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Introduction

Let X be a smooth projective variety over a field k. An algebraic cycle Z on X (with rational coefficients) is smash-nilpotent if there exists n > 0 such that Z n is rationally equivalent to 0 on X n . Smashnilpotent cycles have the following properties:

(1) The sum of two smash-nilpotent cycles is smash-nilpotent.

(2) The subgroup of smash-nilpotent cycles forms an ideal under the intersection product as (x

• y) × (x • y) • • • × (x • y) = (x × x × • • • × x) • (y × y × • • • × y). (3) 
On an abelian variety, the subgroup of smash-nilpotent cycles forms an ideal under the Pontryagin product as (x * y)

× (x * y) × • • • × (x * y) = (x × x × • • • × x) * (y × y × • • • × y)
where * denotes the Pontryagin product. Voevodsky [START_REF] Voevodsky | A nilpotence theorem for cycles algebraically equivalent to 0[END_REF]Cor. 3.3] and Voisin [START_REF] Voisin | Remarks on zero-cycles of self-products of varieties, in Moduli of vector bundles[END_REF]Lemma 2.3] proved that any cycle algebraically equivalent to 0 is smash-nilpotent. On the other hand, because of cohomology, any smash-nilpotent cycle is numerically equivalent to 0; Voevodsky conjectured that the converse is true [START_REF] Voevodsky | A nilpotence theorem for cycles algebraically equivalent to 0[END_REF]Conj. 4.2].

This conjecture is open in general. The main result of this note is:

Theorem 1. Let A be an abelian variety of dimension ≤ 3. Any homologically trivial cycle on A is smash-nilpotent.

In characteristic 0 we can improve "homologivally trivial" to "numerically trivial", thanks to Lieberman's theorem [START_REF]Lieberman Numerical and homological equivalence of algebraic cycles on Hodge manifolds[END_REF].

Nori's results in [START_REF] Nori | Cycles on the generic abelian threefold[END_REF] give an example of a group of smash-nilpotent cycles which is not finitely generated modulo algebraic equivalence. The proof of Theorem 1 actually gives the uniform bound 21 for the degree of smash-nilpotence on this group, see Remark 2. See Proposition 2 for partial results in dimension 4.

Beauville's decomposition, motivically

For any smooth projective variety X and any integer n ≥ 0, we write as in [

1] CH n Q (X) = CH n (X) ⊗ Q, where CH n (X)
is the Chow group of cycles of codimension n on X modulo rational equivalence.

Let A be an abelian variety of dimension g. For m ∈ Z, we denote by m the endomorphism of multiplication by m on A, viewed as an algebraic correspondence. In [START_REF] Beauville | Sur l'anneau de Chow d'une variété abélienne[END_REF], Beauville introduces an eigenspace decomposition of the rational Chow groups of A for the actions of the operators m , using the Fourier transform. Here is an equivalent definition: in the category of Chow motives with rational coefficients, the endomorphism 1

A ∈ End(h(A)) = CH g Q (A × A) is
given by the class of the diagonal ∆ A . We have the canonical Chow-Künneth decomposition of Deninger-Murre

1 A = 2g i=0 π i [4, Th. 3.1],
where the π i are orthogonal idempotents and π i is characterised by π i m * = m i π i for any m ∈ Z. This yields a canonical Chow-Künneth decomposition of the Chow motive h(A) of A: [START_REF] Scholl | Classical motives, in Motives[END_REF]Th. 5.2]). Then, under the isomorphism

h(A) = 2g i=0 h i (A), h i (A) = (A, π i ) (see
CH n Q (A) = Hom(L n , h(A)) (where L is the Lefschetz motive) we have CH n (A) [r] := {x ∈ CH n Q (A) | m * x = m r x ∀m ∈ Z} = Hom(L n , h r (A)). Remark 1. In Beauville's notation, we have CH n (A) [r] = CH n
2n-r (A). We shall use his notation in §3.

Skew cycles on abelian varieties

Let β ∈ CH * Q (A). Assume that -1 * β = -β: we say that β is skew. This implies that β is homologically equivalent to 0.

For g ≤ 2, the Griffiths group of A is 0 and there is nothing to prove. For g = 3, the Griffiths group of A is a quotient of CH 2 (A) [START_REF] Ceresa | C is not algebraically equivalent to Cin its Jacobian[END_REF] [1, Prop. 6]; thus Theorem 1 follows from the more general Proposition 1. Any skew cycle on an abelian variety is smash-nilpotent.

This applies notably to the Ceresa cycle [START_REF] Ceresa | C is not algebraically equivalent to Cin its Jacobian[END_REF], for any genus.

Proof. We may assume β homogeneous, say, β ∈ CH n Q (A). View β as a morphism L n → h(A) in the category of Chow motives. Thus, for all i:

-

π i β = π i -1 * β = (-1) i π i β hence π i β = 0 for i even.
This shows that β factors through a morphism β :

L n → h odd (A) with h odd (A) = i odd h i (A).
But L n is evenly finite-dimensional and h odd (A) is oddly finite-dimensional in the sense of S.-I. Kimura. (Indeed, S 2g+1 (h 1 (A)) = h 2g+1 (A) = 0 by [START_REF]Shermenev The motive of an abelian variety[END_REF]Theorem], and a direct summand of an odd tensor power of an oddly finite-dimensional motive is oddly finite dimensional by [6, Prop. 5.10 p. 186].) Hence the conclusion follows from [6, prop. 6.1 p. 188].

Remark 2. Kimura's proposition 6.1 shows in fact that all z ∈ Hom(L n , h odd (A)) verify z ⊗N +1 = 0 for a fixed N, namely, the sum of the odd Betti numbers of A. If z ∈ Hom(L n , h i (A)) for some odd i, then we may take for N the i-th Betti number of A. Thus, for i = 3 and if A is a 3-fold, we find that all z ∈ Hom(L, h 3 (A)) verify z ⊗21 = 0. Proof. Let A be an abelian variety and let  denote its dual abelian variety. We know, from [START_REF] Beauville | Sur l'anneau de Chow d'une variété abélienne[END_REF], the following:

(1) CH p s (A) = 0 for p ∈ {0, 1, g -2, g -1, g} and s < 0. [1, Prop. 3a].

(2) CH p p (A) and CH g s (A) consist of cycles algebraically equivalent to 0 for all values of p and all values of s > 0. [1, Prop. 4]. For g = 4, using these results and Proposition 1 one can conclude smash nilpotence for homologically trivial cycles which are not in CH 2 0 (A) or CH 3 2 (A). Note that, with the notation of §1, CH 3 2 (A) = Hom(L 3 , h 4 (A)), CH 2 0 (A) = Hom(L 2 , h 4 (A)).

In the case of CH 2 0 (A), the problem is whether there are any homologically trivial cycles: in view of the above expression, this is conjecturally not the case, cf. [START_REF] Jannsen | Motivic sheaves and filtrations on Chow groups, in Motives[END_REF]Prop. 5.8].

Remark 3. Some of these arguments also follow from a paper of Bloch and Srinivas [START_REF] Bloch | Remarks on Correspondences and Algebraic Cycles[END_REF].

3 .

 3 The 4-dimensional case Proposition 2. If g = 4, homologically trivial cycles on A, except perhaps those which occur in parts CH 2 0 (A) or CH 3 2 (A) of the Beauville decomposition, are smash-nilpotent.
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