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ABSTRACT

The gamma distribution is often used to characterize raindrop size distributions (DSDs). However, the

estimation of measured raindrop distributions suffers from the shortcomings of statistical sampling errors,

which become increasingly significant when the collecting surface of the measuring instrument and the

integration time are small. Different estimators of the three parameters (N0
*, m, and Dm) that characterize a

normalized gamma distribution have been computed from simulated DSD. A database has been established,

containing 22 950 simulated DSDs, corresponding to a wide set of various rainfall situations. Moment, least

squares, and maximum likelihood estimators have been evaluated. Error measurement considerations are

discussed, in particular the difficulty encountered in measuring small drops (diameter ,0.5 mm) with a

disdrometer. Modified estimation approaches are proposed to compensate for the lack of small drops ac-

counted for by real measurements. For each of the different methods, systematic error analysis is performed,

and the estimation error is quantified in terms of its bias and standard deviation. The sensitivity of the various

methods to instrumental characteristics is also evaluated. A case study is run to highlight correlation effects in

the estimated DSD parameters, resulting from the use of various retrieval techniques.

Finally, a criterion is derived that enables the hypothesis of gamma-distributed DSD to be tested. When

applied to real data recorded by an optical disdrometer, this criterion shows that approximately 91% of

DSDs are of the gamma type. Real gamma DSDs are then used to compare adapted maximum likelihood

estimators with the more commonly used methods.

1. Introduction

In many applications, such as hydrology, meteorol-

ogy, remote sensing, and radio communications, rainfall

phenomena play a significant role. In numerous appli-

cations, the processes involved depend on the micro-

structure of rain: soil erosion, material dispersal due to

raindrop splashing, efficiency of the rain’s ‘‘washing’’ of

the atmosphere, interactions between raindrops (coa-

lescence and collision breakup), interactions between

rainfall and other atmospheric components, and inter-

actions between rainfall and electromagnetic waves.

The microstructure of rain is defined by the raindrop size

distribution (DSD), which represents the expected num-

ber of raindrops per unit of raindrop diameter interval

and per unit volume of air. In most of the previously

mentioned applications, the DSD is assumed to have a

particular analytic form characterized by a small number

of parameters. The Marshall–Palmer formulation is the

most popular form, although numerous studies assume

more general exponential or gamma distributions.

In situ measurements can be used to study the vari-

ability of the DSD parameters. In practice, disdrometers

or spectropluviometers measure the size of the raindrops

falling through a given surface S, and integration of these

data over a sufficiently long period of time T enables the

corresponding DSD to be estimated. The problem with

this approach is that the DSD definition assumes tem-

poral stationarity and spatial homogeneity of the rain,

which is in practice never reached, even at small scales of

the order of the typical interdrop distance (Cao et al.

2008). To reduce these problems, disdrometers use a

short integration time (generally, T does not exceed

1 min) and a small capture surface (S is generally less

than 100 cm2). Consequently, the measured drop distri-

butions suffer from statistical sampling errors that become

increasingly significant when the size of the mea-

sured sample is reduced. As raindrops have terminal fall
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velocities that depend on their size, the measurement of

drops falling through a given surface S over a period of

time T is equivalent to analyzing drops within a volume,

the size of which depends on the size of the drops. For

readers interested in the stochasticity of the discrete

microstructure of rain, a special issue (see Uijlenhoet

and Sempere Torres 2006) gives an overview of the

‘‘measurement and parameterization of rainfall micro-

structure.’’ This issue contains articles dealing with the

theoretical and practical aspects of rain measurement

and parameterization at high spatial and temporal res-

olutions. Because it is impossible to separate physical

variations from statistical errors in real measurements,

the authors of the present paper decided to approach

the problem of parameter estimation first by means of

simulations.

The study presented in the following takes into ac-

count the deficit of small drops counted in real DSD in

order to evaluate the impact of truncation errors on

DSD parameter estimations. Homogeneous rain with a

known, three-parameter gamma DSD is considered. We

thus simulated the drops corresponding to such DSDs,

measured with four different hypothetical devices, with

different characteristics. Our goal was to test the ability

of various techniques to estimate the parameters of the

initial DSD, based on the empirical distributions ob-

served by these devices. The shape parameter is often

estimated using a least squares (LS) fit of the normal-

ized DSD (Testud et al. 2001), since a maximum like-

lihood (ML) approach is generally more efficient in the

context of a distribution function. As underlined by

Smith and Kliche (2005), moment method (MM) esti-

mators are biased, whereas ML estimators are asymp-

totically unbiased, but have significant problems when

missing observations of small drops are taken into ac-

count. In the present study, we adapted the moment,

least squares, and maximum likelihood estimators to a

truncated gamma-shaped DSD. The different estima-

tors are tested and compared, using a broad simulated

database. To test the estimator’s sensitivity to the sta-

tistical sampling errors the simulations are thus adapted

to relevant measurement conditions. The latter includes

the instrumental configuration (noise measurements,

lack of small drops, size of the collecting area, integra-

tion time) as well as the meteorological context (mi-

crophysical characteristics of the rain).

In section 2 we describe the method used to generate

simulated droplets for each of the different configura-

tions. Section 3 presents the different estimators used,

and section 4 deals with their performances. Finally, in

section 5 we define an ‘‘adjustment criterion,’’ which we

use to test the validity of our truncated ‘‘gamma-type’’

DSD hypothesis. This criterion is then applied to each

of the different methods, using both a simulated data-

base and real spectropluviometric measurements.

2. Simulations

The gamma distribution, described by Ulbrich (1983)

and Willis (1984), is a mathematical shape that is com-

monly used to represent rainfall DSDs in units of m24:

N(D/N
0
, L, m) 5 N

0
Dm exp(�LD), (1)

where the three parameters (N0, m, and L) of the gamma

distribution enable a wide range of rainfall situations to

be described. The usefulness of this formulation is

however restricted, because the dimension of N0 is ill

conditioned (m242m). For this reason it is preferable to

represent the DSD with a more complex expression,

called the ‘‘normalized DSD’’ (Testud et al. 2001) in m24:

N(D/N0
*, D

m
, m) 5 N0

*f m
* D

D
m

� �
, (2)

with

f m
* D

D
m

� �
5

G(4)

44

(4 1 m)41m

G(4 1 m)

D

D
m

� �m

exp(�LD) and

D
m

5
(4 1 m)

L
.

This normalization is particularly useful for compar-

ing the shapes of DSDs that do not have the same liquid

water content (LWC) and/or the same mean diameter

Dm. The three unknown parameters (Dm, N0
*, and m)

have a clear physical meaning: Dm is the ‘‘volume-

weighted’’ mean diameter, which represents a mean

particle size; N0
* is the intercept parameter of the ex-

ponential distribution, which has the same LWC and

Dm; and m is confined to the description of the DSD’s

shape. The definitions of Dm and N0
* are given by

D
m

5
M

4

M
3

, N0
* 5

44

G(4)

M5
3

M4
4

,

where

M
i
5 M

i
(0, ‘) 5

ð‘

0

DiN(D) dD

5 N0
* G(4)

44

G(i 1 m 1 1)

G(4 1 m)

Di11
m

(4 1 m)i�3
. (3)

The terminal fall velocity is given in meters per second

by V(D) 5 386.8D0.67 (D is in meters; Atlas and Ulbrich

1977). The rain rate R (mm h21) can then be expressed as
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R(N0
*, D

m
, m)

5 7.28 3 108N0
* G(4)

44

G(m 1 4.67)

G(4 1 m)

D4.67
m

(m 1 4)0.67
. (4)

The question of DSD is also central to radar meteo-

rology, in particular when it comes to calibrating the

measured radar signals. The problem of the relationship

between the equivalent radar reflectivity Z and the

measured DSD, arising from the uncertainty in the re-

flectivity derived from the latter, is crucial to this ap-

plication. The radar reflectivity factor Z (mm6 m23) is

proportional to the sixth-order moment:

Z(N0
*, D

m
, m) 5 M

6
5 1018N0

* G(4)

44

G(7 1 m)

G(4 1 m)

D7
m

(m 1 4)3
.

(5)

a. Simulation of raindrops corresponding to the
observation of rainfall through a capture surface
S during an integration time T

Here we consider a given parameter triplet (Dm, N0
*, m)

and assume a velocity-to-diameter relationship given

by Atlas and Ulbrich’s (1977) law. Although it is well

known that this model is not very accurate for small and

large droplets, as will be seen later, these will be sup-

pressed in the simulations. The relationship between

the volume distribution N(D) (m24) and the drop size

distribution Hmes (m21), measured by a device with a

surface S during a period T, is given by

H
mes

(D/N0
*, D

m
, m, S, T)

5 386.8[N(D/N0
*, D

m
, m)STD0.67]. (6)

The mean number of drops NT in the measured sample

is thus given by

N
T

(N0
*, D

m
, m, S, T)

5 3.78 3 10�3 N0
* G(4)

44

(4 1 m)2.33

G(4 1 m)
G(m 1 1.67)STD1.67

m

" #
.

(7)

This expression underlines the fact that the size of the

measured sample is not only affected by the instru-

mental configuration (S and T), but also depends on the

parameter triplet that is to be retrieved: Dm, N0
*, m.

Variations of N0
*, like variations of S or T, affect in the

same way the number of collected drops; however,

variations of S and T suppose that stationarity and ho-

mogeneity of rain remain true at the corresponding time

and space scales. In our simulations, for a given pa-

rameter triplet, NT is first computed and 50 values of

nT ( j) are then computed, for j 5 1 to 50, drawn from a

Poisson distribution with mean value NT, in order to

determine for each realization the actual number of

drops assumed to pass through the surface S during a

time interval T. For the jth realization, nT ( j) droplets of

diameter Di,j [I 5 1 to nT ( j)] are drawn from a gamma

distribution, characterized by the following probability

density function (PDF) fG:

f
G
(D/D

m
, m) 5

H
mes

(D/N0
*, D

m
, m, S, T)

N
T

. (8)

b. Simulations with a hypothetical device

The instruments available for the measurement of

rainfall present two main defects: they are noisy and

they respond poorly to small raindrop sizes (Krajewski

et al. 2006). If we consider the dual beam spectropluvi-

ometer (DBS) described by Delahaye et al. (2006), an

accuracy of 3% was achieved under laboratory condi-

tions after calibration. However, under real atmospheric

conditions, less accurate performance can be expected

because of the detrimental influence of turbulence. White

noise was added to each of the instrument diameters

to simulate instrumental noise. Moreover, it should be

pointed out that most ground-based spectropluviometers

are unable to measure small drops (D , 0.5 mm), and

even for those that are sensitive to such small drop sizes,

measurements in the range 0.2 . D . 0.5 mm can be of

doubtful accuracy in the presence of turbulence. Con-

cerning very large diameter droplets (D . Dmax), it is

known that such diameters cannot exist because of

aerodynamic breakup, which occurs at diameters beyond

8–10 mm. To evaluate the impact of truncation errors,

two thresholds—Dmin 5 0.5 mm and Dmax 5 8 mm—

were implemented, and only those droplets whose di-

ameter lay between Dmin and Dmax were conserved in the

simulations. Each realization j contains n9T( j) , nT ( j)

drops, with the probability density function

f
g
(D/D

m
, m, D

min
, D

max
)

5
f

G
(D/D

m
, m) P(D, D

min
, D

max
)

F
G
(D

max
/D

m
, m)� F

G
(D

min
/D

m
, m)

, (9)

where P is the rectangle function, equal to 1 between

Dmin and Dmax and zero elsewhere, and FG is the cu-

mulative gamma distribution function.

One consequence of removing the droplets lying out-

side the truncation limits is that the ith-order moments
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and the mean number of drops are modified according

to the following expressions:

M
i
(D

min
, D

max
) 5

ðDmax

Dmin

DiN(D) dD

5 M
i
[g(LD

max
, i 1 m 1 1)

� g(LD
min

, i 1 m 1 1)], (10)

N
T
9 5 N

T
[g(LD

max
, m 1 1.67)

�g(LD
min

, m 1 1.67)],

where g is the incomplete gamma function.

c. Range of the parameters Dm, N0
*, and m

It has been shown that these three parameters are not

mutually independent (Ulbrich 1983), and that their de-

rived relationships depend on the retrieval method used.

Chandrasekar and Bringi (1987) have shown that this

effect can be attributed to statistical errors. Zhang et al.

(2003) provided a detailed analysis of the errors arising

from moment estimators, confirming that small errors

introduced into the latter can lead to large and highly

correlated standard errors in the shape (m̂) and slope (L̂)

estimators. Although the estimated ms and Ls from

observed DSDs have good correlation, the correlation

partially comes from the error effect. It is thus difficult to

separate correlations due to statistical errors from phys-

ical relationships. We thus decided not to make a priori

assumptions in our simulations concerning the functional

relationships between these three parameters.

The ranges of the three parameters of the normalized

DSD (Dm, N0
*, m) were adjusted so as to include most of

the in situ observations that we had previously carried

out, at different locations, over a period of many years

(see experimental data in section 5b; Bringi et al. 2003):

Dm (mm): 0.6–3 with DDm 5 0.4,

N0
* (m24): 105.5–107.9 with Dlog10(N0

*) 5 0.4, and

m: 21–15 with Dm 5 1.

This set of parameters leads to 833 triplets (Dm, N0
*, m).

From these triplets, only those corresponding to a

rainfall rate (R) between 1 and 150 mm h21 were kept

for the purpose of the simulations. We thus retained a

total of 459 different scenarios. For each instrumental

configuration, 459 3 50 5 22 950 ‘‘measurement’’ re-

alizations were then performed.

d. Instrumental configuration

Four ‘‘instrumental configurations’’ were chosen:

Device 1: corresponding to DBS measurements

(Delahaye et al. 2006), capture surface S 5 100 cm2,

integration time T 5 60 s, and relative error due to

instrumental noise on the estimation of the rain-

drop diameters equal to 10%.

Device 2: in order to study the influence of instru-

mental noise, the same instrument was used as that

defined for device 1, but with an instrumental noise

equal to 1%.

Devices 3 and 4: in order to study the influence of

statistical sampling, the integration time T was set to

60 s, and the surface sampling area (S) was set to

either 50 cm2 (device 3) or to 500 cm2 (device 4), with

an instrumental noise equal to 10% in both cases.

Taking device 1 as an example, the size n9T of most of

the rainfall samples lay in the range between 50 and

4000 droplets, depending on the triplet used for a given

simulation. This leads to a total of nearly 46 million

droplet samples for this device. Although it is very dif-

ficult to compare simulated and experimentally mea-

sured DSDs, we found that the visual appearance of our

simulations was very similar to that of typical in situ

measurements.

3. Estimation methods

Various methods can be used to estimate the DSD pa-

rameters (D̂
m

, N̂0
*, m̂) and (R̂, Ẑ). The three most clas-

sical approaches, that is, those based on moment, least

squares, and maximum likelihood estimators, were used

as well as their associated truncated DSD adaptations.

a. Moment estimators

This is a commonly used method (Smith et al. 2005)

that makes use of analytical relationships between the

DSD parameters and the DSD moments. By using

Eq. (6), the kth-order moment M̂
k

is estimated from

randomly drawn drop diameters:

M̂
k

5
1

(386.8)ST
�
n

T
9

i51
Dk�0.67

i , (11)

where n9T is the number of drops in the simulated sample.

The corresponding parameter estimators are given by

D̂
m

5
M̂

4

M̂
3

, N̂0
* 5

44

G(4)

M̂
5

3

M̂
4

4

, m̂ 5
3M̂

2
M̂

4
� 4M̂

2

3

M̂
2

3 � M̂
2
M̂

4

.

(12)

Using the second term in Eqs. (4) and (5), R̂ and Ẑ can

thus be estimated. In the following, the above method is

referred to as the MM.

To take DSD truncation effects into account, we

computed new estimations of the moments. An iterative

method based on Eq. (10) was used:
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M̂
j11

k 5
M̂

k

[g(LjD
max

, k 1m̂ j 1 1)� g(LjD
min

, k 1 m̂ j 1 1)]
.

(13)

Then, m̂j11 and L̂j11 are obtained from Eqs. (2) and (12)

by replacing M̂k with M̂
j11

k . The algorithm is stopped

when the relative variation of m̂j is less than 1%. If M̂‘
k

describes the new estimation of the moments when

convergence has been achieved, this term is then used to

estimate all of the parameters [Eqs. (4), (5), and (12)].

In the following, this method is referred to as the MMT

method.

b. Least square estimators

A least squares estimation of the distribution pa-

rameters consists of computing the estimators (N̂0
*, D̂

m
,

R̂, Ẑ) using the previously described MM method. The

term m̂ is then the parameter, which adjusts the least

squares fit of log[ f m
*(X)], defined in (2), to log [ f̂ *(Xi)]

(Testud et al. 2001). Normalized diameter bins, defined

by Xi 5 Di/D̂m, are used and the normalized shape is

calculated as

f̂ *(X
i
) 5

H
mes

(D
i
)

N̂0
*ST386.8D0.67

.

This is a monoparameter adjustment, as opposed to

the procedure based on the use of a classical gamma

DSD, requiring the nonlinear adjustment of all three

parameters, the estimations of which would interact

with each other. This method is referred to as the LS

method in the following, although only m is estimated

using the least squares (LS) method.

As previously described, the LS method is modified to

take the truncation effects into account (hereafter re-

ferred to as the LST method). The initial estimation of

(N̂0
*, D̂

m
) is made using the previously described MMT

method; m̂ is thus the parameter that is adjusted in

order to reach the least squares fit of log[ f m
*(X)]. The

obtained value of m̂ is used in Eq. (13) to estimate M̂‘
k

from M̂k. By replacing M̂k with M̂‘
k , Eqs. (4), (5), and

(12) are used to compute all of the remaining parameters.

c. Maximum likelihood estimators

The maximum likelihood estimator (ML) estimation

consists of determining the parameters of the PDF that

maximize the likelihood (L) of the observed sample of

droplets with diameters: Di, i 5 1, . . . , n9T,

L D
i
; i 5 1, . . . , n

T
9

� �
/D

m
, m

� �
5 P

n
T
9

i51
f

G
(D

i
/D

m
, m),

(14)

where D̂mand m̂ are chosen so as to maximize

SnT9
i51 log[ f

G
(Di/Dm, m)] using standard minimization al-

gorithm.

The intercept parameter N̂0
* is estimated directly

from the number of drops nT9 as follows:

N̂0
* 5

n
T
9

N
T

(1, D̂
m

, m̂, S, T)
, (15)

where NT is the mean number of drops given in (7).

Using Eqs. (4) and (5), R̂ and Ẑ are estimated.

To take into account the truncation effects, we simply

replace the gamma PDF ( fG) by a truncated gamma PDF

fg (hereafter the MLT method): D̂m and m̂ are adjusted

so as to maximize SnT9

i51 log[ f g(Di/Dm, m, Dmin, Dmax)].

The intercept parameter N̂
0
* is estimated directly from

the number of drops, as follows:

If adapted estimators are applied to spectrum without

truncation (Dmin 5 0 and Dmax 5 1‘), they are strictly

equivalent to classical estimators.

4. Performances of the estimators

For each of the q 5 1 to 459 triplets (Dm, N0
*, m), and

for each of the devices defined in section 2, the five re-

trieved parameters p 5 {Dm, N0
*, m, R, Z} were esti-

mated for each of the 50 realizations. In addition, for

each of the six estimation methods m 5 {MM, ML, LS,

MMT, LST, MLT}, the retrieval error Eq
p,m 5 p̂q

m � pq

was computed. We note, respectively, hEp,m
q i and s

E
q
p,m

,

the mean error and standard deviation (std) of the pa-

rameter p taken over all 50 realizations for the triplet q

using the method m. Similarly, we note hEp,mi and sEp,m

for the mean error and standard deviation of the pa-

rameter p over the full dataset.

The range of values for each of the different param-

eters was determined experimentally and thus corre-

sponds to an existing situation. However, some of these

situations are more frequent than others. As the exact

N̂0
* 5

n
T
9

N
T

(1, D̂
m

, m̂, S, T)[F
G
(D

max
, D̂

m
, m̂)� F

G
(D

min
, D̂

m
, m̂)]

. (16)
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statistical distribution of the different parameters is not

perfectly known, instead of being described by a given

theoretical distribution, the global performances are not

exact. They are nevertheless still useful for comparing

different instrumental configurations and/or different

methods between each other.

In the next two sections, global performances are

discussed. Apart from the retrieval of m, the behavior of

the different estimators (except for ML) is similar, and

the biases of the retrieved parameters are relatively

stable over their range of values. For this reason, only

the results for the parameter N0
* are shown, and we have

focused our attention more specifically on the estimation

of the parameter m. Table 1 enables global comparisons

of N0
* and m to be made, for the different instrumental

configurations, using hEN0
*,mi, sEN0*,m

, hEm,mi, and sE
m,m

. The

latter two of these global indicators are less meaningful

because of the considerable variability of their perfor-

mance over the chosen range of values. Figure 1 pro-

vides a more accurate description of the behavior of

these estimators.

a. Influence of the instrumental configuration

By comparing the performances obtained with de-

vices 1 and 2 (Table 1, lines 1 and 2), the influence of

instrumental noise (10% and 1%, respectively) can be

tested. For the parameters Dm, N0
*, R, and Z, and for all

methods except for ML, a reduction in noise improves

the bias of the estimations and does not significantly

affect the standard deviation. The bias tends toward

zero for the adapted methods (MMT, MLT, LST). As

could be expected, for the estimation of m, the results

are slightly different. In fact, the hypothesis of a gamma

distribution used for the MM and ML methods is

inadequate, because the observed distributions are trun-

cated. This inadequation between the observed distribu-

tion and the model is partially reduced by the presence

of noise, meaning that reduced noise actually increases

their bias and standard deviation. For the adapted

methods using truncated DSDs (MLT, MMT, and LST),

an improvement is obtained in terms of both bias and

standard deviation. This trend is particularly noticeable

for the MLT method.

By comparing the performances obtained with de-

vices 1, 3, and 4, the influence of the capture area S, and

thus of the statistical sampling error, can be tested. As

expected, increasing the surface reduces the standard

deviation of all parameters. This improvement is more

or less significant, depending on which method is used.

Smaller, variable effects are observed for the bias.

A smaller standard deviation sEp,m
is obtained with the

MLT method for all parameters.

For any given device, the MLT method leads to

minimum variance, whatever the considered parameter.

In the case of the ML method, a smaller mean bias

hEp,mi is found, although we observed that the values

of the ML bias hEp,m
q i are not constant and depend

strongly on the chosen triplet q. A very high value of

sEp,ML
confirms the variability of the ML error, whereas

TABLE 1. Performances of the log10(N0
*) and m estimators for the six different methods and an integration time of T 5 60 s. The global

estimation error bias hEm,mi and std s
Em,m

are shown. Each line corresponds to a different device. The bold characters indicate the best

bias and std performances for each device.

MM MMT LS LST ML MLT

Device S (cm2), noise (%) Bias Std Bias Std Bias Std Bias Std Bias Std Bias Std

Log10(N0
*) 1 100, 10% 20.056 0.10 20.037 0.05 — — 20.019 0.06 20.009 0.11 20.025 0.04

2 100, 1% 20.025 0.10 20.006 0.05 — — 0.009 0.06 0.015 0.11 0.001 0.04

3 50, 10% 20.052 0.10 20.034 0.07 — — 20.015 0.07 20.006 0.11 20.025 0.06

4 500, 10% 20.061 0.10 20.039 0.03 — — 20.025 0.03 20.01 0.11 20.026 0.02

m 1 100, 10% 20.18 2.9 20.91 1.4 22.0 1.9 22.2 1.7 1.1 4.6 20.95 1.1
2 100, 1% 1.1 3.1 0.33 1.2 20.90 1.9 21.1 1.5 2.2 5.0 0.06 0.8

3 50, 10% 20.03 3.1 20.74 1.8 22.1 2.2 22.3 2.0 1.2 4.6 20.89 1.3

4 500, 10% 20.29 2.7 21.03 1.1 21.89 1.5 22.1 1.3 1.1 4.6 21.00 0.8

FIG. 1. Performance of m estimations, using the different esti-

mators with device 1. The mean value of the estimation bias hEm,mi
is plotted in the lhs graph as a function of m, and the std sE

m,m
is

shown in the rhs graph.
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the MLT biases are more constant, regardless of the

chosen parameter value or surface sampling area.

b. Global performances of the MLT method

Very good performances are found for values of N0
*

less than 107.5, whatever method is used (maximum er-

ror lower than 10%). For higher values (N0
* greater than

107.5) the MLT has a considerably better performance,

with a very low bias. The MLT estimation of log10(N0
*)

leads to a constant underestimation, equal to 0.025, and

to an error standard deviation that depends on the value

of the parameter N0
* and the surface sampling area.

The variability of the MLT approach, which is lower

than that of the other methods, leads to a global stan-

dard deviation sEN
0*,MLT

equal to 0.04 for device 1. This

corresponds to a standard deviation sE q
N0*,MLT

lying between

0.01 and 0.07. Depending on the value of N0
*, sEN

0*,MLT

decreases by a factor of 3 (from 0.06 to 0.02) when the

surface sampling area increases by a factor of 10 (from

50 to 500 cm2). As could be expected, this reduction is

inversely proportional to the root square of S, that is to

say, inversely proportional to the number of ‘‘measured’’

samples [Eqs. (7) and (10)]. A reduction in instrumental

noise (device 2) leads to a very low bias for the three

adapted estimators and to a negligible value for the MLT

estimation.

The bias of Dm is always very small (less than 4.3% for

all devices and methods) and is sensitive to instrumental

noise. Although all of the adapted methods (MLT, LST,

MMT) have similar behaviors, the results obtained with

the MLT are significantly better. The MLT estimation of

Dm leads to an overestimation, which increases from 0.01

to 0.05 mm when Dm increases from 0.5 to 3 mm. MM

and LS estimators can lead to a significant bias, particu-

larly for low values of Dm. The standard deviation of the

error increases with the value of this parameter and de-

creases with surface sampling area. The variability of

the MLT approach, which is lower than others, leads to

a global standard deviation sEDm ,MLT
equal to 0.07 mm

for device 1. This corresponds to a standard deviation

sE
q
Dm ,MLT

lying between 0.01 and 0.07 mm. Depending on

the values of the parameters, sEDm ,MLT
is reduced, as in the

previous case, by a factor of 3 (from 0.09 to 0.03 mm)

when the surface sampling area increases by a factor of

10. Reducing the instrumental noise (device 2) leads to

an unbiased estimation for most of the estimators (except

for ML).

Apart from the ML estimator, all rain-rate estimators

have similar performances. When R increases from

1 to 120 mm h21, a small overestimation hER,m
q i, which

increases from almost 0 to 3.5 mm h21, is found; for

device 1 the standard deviation sE q
R,m

increases from

almost 0 to 5 mm h21. The MLT estimator is slightly

better, with a global value sER,MLT
equal to 1.7 mm h21

over the whole simulated database. Its global standard

deviation sER,MLT is reduced by a factor of 2 only (by 2.3

and 1.1 mm h21 for devices 3 and 4, respectively) when

the surface sampling area increases by a factor of 10.

Reducing the instrumental noise (device 2) by a factor

of 10 reduces the bias by the same factor for most of the

estimators, except for the ML bias, which increases, and

the MLT bias, which becomes negligible.

The reflectivity, like the rain rate, is an integrated

parameter, which has little sensitivity to the retrieval

method and to the lack of small drops. All the estima-

tors (except for ML) have similar performances. For

Z ranging between 20 and 60 dBZ, a constant, small

overestimation hE
Z,m

q i equal to 0.4 dBZ is found, and

for device 1 the standard deviation sE q
Z,m

is less than

1 dB. The MLT estimator is slightly better, with a global

value sEZ,MLT
equal to 0.6 dB over the whole simulated

database. The global standard deviation sER,m
is reduced

by a factor of 3 (by 0.87 and 0.27 dB for devices 3 and 4,

respectively) when the surface sampling area increases

by a factor of 10. Reducing the instrumental noise

(device 2) by a factor of 10 reduces the bias of all the

estimators, with that of the LST and MLT being re-

duced by a factor of 20.

The results for the parameter m are more complex:

for simulations carried out with Dmin equal to 0.3 mm,

similar performances are obtained for the adapted and

standard methods, whereas for Dmin equal to 0.5 mm

the nonadapted methods have very poor performances.

The estimation of m is very sensitive to the estimator

used. For all of the methods, the bias hEm,m
q i decreases

and the standard deviation sE q
m,m

increases, when m varies

from 21 to 15 (Fig. 1). The adapted methods (MMT,

MLT, LST) are less sensitive to the values of the pa-

rameters, in terms of bias as well as standard deviation.

Although a smaller mean bias hEm,mi is obtained for MM

(Table 1), we observed that the bias of MM hEm,m
q i varies

from 21.8 to 1.8 (Fig. 1). The very high mean variance of

the MM estimation confirms the variability of the MM

error. The MLT method substantially reduces the vari-

ation of the bias hEm,MLT
q i, as well as that of the standard

deviation. Even though the use of the MLT estimator

leads to a substantial improvement, the lack of small

drops leads to a significant underestimation of higher

values of m. For these values, the MLT method leads to

maximum underestimation varying from 8.3 to 5.5 when

the surface sampling area increases from 50 to 500 cm2.

As for the other parameters, a reduction in instrumental

noise (device 2) leads to a reduction in the bias of the

adapted estimators, and the bias is negligible for the

MLT estimation only.
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c. Three case studies

Although the results presented above were obtained

with the full set of simulations, the great difference

observed between the mean and maximum errors, and

the relatively high values of standard deviation, un-

derline the fact that the behavior of the different

methods depends more or less on the considered triplet

(Dm, N0
*, m). Results corresponding to certain DSD

parameter triplets and a particular device (device 1)

are described in detail in this section. Three parameter

triplets, frequently observed in real DSD, corre-

sponding to low, medium, and heavy rainfall rates were

selected:

Table 2 provides the mean standard deviation, the

maximum error in the estimation of the shape param-

eter m, and the correlation coefficients r(m̂, L̂) and

r(D̂
m

, log
10

N̂
0
), obtained from 50 realizations of each

triplet, for the three adapted methods: MMT, MLT,

and LST. Strong correlation artifacts, arising from re-

trieval errors, are observed between the retrieved

parameters. Identical values of the correlation coeffi-

cient are obtained for the original (MM, ML, LS) and

adapted methods. The correlation between the pa-

rameters m and L, due to statistical errors on the mo-

ment estimator, have been studied in detail by Zhang

et al. (2003) for the case of the MM method. These

authors developed the theoretical analysis and ran

simulations to study the propagation of statistical er-

rors from DSD moments to DSD parameters. For the

inputs (m, L) 5 (0, 19 cm21, using a relative standard

deviation of 5% for each of the moments, and moment

intercorrelation coefficients equal to 0.8, the authors

obtained std(m̂) 5 0.2, std(R̂)/R 5 5.1%, and r(m̂, L̂) 5

0.98, in agreement with the results obtained using the

MM estimation. The corresponding simulation results

are shown in Fig. 2, in the form of scatterplots of

m̂ versus L̂ , and in Fig. 3 as scatterplots of D̂m versus

log
10

(N̂
0
). In terms of global performance, these three

cases confirm (taking into account that the lack of

small drops improves the estimation of the shape pa-

rameter) that the MLT estimators are slightly better

than the other adapted estimators. However, even with

this method, relatively strong variability of the esti-

mated shape parameter is observed, depending on the

considered triplet.

5. Quality of the models

a. Adjustment validity criterion

A case study as well as global performance demon-

strate the efficiency of the MLT, when a truncated

gamma DSD is measured. This result is foreseeable,

since the simulations are based on truncated gamma

PDF, as described in (9). In the context of real DSDs, it

is then important to test the validity of this assumption.

It is thus important to check that the model fits well. We

suppose that observed droplets of diameter (Di; i 5

1, . . . , n) are independent realizations from a common

population, with an unknown probability density func-

tion f and cumulative distribution function (CDF) F. The

previously described methods estimate

f̂ 5 f
g
(D/D̂

m
, m̂, D

min
, D

max
),

which corresponds to F̂ 5 F
g
(D/D̂m, m̂, Dmin, Dmax).

We wish to assess the plausibility of the observed

sample (Di; i 5 1, . . . , n) being a random sample taken

from F̂. Given an ordered sample of observations

D
(1)

# D
(2)

# � � � # D
(n)

, the empirical cumulated dis-

tribution function ~F is defined by ~F(D) 5 (i /n11) for

D(i) ,D,D(i11).

If the empirical PDF ~f estimates the true PDF f, it

should be in agreement with the candidate model f̂ ,

provided f̂ provides an adequate estimate of f. The

quantile–quantile plot (Q–Q plot) is a commonly used

graphical tool for comparing two PDFs, f1 and f2, cor-

responding, respectively, to CDFs F1 and F2. The Q–Q

q
1

5 (D
m

, log
10

N0
*, m) 5 (1.4 mm, 6.3, 5)

q
2
5 (D

m
, log

10
N0

*, m) 5 (1.8 mm, 6.7, 5)

q
3
5 (D

m
, log

10
N0

*, m) 5 (2.6 mm, 6.7, 1).

For device 1, this leads to

(R, Z, L, N9
T) 5 (1.6 mm h�1, 28 dBZ, 64 cm�1, 283 drops)

(R, Z, L, N9
T) 5 (13 mm h�1, 40 dBZ, 50 cm�1, 1130 drops)

(R, Z, L, N9
T) 5 (71 mm h�1, 52 dBZ, 19 cm�1, 3113 drops).
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plot involves plotting the quantiles of the first dataset

against the quantiles of the second dataset, for a number

of levels of probability P. If the PDF and thus the CDF

are similar, then the Q–Q plot should also consist of

points close to the first diagonal. This graphical tech-

nique requires the results from all distributions to be

visualized, one by one. To perform numerical compar-

isons, we thus computed the distance E between the two

quantiles:

E(F
1
, F

2
) 5

1

99
�
99

P51
[F�1

1 (P)� F�1
2 (P)]2, (17)

where F1
21 and F2

21 represent, respectively, the inverse

CDFs of F1 and F2. Different comparisons between the

distributions can thus be performed.

Concerning the simulated DSDs, if the ‘‘true’’ CDF

F is known, the contribution of the statistical sam-

pling errors is given by E(F, ~F). For simulated as

well as for observed DSDs, the estimation errors are

quantified by E(F̂m, ~F), with different F̂m corre-

sponding to the different estimation methods m. For

simulated DSDs only, E(F, F̂
m

) can be computed, thus

providing the final performance, for a given estimation

method and set of properties of the device (S, T, in-

strumental noise).

When the triplets defined in section 4c are used with

device 1, they lead to the values presented in Table 3.

The distance E(F, F̂MLT) is smaller than that observed

between the empirical distribution and the original one
FIG. 3. Similar plot to that of Fig. 2, showing the scattered points

corresponding to estimated D̂m � logN̂0
* values.

FIG. 2. Scatterplots of estimated m̂� L̂ values for device 1 using

three adapted methods (MMT, MLT, and LST) for 50 realizations

of the three triplets (q1, q2, and q3) defined in section 4c.

TABLE 2. The mean bias hEm,m
q i, std sE q

m,m
, and maximum error

Max(Em,m
q ), in the estimation of the shape parameter m. The cor-

relation coefficients r(m̂, L̂) and r(D̂m, log N̂0
*). All values were

computed for device 1 for the 50 realizations of the three particular

triplets (q1, q2, q3) defined in section 4c. Bold characters indicate

the best performances.

Triplet MMT MLT LST

hEm,m
q i q1 0.17 20.53 22.11

q2 20.4 20.37 20.89

q3 20.12 20.13 21.4

sE
q
m,m

q1 1.2 0.73 1.6

q2 0.52 0.24 0.54

q3 0.23 0.13 0.5

Max(Em,m
q ) q1 3.3 1.9 3.2

q2 1.7 0.9 2.4

q3 0.6 0.35 2.4

r(D̂m, log N̂0
*) q1 20.78 20.85 20.70

q2 20.88 20.86 20.86

q3 20.96 20.91 20.97

r(m̂, L̂) q1 0.99 0.97 0.99

q2 0.98 0.98 0.99

q3 0.98 0.96 0.99
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E(F, ~F). In this case, the same hypothesis of a truncated

gamma distribution is used in the simulations and dur-

ing retrieval. Figure 4 presents the PDF of these differ-

ent distances, computed for the full simulated dataset:

E( ~F, F̂
m

) is shown on the left and E(F, F̂
m

) is shown

on the right of this figure. The histogram of E(F, ~F)

has been added (bold curve). For the adapted methods

MMT and MLT, we have E( ~F, F̂m) close to zero,

leading to E(F, F̂MMT) 5 E(F, ~F ) and E(F, F̂MLT) #

E(F, ~F ).

As the best results are obtained from MLT estima-

tions based on simulated DSDs, experimentally mea-

sured DSDs were then used to test this method. The

MLT method and the commonly used MM and LS

methods are then used for evaluating their performance

with real DSDs.

TABLE 3. Distances (m2) E(F , ~F), E(F, F̂
ML

), and E(F , F̂
MLT

) for

device 1 resulting from the three triplets defined in section 4c.

E(F, ~F) E(F , F̂
ML

) E(F, F̂
MLT

)

q1 6.7 3 1025 5 3 1025 3.5 3 1025

q2 1.8 3 1025 2.7 3 1025 0.5 3 1025

q3 5.5 3 1025 11.3 3 1025 5.5 3 1025

FIG. 4. (left) Histograms from six different methods of the distances between estimated and

truncated gamma distributions, E(F , F̂
m

), for device 1. The bold lines show the distance be-

tween an empirical and a truncated gamma distribution E(F, ~F). (right) Histograms from six

different methods of the distances between estimated and empirical distributions, E( ~F, F̂m),

for device 1. (top) MM, ML, and LS methods. (bottom) MMT, MLT, and LST methods.
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b. Application to experimental data

The experimental dataset is composed of three sub-

sets, collected in different climatic areas: Paris, France

(March–October 2000), Iowa City (April–October

2002), and Djougou, Benin (June–September 2006).

These have integration times of 1 min, and correspond

to a total of 15 700 DSDs. The measurements were

made using a dual beam optical disdrometer (corre-

sponding to device 1). Although this device is able to

measure drops with a diameter as small as 0.3 mm, we

retained the data for droplets with D . 0.5 mm only.

Figure 5 shows the normalized histogram of E(F̂m, ~F)

(defined above, where ~F is the distribution function of

the measured DSD) obtained from this dataset using

each of the three methods. This figure should be com-

pared with Fig. 4, obtained with simulated data. Figure 4

shows histograms obtained on the full simulated data-

set, which depend on the range and distribution of the

parameters used to perform these simulations. How-

ever, for the adapted method, the MMT, MLT, and LST

models E(F, F̂m) and E( ~F, F̂m) have the same behav-

ior (small variation of bias and constant standard devi-

ation) over the whole range of m. The histograms of the

distance obtained in Fig. 4 (simulated data) and Fig. 5

(measured data) for MLT are similar because the

quality of the adjustment is the same over the whole

range of m. The classical methods MM, ML, and LS

show an increasing adjustment error for decreasing

values of m. LS and MM perform slightly better on the

simulated data (Fig. 4) than on measured data (Fig. 5),

probably because the measured dataset generally con-

tains more smaller m values than the simulated dataset.

For all methods the distances E(.) decrease when N0
*

increases. We can thus conclude that (i) the histograms

for the simulated and experimental data are similar and

(ii) the MLT method gives the best results in both cases.

Equilibrium theory shows that DSD can exhibit bi-

modal or trimodal shapes (Roland and McFarquhar

1990a,b; Brown 1999). This behavior is due to raindrop

breakup and coalescence processes during fall, and oc-

curs when a sufficiently large number of large droplets

are present at the top of the rain layer. Under such

circumstances, the use of a gamma distribution to model

the DSD is no longer appropriate. Some other specific

situations, such as the beginning of a rain event, can

also lead to nongamma DSDs. It is thus important to

establish a criterion that can be used to determine

whether or not a DSD is of the gamma type. When ap-

plied to the MLT method, the distance E(F̂
m

, ~F) appears

to provide a well-adapted test, because E(F̂MLT, ~F)

rarely exceeds 1024 m2 with simulated data, for all trip-

lets (Dm, N0
*, m) of the gamma distribution. In the fol-

lowing analyses, a DSD is thus considered to be of the

gamma type when its distance is lower than this value.

When applied to our database, with the MLT method,

this criterion leads to 91% of real measured DSDs being

of the gamma type. When the same criterion is applied,

using the MM and LS methods, it leads to 85% and 81%,

respectively. When this selection criterion is used to se-

lect gamma-type DSDs only, Table 4 provides, for each

method, the corresponding mean and standard deviation

of the parameters (Dm, N0
*, m).

It is important to note that for the MM and LS

methods, although only those DSDs corresponding to

E(F̂
m

, ~F) , 1024 m2 were selected, some of the esti-

mated values of m appear to be anomalous (i.e., retrieval

values greater than 50), in approximately 1.5% of cases.

With real as for simulated DSDs, different estimators

lead to very similar results for Dm and N0
*, and to rel-

atively strong differences for m (Fig. 1; Table 1). In more

general terms, although real performances with exper-

imental data are difficult to evaluate, some comparisons

can be made with simulated data. In Fig. 1 (simulated

data), the difference DMM,MLT between the bias of

the MLT and MM methods DMM,MLT 5 hm̂
MM
� mi �

hm̂MLT � mi 5 hm̂MM � m̂MLTi varies between 0.5 and 2.

FIG. 5. Histograms of the ‘‘distances’’ between estimated and

empirical distributions E ( ~F , F̂m) , for three estimated distribu-

tions, F̂
MM

, F̂
MLT

, F̂
LS

, based on measured DSD.
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The difference between the bias of the MLT and LS

methods, DLS,MLT, varies between 21.5 and 0. Although

it is not possible to calculate the bias of experimental

data, it is nevertheless possible to calculate DMM,MLT

and DLS,MLT, because the true values of m are not

needed. In both cases, we checked whether the same

behavior could be found with measured data: a positive

gap close to 2 is observed for DMM,MLT, and a negative

gap close to 21 is observed for DLS,MLT. This partial

validation, in addition to the similarity of the distance

between estimated and empirical DSDs, leads us to

believe that the performance achieved with gamma-

type measured data (E , 1024) is the same as that found

with simulated data.

6. Conclusions

The estimation of DSD microphysical parameters

presents many difficulties (lack of small drops, statistical

sampling, instrumental noise, validity of the ‘‘gamma-

type’’ DSD assumption).

Simulations taking into account the sensitivity of

various methods to measurement conditions (noise

measurements, absence of small drops, size of the col-

lecting area, integration time) have been performed.

Different methods are proposed for the estimation of

the microphysical (Dm, N0
*, m) or integrated (R and Z)

parameters of the DSD. The three most classical ap-

proaches, based on the moment (MM), least squares

(LS), and maximum likelihood (ML) estimators, are

adapted in order to take into account the lack of small

drops. The comparison of different estimators, tested

on a wide simulated set of data, as well as the study of

the performances obtained with some particular DSDs

show that the proposed adapted maximum likelihood

estimator (MLT) produces better results than the

others. In the case of gamma-type DSDs, the MLT is the

estimator that is the least sensitive to statistical sam-

pling errors, whose bias tends toward zero when the

noise decreases, and that presents a very small error

variance even for small surface sampling areas. Al-

though the main improvement achieved with the MLT

is the estimation of the shape parameter (m), the MLT

estimator has the smallest variance, in the context of

gamma DSDs, when determining the other microphys-

ical parameters (Dm or N0
*) as well as the integrated

parameters (R and Z).

As the estimation of the shape parameter uses a

priori information about the DSD, such evaluations

are valid only in the case of gamma-type distributions.

In the context of real DSDs, it is important to check

that the truncated gamma model fits well. A criterion is

defined for the selection of gamma-type DSDs. When

applied to a wide set of measured data, it shows that

more than 90% of real DSDs can be considered to be of

the gamma type. Validations performed on real DSDs

show that the performances achieved with gamma-type

measured DSDs are identical to those found with sim-

ulated data.
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