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Abstract

Off-axis electron holography was used to observe and quantify the magnetic microstruc-

ture of a perpendicular magnetic anisotropic (PMA) recording media. Thin foils of PMA

materials exhibit an interesting Up and Down domain configuration. These domains are

found to be very stable and were observed at the same time withtheir stray field, closing

magnetic flux in the vacuum. The magnetic moment can thus be determined locally in a

volume as small as few tens of nm3.
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From the first desktop (5.25 inch diameter) hard disk drive (HDD) in the early 1980’s, with

5 MegaBytes storage capacity, to the 1 TeraByte hard drive distributed now by Hitachi, fun-

damental improvments have been achieved in HDD technology.The main evolutionnary step

in the data storage history happened certainly before the first HDD-integrated Personal desk-

top Computer (Seagate in 1980) when the perpendicular recording idea was first introduced in

1977.1 Now, all improvements in new memory capacity are expected tobe reached thanks to

perpendicular recording. While important studies are published on new materials design,2,3

studies on magnetic interaction between the recording headand the data bits are mostely con-

cerned about the tip field leakage characterization.4,5 Here we show that it is also possible to

obtain nanometric and quantitative magnetic informationsof stray field and magnetic induction

at the same time on perpendicular magnetic anisotropic (PMA) materials.

Due to the strong stray fields perpendicular to their surface, PMA materials have been ex-

tensively studied by Magnetic Force Microscopy (MFM),6,7 micro-magnetic simulations,8 and

other magnetic characterization techniques.9,10 However these techniques were not suitable to

study the inner magnetic configuration of materials and inner magnetization at the same time.

Thus, formation of stray field distribution with respect inner magnetic parameters of the mate-

rial have not been yet confirmed by experimental results.11 This could be of great importance

to evaluate the ability of a reading head to flip a bit.

Electron Holography (EH) in a Transmission Electron Microscope (TEM) is a powerful

technique which enables observation of electrostatic and magnetic fields at the nanoscale by

a electron wave phase retrieval process.12 Through the so-called Aharonov-Bohm effect,13 it

is known that an electron wave is sensitive to the electric and magnetic potential. As a con-

sequence, it can be used to investigate magnetic propertiesof materials. Electron holography

has thus been used to study many magnetic materials, for example, the analysis of stray fields

around a MFM tip,14 or the study of the magnetic configuration of magnetic nanoparticles,15

magnetic films,16 magnetic tunnel junctions,17 or even magnetite core of magnetotactic bacte-

ria.18 The phase shift of the exit electron wave,∆φ , travelling along thez direction across the
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sample, which interacted with the electromagnetic field (electrostatic and magnetic potentials

from the sample) can be expresses as :

∆φ (x,y) = CE

∫
Vint(x,y,z)dz−

e
h̄

∫
Az(x,y,z)dz (1)

whereV (x)int represents the electrostatic contribution to the phase shift (in the case of a mate-

rial it is mainly its Mean Inner Potential or MIP), andAz is thez-component of the magnetic

vector potential describing the magnetic induction distribution in a plane (for a given z) pen-

dicular to the optic axis.Az is related to the magnetic induction~B by means of the Maxwell’s

equation :~B = (Bx,By) = (∇yAz,−∇xAz). CE is an electron energy related constant.

The keypoint is the separation of the magnetic and electrostatic contributions in the recon-

structed phase shift and is extensively discussed elsewhere.19

We have used for our purpose a method consisting of recordingtwo holograms before (∆φ+)

and after (∆φ−) removing and inverting the sample. The electrostatic contribution to the phase

shift remains similar in the two holograms while the magnetic contribution changes in sign.

The magnetic contribution (∆φmagn.) can thus be obtained by evaluating half of the difference

of the two phase images calculated from the two holograms. The MIP contribution (∆φMIP) is

then half of the sum. To account for the sample reversal, it isnecessary to reverse one of the

two phase images and align them.

∆φmagn. = 1
2 ∗ [∆φ+−∆φ−] = e

h̄ [Az∆t(x,y)]

∆φM.I.P. =
1
2 ∗ [∆φ+ +∆φ−] = CEV (x,y)int∆t(x,y)

(2)

EH has been used to study the magnetic configuration and measure the remanent magnetiza-

tion of a FePdL10/FePddisord. stack, grown on MgO(001), which exhibits a strong PMA. The

tetragonal axis of the chemically ordered FePdL10 crystalline structure lies along the growth di-

rection corresponding to an alternate stacking of pure Ironand Palladium planes. This chemical

anisotropy along thez-axis induces an easy magnetic axis in the same direction which gives rise

to the up and down magnetic domain configuration.6 The main purpose of the second "soft"

layer, having a vanishing anisotropy, is usually describedas the main factor for increasing the
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recording efficiency.20

The expected magnetic configuration of the FePdL10/FePddisord. bilayer is presented in Figure1-

A. Domains in the FePdL10 layer are separated by Bloch walls where the magnetization lies in

the plane of the foil, surrounded by a Néel Cap in which the magnetization runs around the

Bloch wall axis. The bottom FePddisord. layer gives rise to in-plane components allowing a flux

closure within the bilayer, and enables the domains to be aligned in a parallel stripes configu-

ration. This magnetic configuration is confirmed by studyingthe external stray field by MFM

experiment as shown in Figure 1-B.

Figure 1:A. Magnetic configuration expected for the foil.B. MFM view of the sample in its
stripe configuration. Black contrast is down domains, bright contrast is up ones. The dashed
area shows the geometry used for TEM sample preparation, across magnetic orientation.C.
Fresnel view of the sample showing black and white contrast where the beam are overlaping.

Our purpose is to analyse in more detail the inner magnetic configuration with higher res-

olution. Figure 1-C shows a Fresnel TEM micrograph21 of the sample. The thin foil used for

TEM experiments has been prepared in cross-section in orderto observe the magnetic structure

by the side instead of the top in the MFM geometry. In this micrograph, domains are clearly

defined, separated from one another by a bright or dark line localised at the position of domain

walls. The domain periodicity is 100 nm which fully agree with MFM measurement. EH ex-

periments were carried out on the same area of the PMA magnetic film.

Figure 2-A shows the deduced MIP contribution to the phase shift, and the magnetic contri-

bution is shown in Figure 2-B. The iso-phase contours displayed on both phase images directly
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Figure 2: Mean Inner Potential (A) and magnetic (B) contribution to the phase of the electron
wave. The color scale used here is a temperature scale described near each picture. The contour
lines are for equi-phase lines and represent 1 radian for MIPcontribution and 1/4 radian for
magnetic contribution.

relate to thickness variations (in the MIP phase image) and to magnetic flux (in the magnetic

one). The variation of the MIP contribution, exhibits that the TEM sample increases uniformly

in thickness while magnetic contribution highlights vortices corresponding to the Bloch walls.

Between these vortices are areas where the magnetic flux is parallel or anti-parallel to the

growth direction. These correspond to the "up" and "down" magnetic domains. Stray fields

close the flux in the vacuum and inside the stack. However, thevortices appear to be flatter

at the bottom (close to the FePd disordered layer) than at thetop (close to the vaccum). This

asymmetrical shape of the vortices is due to the disordered FePd layer which forces the mag-

netic induction to lie within the foil plane. From equation 2, quantitative values of magnetic

induction can be extracted provided that the MIP or the thickness of the different layers are

known:

∆t(x) = ∆φM.I.P.

CEV (x)int

B⊥ = h̄
e·∆t(x)∇[∆φmagn.]

(3)

Figure 3 shows in yellow the experimental profile of the electrostatic contribution to the

phase extracted along the dashed line in Figure 2. To deduce the thickness profile (in blue), we
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Figure 3: Mean Inner Potential contribution to the phase analysis. This is a plot profile along
the dashed line in Figure 2-A. Right (yellow) label and solidline is the phase profile used to
deduce the different layers in the foil. Dashed lines present linear interpolation variations for
each different layers. Thickness profile is presented in thecolored (blue) area and is labeled on
the left.

have first calculated the mean inner potential values for thePd, FePdL10 and FePddisord. layers.

According to Equation 3, this thickness profile is used to calculate theBx andBy inside the

layer (Figure 4, A and B). Neglecting the demagnetizing fieldwithin the material, the mea-

sured magnetic induction is directly related to the magnetization in the material. The value of

the magnetic induction modulus in the FePdL10 region (i.e. inside the domains) gives rise to

a magnetic induction of 1.3± 0.1 T while same measurements performed on the FePddisord.

area (under domain walls) gives an aeeeveraged values of 1.2±0.1 T. Values measured for the

µ0Ms of the FePdL10 layer are the same as those expected for FePd.6 The variations observed

in the different domains come from a variation in the evaluation of the local thickness, due to

small deformation of the crystal, or amorphization during ion milling. The difference found

between the two layers is negligible. It should comes from the smaller area of magnetization

purely perpendicular to the electron path in the soft layer under the domain wall. This implies

a variation of the magnetization direction due to the presence of the domain wall and the in-

plane magnetization under the domains. The measured value is then no longer a pure magnetic

moment but a projection of it.

More accurate measurements of the FePd magnetic propertiescan be done performing micro-

magnetic simulations. We have used a code based on LLG temporal integration, GL_FFT,8 to

simulate the magnetic flux (i.e. the iso-phase contours) observed by EH. Calculated magnetic

phase shift (using bulk values6) and experimental data are compared in Figure 4, C and D.
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Figure 4: A andB are the X and Y components (left and right respectively) of the magnetic
induction deduced from phase gradients. Profile for quantitative interpration is displayed on
each figure.C is a zoomed view of Fig. 2-B compared with a micro-magnetic simulation inD.
In both images, iso-phase lines represent 0.08rad and the color scale used is described.

It is seen that the Bloch walls are much wider in the experimental data which could be explain

by a slight decrease of the thickness due to the thinning process (see also Supporting Informa-

tions). The magnetic flux can be quantitatively measured, both in and outside the sample. The

stray field can then be related to the magnetization moment inthe domains. This is potentially

of great interest for the design of a reader of this kind of material.

Electron holography was used to highlight the magnetic structure of FePdL10-FePddisord.

magnetic bilayer exhibiting PMA, with a resolution closed to the nanometer and an accurate

measurement of the local magnetic induction. The magnetic configuration was then success-

fully compared to micromagnetic calculations. Moreover, the quantitative informations given

by the technique can be directly related to the stray field of the materials, which are the bit

information for reading heads in hard drives.
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Supporting Information Available

The sample was grown on MgO (001) substrate by Molecular BeamEpitaxy (MBE) according

to the following sequence : Cr (2.5 nm) in order to initiate the epitaxial growth, Pd (48 nm),

FePd (15 nm) co-deposited at room temperature, FePd (37 nm) co-deposited at 450◦C and a

1.5 nm caping of Pt was added to avoid oxydation.

The sample has been prepared for electron microscopy using mechanical polishing and ion

milling. The layer is thus exhibiting a double wedge geometry along the observation plane.

The microscope used for the holography experiments is a FEI Tecnai F20 field-emission-gun

TEM fitted with a Cs corrector (CEOS). A FEI Titan FEG TEM fittedwith a dedicated Lorentz

lens was used for Fresnel imaging. A Gatan Imaging Filter wasalso used for zero loss filtering

for the Fresnel images.

Holograms are recorded using off-axis electron holographywith a rotatable biprism located in

the SA aperture. The biprism is aligned along the foil direction x. The fringe spacing is 1.8 nm,

the fringe contrast is 12 %. For calculating the phase image we perform a Fourier transform

of the hologram and apply a mask of 0.25 nm−1 on the side-band spot before calculating an

inverse Fourier transform.

To separate the electrostatic and magnetic contributions to the phase shfit, two holograms were

recorded before and after inverting the sample. Image calculations were then performed to

aligned the two images. The phase images have been digitallyflipped for accordance with the

physical inversion of the sample. After data acquisition, an accurate correction of the drift,

rotation and scaling between the two images has been performed using recently developped

scripts.

Mean Inner Potentials have been calculated using the Doyle and Turner scattering amplitude

corrected with the Ross and Stobbs equation (see chapter 12 of.22) We calculate :VFePdL1o =

21.73 V,VFePddis.
= 22.67 V,VPd = 22.37 V.

Micro-magnetical simulation has been carried out using thebulk FePd following parameters

: Exchange constantA = 6.910−12 J.m−1, Uniaxial Anisotropy K=1.03 106 J.m−3, Saturated

Magnetizationµ0MS = 1.294 Tesla . The cells are 0.781nm×0.625nm and infinite along thez

direction (considered as invariant).
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