣X̂N
T − X̂2N

T

∣∣∣
2
]
. (27)
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Figure 5: Quadratic Gaussian model - Weak tra-
jectorial convergence on the asset (with coupling)
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Figure 6: Stein & Stein model - Weak trajectorial
convergence on the asset (with coupling)

WeakTraj 1 OU Improved IJK Euler
Quadratic Gaussian model - Asset -1.95 (0.02) -1.99 (0.01) -0.94 (0.07) -0.94 (0.01)

Stein&Stein model - Asset -1.3 (0.12) -1.35 (0.07) -0.89 (0.04) -0.87 (0.06)

Table 4: Slopes of the regression lines (Weak trajectorial convergence) - Quadratic Gaussian and Stein&Stein
models

Note that we introduce a coupling : we write the schemes straight at the terminal time as we did for the
Weak 2 scheme (see (24)) and we generate the terminal values of the schemes with time steps T

N
and T

2N
using the same single normal random variable to simulate the stochastic integral w.r.t. (Bt)t∈[0,T ]. Once
again, it is possible to proceed alike for all the schemes but the CMT scheme. For the latter, we simulate
the scheme at all the intermediate discretization times to obtain the value at terminal time.

We also consider the convergence at terminal time of the asset itself. We report the numerical results in
Figures 7 and 8 and give the slopes of the regression lines in Table 5.

WeakTraj 1 Weak 2 OU Improved IJK CMT Euler
Log-asset -2.03 (0.04) -2 (0.05) -2.97 (0.03) -1.97 (0.02) -1.05 (0.04) -1.34 (0.19)
Asset -2.02 (0.04) -1.98 (0.04) -2.97 (0.06) -1.95 (0.03) -1.08 (0.08) -1.34 (0.18)

Table 5: Slopes of the regression lines (Convergence at terminal time)

We observe that, as stated in Remark 11, the OU Improved scheme exhibits a convergence rate of order 3
2 ,

outperforming all the other schemes. As previously, the WeakTrak 1 scheme exhibits a first order convergence
rate. Note also that this new coupling at terminal time improved the convergence rate of the Weak 2 and
the IJK schemes up to order one and, surprisingly, it improved the convergence rate of the Euler scheme up
to an order strictly greater than the expected 1

2 , approximately 0.67.

3.3 Standard call pricing

3.3.1 Numerical illustration of weak convergence

We compute the price of a call option with strike K = 100 and maturity T = 1. For all the schemes but
the CMT scheme, we use the conditioning variance reduction technique presented in Remark 13.

In Figure 9 we draw the logarithm of the pricing error : log
(∣∣Pexact − PNscheme

∣∣) where Pexact ≈ 12.82603
is obtained by a multilevel Monte Carlo with an accuracy of 5× 10−4, as a function of the logarithm of the
number of time steps. In order to avoid statistical noise, we make 107 simulations.
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Figure 7: Convergence at terminal time for the
log-asset
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Figure 8: Convergence at terminal time for the
asset
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Figure 9: Illustration of the convergence rate for
the call option
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Figure 10: Convergence of the call price with re-
spect to time

We see that, as expected, the Weak 2 scheme and the OU Improved scheme exhibit a weak convergence
of order two and converge much faster than the others. The weak scheme already gives an accurate price
with only four time steps. The WeakTraj 1 scheme has a weak convergence of order one like the Euler and
the IJK scheme, but it has a greater leading error term. Fortunately, its better strong convergence properties
enable it to catch up with the multilevel Monte Carlo method as we will see hereafter.

We also repeat this numerical experiment with the Stein&Stein and the quadratic Gaussian models (see
figures 11 and 12) and check that the same conclusions hold.

Finally, note that the weak scheme does not require the simulation of additional terms when compared
to the Euler or the IJK schemes. Combined with its second order weak convergence order, this makes the
Weak 2 scheme very competitive for the pricing of plain vanilla European options. In figure 10, we give
the relative error of each scheme as a function of the computation time needed when we fix the number of
simulations to M = 100 000. We see that both the Euler and the IJK scheme take five seconds to reach the
relative error obtained with the Weak 2 scheme and the OU Improved in less than a second. Note finally
that the confidence interval is much larger for the CMT scheme than for the other schemes because of the
use of the conditioning variance reduction technique for these schemes.
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Figure 11: Stein&Stein model - Illustration of the
convergence rate for the call option
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Figure 12: Quadratic Gaussian model - Illustra-
tion of the convergence rate for the call option

3.3.2 Multilevel Monte Carlo

Let us now apply the multilevel Monte Carlo method of Giles [9] to compute the Call price. As previously,
we consider the schemes straight at the terminal time and use a conditioning variance reduction technique.
We give the CPU time as a function of the accuracy parameter Epsilon in Figure 13. This accuracy parameter
is slightly higher than the root mean square error achieved (see section 4.2 of [9] for details on the heuristic
numerical algorithm which is used). We check this numerically by computing different ratios between the
root mean square error achieved using the reference value Pexact and the target accuracy Epsilon (see table
6).

WeakTraj 1 Weak 2 OU Improved IJK Euler
Epsilon=10−1 0.96 0.53 0.6 0.98 0.61
Epsilon=10−2 0.8 0.85 0.85 0.94 0.81
Epsilon=10−3 0.6 0.57 0.6 0.64 0.7
Epsilon=10−4 0.8 0.98 0.54 0.6 0.91

Table 6: Ratio between rmse and Epsilon

Figure 13 shows that both the Weak 2 and the OU Improved scheme are great time-savers. For the
OU Improved scheme, the effect coming from its good strong convergence properties is somewhat offset by
the additional terms that it requires to simulate. We can see nevertheless that it is going to overcome the
Weak 2 scheme for higher accuracy levels.

In order to illustrate the benefits of the multilevel Monte Carlo method, we also give the variation of the
computational complexity C, defined as the total number of timesteps performed on all levels (see section 5
of [9]), with the desired accuracy with and without multilevel for the OU Improved scheme (see figure 14).

3.4 Lookback option pricing and multilevel Monte Carlo

Finally, we consider an example of path-dependent option pricing : the lookback option. More precisely,
we compute the price of the option whose pay-off is equal to ST −mint∈[0,T ] St. The use of multilevel Monte
Carlo for lookback options in local volatility models discretized by the Euler scheme was justified in [11].

In order to take full advantage of the good convergence properties of our schemes, we approximate the
minimum of the scheme by the minimum of a drifted Brownian motion. This is similar to what is done in
[10].
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Figure 13: Multilevel Monte Carlo method for a Call option using different schemes

Figure 14: OU Improved scheme with and without multilevel Monte Carlo method

More precisely, for the WeakTraj 1 scheme, consider the interval [k T
N
, (k + 1) T

N
].

Scheme with time step δ2N :

We approximate mint∈[k T
N
,(k+1) T

N
] St by m̃

2N
2k ∧ m̃2N

2k+1 where, ∀0 ≤ j ≤ 2N − 1,

m̃2N
j =

1

2


eX̃

2N

j T
2N + Se,2N

(j+1) T2N
−
√(

e
X̃2N

j T
2N − Se,2N

(j+1) T2N

)2

− 2e
2X̃2N

j T
2N f2(Yj T2N

)
T

2N
ln(Uj)


 ,

where Se,2N
(j+1) T2N

= e
X̃2N

j T
2N

(
1 + r T

2N + f(Yj T2N
)
(
ρ(W(j+1) T2N

−Wj T2N
) +

√
1− ρ2(B(j+1) T2N

−Bj T2N
)
))

and

(Uj)0≤j≤2N−1 is an independent sequence of independent random variable uniformly distributed.
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Figure 15: Multilevel Monte Carlo method for a Lookback option using different schemes.

Scheme with time step δN :

According to Remark 5,
˜̃
X
N

tk+1
is computed using the Brownian increment ∆B̃Nk+1 given by a linear com-

bination of
(
B(2k+1) T2N

−Bk T
N
, B(k+1) T

N
−B(2k+1) T2N

)
(see (10)). Now, to prevent bias, we are going to

approximate mint∈[k T
N
,(k+1) T

N
] St by the minimum min[tk,tk+1] S̃

e,2N
t of some Euler scheme S̃e,2Nt like in the

scheme with time step δ2N . To remain consistent, we have to choose

S̃e,2Ntk+1
= e

˜̃
X
N

tk

(
1 + r

T

N
+ f(Yk T

N
)
(
ρ(Wtk+1

−Wtk) +
√
1− ρ2∆B̃Nk+1

))
.

In order to ensure a good strong coupling with the scheme with time step δ2N , we need to compute

the intermediate value S̃e,2N
(2k+1) T2N

= e
˜̃
X
N

tk

(
1 + r T

N
+ f(Yk T

N
)

(
ρ(Wtk+1

−Wtk) +
√
1− ρ2∆

˜̃
B

2N

2k+1

))
us-

ing some Brownian increment ∆
˜̃
B

2N

2k+1 as close as possible to B(2k+1) T2N
− Bk T

N
but such that ∆B̃Nk+1 −

∆
˜̃
B

2N

2k+1 is independent of ∆
˜̃
B

2N

2k+1 and distributed according to N (0, T
2N ). Choosing ∆

˜̃
B

2N

2k+1 of the form

a

(
B

(2k+1) T
2N

−B
k T
N

)
+b

(
B

(k+1) T
N

−B
(2k+1) T

2N

)

√
a2+b2

and maximizing Cov

(
∆
˜̃
B

2N

2k+1, B(2k+1) T2N
−Bk T

N

)
= a√

a2+b2
leads

to a = v2N2k + v2N2k+1 and b = v2N2k+1 − v2N2k (see Remark 5 for the definition of v2N. ).

Finally, we approximate mint∈[k T
N
,(k+1) T

N
] St by m̃

N
k ∧ m̃N

k+1 where

m̃N
k =

1

2


e

˜̃
X
N

k T
N + S̃e,2N

(2k+1) T2N
−

√(
e
˜̃
X
N

k T
N − S̃e,2N

(2k+1) T2N

)2

− 2e
2
˜̃
X
N

k T
N f2(Yk T

N
)
T

2N
ln(U2k)




and

m̃N
k+1 =

1

2


S̃e,2N

(2k+1) T2N
+ S̃e,2N

(k+1) T
N

−

√
(
S̃e,2N
(2k+1) T2N

− S̃e,2N
(k+1) T

N

)2
− 2e

2
˜̃
X
N

k T
N f2(Yk T

N
)
T

2N
ln(U2k+1)


 .

The numerical results we obtain are very satisfactory. In figure 15, we draw the CPU time multiplied by
the mean square error against the root mean square error. We see that our schemes perform much better
than the others.

27



4 Conclusion

In this article, we have capitalized on the particular structure of stochastic volatility models to propose
and discuss two simple and yet competitive discretization schemes. The first one exhibits first order weak
trajectorial convergence and has the advantage of improving multilevel Monte Carlo methods for the pricing
of path dependent options. The second one is rather useful for pricing European options since it has a second
order weak convergence rate.

We have also focused on the special case of an Ornstein-Uhlenbeck process driving the volatility, which
encompasses many stochastic volatility models such as the Scott’s model [27] or the quadratic Gaussian
model. Then, the convergence properties of the previous schemes are preserved when simulating (Yt)0≤t≤T
exactly. We have also proposed an improved scheme exhibiting both weak trajectorial convergence of order
one and weak convergence of order two.

Our numerical experiments confirm the theoretical rates of convergence of our schemes. We also compare
the time needed by the different schemes to achieve a given precision in the multilevel Monte Carlo compu-
tation of a plain vanilla Call option and a lookback option. For high levels of precision our schemes turn out
to be more efficient than the Euler, the Kahl-Jäckel and the Cruzeiro-Malliavin-Thalmaier schemes for both
the vanilla Call and the lookback option. The reason is that their better convergence properties compensate
the increase of computation effort at each step.

As a last remark, we point out that our results can be naturally extended to stochastic volatility models
where the constant correlation coefficient is replaced by a function ρ(Yt) of the process driving the stochastic

volatility in (1). In this case, if one considers the transformation F (y) =
∫ y
.

ρ(z)f(z)
σ(z) dz and carries out

the same analysis then one should obtain weak trajectorial convergence results under additional regularity
assumptions on the function ρ.
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5 Appendix

5.1 Proof of Lemma 3

We first suppose that p = 1. According to Theorem 5.2 page 72 of Milstein [23], it suffices to check that
there exists a positive constant C independent of N such that

∣∣∣E(YδN − Y
N

δN

)∣∣∣ ≤ Cδ2N

∣∣∣∣E((YδN − Y
N

δN

)2)∣∣∣∣
1
2

≤ Cδ
3
2

N

∣∣∣∣E((YδN − Y
N

δN

)4)∣∣∣∣
1
4

≤ Cδ
5
4

N .

(28)

First note that

YδN − Y
N

δN
=

∫ δN

0

b(Ys)− b(y0)ds+

∫ δN

0

(∫ s

0

(bσ′ +
1

2
σ2σ′′)(Yr)dr + (σσ′(Yr)− σσ′(y0))dWr

)
dWs.

Thanks to Itô’s formula and to assumption (H5), we have that

∣∣∣E(YδN − Y
N

δN

)∣∣∣ =
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∫ δN

0

∫ s
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2
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≤ C

∣∣∣∣∣

∫ δN

0

∫ s

0

C(1 + E(|Yr|2))drds∣∣∣∣∣
≤ Cδ2N .

Using assumptions (H5) and (H6), we also have ∀p ≥ 1E(∣∣∣YδN − Y
N
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∫ δN

0

E (|b(Ys)− b(y0)|2p
)
ds

+Cδp−1
N

∫ δN

0

E(∣∣∣∣∫ s

0

(bσ′ +
1

2
σσ′′)(Yr)dr + (σσ′(Yr)− σσ′(y0))dWr

∣∣∣∣
2p
)
ds

]

≤ C

[
δ2p−1
N

∫ δN

0

spds+ δp−1
N

∫ δN

0

s2p−1

∫ s

0

E(∣∣∣∣(bσ′ +
1

2
σσ′′)(Yr)

∣∣∣∣
2p
)
dr ds

+δp−1
N

∫ δN

0

sp−1

∫ s

0

E(|σσ′(Yr)− σσ′(y0)|2p
)
dr ds

]

≤ Cδ3pN .
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This implies both the second and the third inequality of (28). This estimation is also sufficient to extend
the result of Milstein [23] to the L2p norm and conclude the proof.

5.2 Proof of Lemma 8

One can easily check that (Yt)0≤t≤T is a Gaussian process which has the same distribution law as the

process (y0e
−κt + θ(1− e−κt) + νe−κt√

2κ
We2κt−1)0≤t≤T . So,E(ec1 sup0≤t≤T |Yt|1+c2

)
= E(ec1 sup0≤t≤T |y0e−κt+θ(1−e−κt)+ νe−κt√

2κ
We2κt−1|

1+c2

)

≤ CE(eC sup0≤t≤T |We2κt−1|
1+c2

)
.

Since sup0≤t≤e2κT−1 |Wt| =
(
sup0≤t≤e2κT−1Wt

)
∨
(
− inf0≤t≤e2κT−1Wt

)
, we deduce from the symmetry prop-

erty of the Brownian motion thatE(ec1 sup0≤t≤T |Yt|1+c2
)

≤ CE(eC| sup
0≤t≤e2κT−1

Wt|1+c2 + eC| inf
0≤t≤e2κT−1

Wt|1+c2
)

≤ 2CE(eC| sup
0≤t≤e2κT−1

Wt|1+c2
)
.

The probability density function of sup0≤t≤T Wt is equal to y 7→
√

2
πT
e−

y2

2T 1{y>0} (see for example problem

8.2 p. 96 of Karatzas and Shreve [16]) which permits to conclude.

Let us now assume that y0 6= 0. Then t0
def
= inf{t ∈ [0, T ] : y0e

−κt + θ(1 − e−κt) = 0} (convention
inf ∅ = T ) is positive. P[|Y0| ≤ N−α] = 0 for N large enough and for t ∈ (0, T ],P[|Yt| ≤ N−α] ≤ 2N−α

ν

√
κ

π(1− e−2κt)
exp

(
−κ(|y0e

−κt + θ(1 − e−κt)| −N−α)2

ν2(1− e−2κt)

)
.

Since limN→∞ inf
t∈[0,

t0
2 ](|y0e−κt + θ(1 − e−κt)| − N−α) > 0, one deduces that sup

t∈[0,
t0
2 ] P[|Yt| ≤ N−α] ≤

CN−α. The same conclusion holds for sup
t∈[

t0
2 ,T ] P[|Yt| ≤ N−α] by bounding the exponential factor by 1.
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