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CONSERVATIVE ESTIMATIONS OF RELIABILITY WITH LIMITED SAMPLING 

Victor Picheny Nam-Ho Kim Raphael T. Haftka 
University of Florida, Gainesville, FL 32611-6250 

USA 
ABSTRACT 
The objective of this paper is to provide a method of 

safely estimating reliability based on small samples. First, it is 
shown that the commonly used estimators of the parameters of 
the normal distribution function are biased, and they tend to 
lead to unconservative estimates of reliability. Then, two ways 
of making this estimation conservative are proposed: (1) 
adding constraints when a distribution is fitted to the data to 
bias it to be conservative, and (2) using the bootstrap method 
to estimate the bias needed for a given level of 
conservativeness. The relationship between the accuracy and 
the conservativeness of the estimates is explored for a normal 
distribution. In particular, detailed results are presented for the 
case when the goal is 95% likelihood to be conservative. The 
bootstrap approach is found to be more accurate for this level 
of conservativeness. It is then applied to the reliability analysis 
of a composite panel under thermal loading. Finally, we 
explore the influence of sample sizes and target probability of 
failure on estimates quality, and show that for a constant level 
of conservativeness, small samples and low probabilities can 
lead to a high risk of large overestimation while this risk is 
limited to a very reasonable value for samples above. 
Keywords: Reliability-based design, Probability of failure, 
Conservative estimation 

1. INTRODUCTION
In analyzing mechanical systems, uncertainties in input 
parameters—such as material properties, geometric 
dimensions, or operating conditions—prevent us from taking 
the analysis results at face value. Quantification of the 
influence of these uncertainties on reliability is crucial. 
Engineering systems need to be designed so that the risk of 
failure should not exceed an acceptable value. 

In the literature (e.g., Ref. [1]), many methods have been 
proposed to estimate the reliability of a system for design 
under uncertainties. When sampling-based methods are used 
for this purpose, randomness in reliability estimates is 
inevitable especially when a small sample is used. It has been 
shown that the errors in probability distributions due to 
insufficient information can have a large effect on probability 
calculation (e.g., Refs. [2] and [3]). 

Accurate estimation of the reliability of a system requires 
a large number of samples. When the number of samples is 
limited due to computational or manufacturing costs, the 
available information is insufficient to accurately estimate the 
reliability of the system. However, it is possible to compensate 
for the lack of information by using reliability estimations that 
are biased to be safe. In this paper, this is called conservative 
estimation [4]. FAA defines conservative material property 
(A-basis and B-basis) as the value of a material property 
exceeded by 99% (for A-basis, 90% for B-basis) of the 
population with 95% confidence. As the conservative 
estimations tend to overestimate (or underestimate) the target 
values, each conservative estimator needs a trade-off analysis 
between accuracy and the level of conservativeness (i.e., 
chance of being conservative). 

In this paper, we focus on the case when the probability 
of failure, Pf, of a system is estimated from a small number of 
samples. The objective is to find a conservative estimate, f̂P , 
that is likely to be no lower than the true Pf. To provide such 
estimation, two alternatives are considered: the first method is 
based on biasing the distribution fitting used to compute the 
estimator of Pf; we also explore the use of bootstrap method 
[5] [6] for probability of failure estimations, and defining 
conservative estimators based on bootstrapping. Finally, the 
relation between accuracy and the level of conservativeness is 
studied with the help of numerical examples. 

In the next section, we discuss how we use the sampling 
techniques to estimate the probability of failure. Section 3 
shows how to use constraints to obtain conservative 
estimators. Section 4 describes the bootstrap method and how 
to use it to define conservative estimator. The accuracy of 
such estimators is analyzed using a simple numerical example 
in Section 5, and the conservative estimators are applied to an 
engineering problem in Section 6. Finally, in Section 7 we 
analyze the effects of sample sizes and target probability of 
failure on the quality of the estimates, followed by concluding 
remarks in Section 8. 
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2. PROBABILITY OF FAILURE CALCULATION FROM
SAMPLES 
2.1. Limit-State Function and Probability of Failure 

Failure of a system can usually be determined through a 
criterion, called a limit-state function. For instance, the 
limit-state function of a structure is often defined as the 
difference between its response,R , (e.g., maximum stress or 
strain) and its capacity,C , (e.g., maximum allowable stress or 
strain): 

( ) ( ) ( )G X R X C X= −    (1) 

Both response and capacity can be considered as a 
function of random variables,X . 
 When probability distributions of the random variables 
are given, Monte Carlo Simulations (MCS) can be used to 
generate samples of the limit-state [7]. The standard use of 
MCS is to calculate the number of time failure occurs. The 
ratio between the numbers of failures and the total number of 
samples approximates the probability of failure of the system. 
However, the accuracy of MCS strongly depends on the 
number of samples used. When low probabilities are 
considered, a limited number of samples cannot evaluate the 
probability of failure accurately enough. A popular solution is 
to evaluate low probabilities by fitting a distribution to the 
samples.  
 Given a set of samples of system response , 
estimating the probability of failure is equivalent to estimating 
the Cumulative Distribution Function (CDF) F  of the 
limit-state at : 

1 2, , , ng g g…

( )G g
0g =

( 0) 1 (0f GP P g F= ≥ = − )   (2) 

In the following part, we discuss several alternatives of 
estimating CDF from a set of samples.  

2.2. Various Estimates of CDF 
When estimating a CDF from a set of samples, the first 

step is to choose the distribution type that fits the data best. 
Other alternatives are possible, such as using monotonic 
splines or composite distributions, which will not be discussed 
in this paper. In this paper, we consider only normally 
distributed data because it is the most common distribution 
and needs only two parameters to be defined. However, the 
approach presented here can be applied to other distributions. 

a. Classical estimator: Assuming a certain
distribution type, an analytical model of CDF can be fitted to 
the samples by adjusting its parameters. In the case of normal 
distribution, for example, we want to estimate the mean  
and the standard deviation . The classical estimations of the 
mean and the standard deviation from a sample of size n
are, respectively: 
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where the estimator σ
1)

 of the standard deviation is 
normalized by (  to make n − 2σ  the best unbiased 
estimator of the variance [8].  2σ
 However, while 2σ  is an unbiased estimator of , 2σ σ  
is a slightly biased estimate of  [6]. The expected value of σ
σ  can be approximated by: 
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(That is, 0.25% for n = 100, 3% for n = 10) 
As a consequence, the standard deviation is likely to be 
underestimated; so the tail of the estimated CDF will be 
biased. 

b. Estimators based on fitting the empirical CDF:
Consider  samples are arranged in increasing order: 

. Then, the empirical CDF is defined as: 
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It is then possible to estimate the mean and standard 
deviation of the CDF that approximates the empirical CDF 
best. Two different ways of approximation are studied here: 
(1) minimizing the root-mean-square (RMS) error between the 
estimated CDF and the empirical CDF, and (2) minimizing the 
Kolmogorov-Smirnov distance [9]. 
 To minimize the RMS error between the empirical and 
the estimated CDF, errors are calculated at sample points. In 
order to have an unbiased estimation, the values of the 
empirical CDF are chosen at the middle of the two discrete 
data, as (see Figure 2): 
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The parameters ( ,  will then be calculated by 
solving the following optimization problem: 
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where ,Fµ σ  is the value of the CDF of a normal distribution 
with parameters ( , )µ σ : 
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Figure 3: Example of CDF estimators based on RMS error 
for a sample of size 10 generated from N(0,1) 
Figure 2 (a): Example of points (circles) chosen to fit an 
empirical CDF (line) obtained by sampling 10 points from 
N(0,1).  

The Kolmogorov-Smirnov (K-S) distance is the classical way 
to test if a set of samples are representative of a distribution. 
The K-S distance is equal to the maximum distance between 
two CDFs (see Figure 2). The maximum distance occurs at 
one data point. The optimization problem for the K-S distance 
becomes: 
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n nµ σ µ σµ σ ≤ ≤

− − −
 )   (9) 

3. CONSERVATIVE ESTIMATES USING BIASED
FITTING 

As shown in the previous section, fitting a distribution to 
a set of samples can be seen as an optimization problem. The 
key idea of this section is adding various constraints to this 
fitting problem so that the resulting estimate becomes more 
conservative. We will also present the relationship between 
conservativeness and accuracy. 
 A conservative estimate of the probability of failure 
should be equal or higher than the actual one. From the 
expression of the probability of failure given in Eq.2, we see 
that such an estimate can be obtained by constraining the 
estimated CDF to be less or equal than the true CDF when the 
parameters are found through the optimization problem in Eq. 
7. Besides, failure occurs when the critical variable happens to
be far from its mean value in one direction. Therefore, these 
constraints will be applied to the right half of the data. 
 One conservative estimate of the CDF can be obtained 
by constraining the estimate to pass below the data points. A 
second can be obtained by constraining it to pass below the 
entire empirical CDF. They will be called, respectively, CSP 
(Conservative at Sample Points) and CEC (Conservative to 
Experimental CDF). The latter has is more conservative than 
the former. Obviously, both methods introduce bias, and the 
choice between the two constraints is a matter of balance 
between accuracy and conservativeness. 
CSP constraints: 

, ( ) 0 for
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Figure 2 (b): Example of a K-S distance between an 
empirical CDF (staircase) and a normal CDF (continuous 
line). 

CEC constraints: 

,
1( ) 0 for

2i
i nF x i n
nµ σ
−− ≤ ≤ ≤   (11) 

Example 
To illustrate conservative estimators, a random variable 
with 10 sample points generated from  is used. The 
probability of failure is defined as the probability that  is 
larger than : 

X
(0,1)N

X
limitx

limit 0G X x= − ≥   (12) 

We chosex , corresponding to a probability 
of failure is 1 %. Figure 3 shows the empirical CDF along 
with the three estimates based on minimum RMS error: (1) 
with no constraint, (2) with CSP constraints, and (3) with CEC 
constraints. Table 1 shows the parameters of the three 
estimated distributions and the corresponding probabilities of 
failure.  
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Table 1: Comparison of the mean, standard deviation, and 
probability of failure of the three different CDF estimators 
for N(0,1). Exact values are µ = 0 , ,  
(Failure if X > 2.33). 

σ = 1 fP = 1.0%

 No constraint CSP CEC 

µ −0.22 -0.29 −0.19 

σ 0.85 0.94 1.31

f̂P 0.14% 0.27% 2.74%

We can see on the graph the effect of the constraints: the 
CSP estimator is shifted down to be under the eighth data 
point; resulting the CDF at the tail is decreased. The CEC 
estimator is shifted even more by the combined effects of the 
eighth and the tenth points. Since the conservative estimators 
are unconstrained on the left half of the distribution, their CDF 
curves cross the empirical curve on this side. 
 In this example, the minimum RMS error with no 
constraint is strongly unconservative even if an unbiased 
estimation is used. The CSP estimate is unconservative, but 
substantially less than the unbiased estimate. The CEC 
estimate is conservative. In order to generalize these results 
and derive reliable conclusions, statistical experiments based 
on large number of simulations will be performed in Section 5. 

4. CONSERVATIVE ESTIMATES USING THE
BOOTSTRAP METHOD 
4.1. Bootstrap Method 

When only a small number of samples are available, the 
bootstrap method can provide an efficient way of estimating 
the distribution of a statistical parameter  (for example, the 
mean of a population) using the re-sampling technique (Ref. 
[5] [6]). The idea is to create many sets of bootstrap samples 
by re-sampling with replacement from the original data. Then, 
the distribution of  can be approximated by the empirical 
distribution of the parameter , estimate of θ computed from 
each set of the bootstrap samples. This method only requires 
the initial set of samples. Figure 4 illustrates the procedure of 
the bootstrap method. The size of the initial samples is , 
while the number of bootstrap re-samplings is . Each 

θ

θ
θ̂

n
p

re-sampling can be performed by randomly selecting data 
out of the  initial samples. Since the re-sampling procedure 
allows selecting data with replacement, the statistical 
properties of the re-sampled data are different from that of the 
original data. This approach allows us to estimate the 
distribution of any statistical parameter without requiring 
additional data. 

n
n

X
N

f̂P

f̂

 The standard error or confidence intervals of the 
statistical parameter can be estimated from the bootstrap 
distribution. However, the bootstrap method provides only an 
approximation of the true distribution because it depends on 
the values of the initial samples. In order to obtain reliable 
results, it is suggested that the size of the samples must be 
larger than 100 [5]. A typical number of bootstrap 
re-samplings is typically from 500 to 5,000. 

4.2. Estimation of Probability of Failure using the 
Bootstrap Method 

For illustrating the process, we present the approach for 
 and p . That is, 100 samples of a random 

variable  are generated from the standard normal 
distribution . The limit-state function is defined such 
that failure occurs when G X (the actual 
probability of failure is 1.0%). Pretending that the statistical 
parameters (meanµ , standard deviation , or probability of 
failure

100n = 5, 000=

,1)(0
2.33 0= − ≥

σ
fP ) are unknown, these parameters can be estimated 

from the samples. However, the confidence interval of the 
estimated parameters is unknown with one set of samples. 

Using the given set of the initial samples, 5,000 bootstrap 
re-samplings are performed. From the estimated mean and the 
standard deviation of each set of bootstrap re-samples, the 
probability of failure estimate f̂P  is computed. The 5,000 f̂P
values define the empirical bootstrap distribution of the 
estimator . 

The empirical bootstrap distribution can be used to 
minimize the risk of yielding unconservative estimateP . In 
other words, we want to find a procedure that maximizes the 
quantity: 
Resampling with replacement, 
size n 

p bootstraps 
. . . .

Estimate from bootstrap sample bootθ̂ Estimate from bootstrap sample bootθ̂

Resampling with replacement, 
size n 

Empirical distribution of θ̂ estimator

p estimates of θ

Initial sample, size n 
(Unknown distribution) 

Figure 4: Schematic representation of bootstrapping. Bootstrap distribution of θ is obtained by multiple resampling (here p 
times) from a single set of data. 
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ˆ( )f fP P Pα = ≥     (13) 

A procedure that satisfies Eq. (13) is called an α-conservative 
estimator of fP . For example, if α = 0.95 is desired, then f̂P
is selected at the 95th percentile of the bootstrap distribution 
of the probability of failure. Because of the finite sample, 
however, Eq. (13) will be satisfied only approximately.  
 Besides the α-percentile, we also use as conservative 
estimate the mean of the γ highest bootstrap values (CVaR, 
[10]). Since CVaR is a mean value, it is assumed to be more 
stable than a percentile. However, it is difficult to determine 
the value of that makes (13) satisfied precisely. Here we 
use . These estimators are called, respectively, 
Bootstrap p95 and Bootstrap CVaR 90 (see Figure 5). Note 
that any bootstrap quantile higher than 50% is a conservative 
estimator. A very high  or low γ will increase the value of 

γ
10%γ =

α
f̂P  and will yield over-conservative estimation. 
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Figure 5: Conservative estimators of Pf from bootstrap 
distribution: 95th percentile (p95) and mean of the 10% 
highest values (CVaR). 

5. STATISTICAL BEHAVIORS OF CONSERVATIVE
ESTIMATES 

The goal of this section is to evaluate the accuracy and 
the conservativeness of the estimators presented in Sections 3 
and 4, using a simple numerical example, where the actual 
distribution and fP are known. In addition, the statistical 
measures of the estimators are evaluated by estimating fP  a 
large number of times. 
We also introduce here the reliability index, which is denoted 
by β and related to the probability of failure as: 

(1
fPβ −= −Φ ) (14)

Where  is the CDF of the standard normal distribution. Φ
The reliability index is often used instead of Pf in 

reliability based design because the range of β values 
(typically between one and five) is more convenient and its 
variability lower than Pf’s. It is important to notice that 

Bootstrap p95 

 Bootstrap CVaR 90 

10% 
highest 
values 
since is a monotonically decreasing function, a low 
probability corresponds to a high reliability index. Thus, a 
conservative estimation  of  should not overestimate the 
true  (while conversely a conservative estimation P  of 

 should not underestimate the trueP ). In the following, 
we present the results for both probability of failure and 
reliability index. 

1−−Φ

β
β̂ β

f̂

fP f

First, 100 samples of  are randomly generated from 
the standard normal distribution . The failure is defined 
forX , which corresponds to an actual probability of 
failure of 1.0%. For a given set of samples, different 
estimators are employed to estimate

X
(0,1)N

2.33≥

fP . Five different 
estimators are compared: the classical, CSP, CEC, Bootstrap 
p95, and Bootstrap CVaR90 estimators. This procedure is 
repeated 5,000 times in order to evaluate the accuracy and 
conservativeness of each estimator. For the CSP and CEC 
estimators, we tested both RMS and Kolmogorov-Smirnov 
distance criteria and found that their performance was 
comparable but using K-S distance slightly increases 
variability. So, results are presented for RMS criterion only.  
 Most of the estimated values will exceed the actual 
probability of failure, but it is desired to maintain a certain 
level of accuracy. Thus, the objective is to compare each 
estimator in terms of accuracy and conservativeness. Table 2 
presents the results in the form of the mean value and the 90% 
symmetric confidence interval [5% ; 95%]. For the probability 
of failure estimates, the lower bound of the confidence interval 
shows the conservativeness of the estimator; the mean and the 
upper bound show the accuracy and the variability of the 
estimator. A high lower bound means a high level of 
conservativeness, but a high mean and upper bound mean poor 
accuracy and high variability. For the reliability index 
estimates, the upper bound shows the conservativeness and the 
mean and lower bound the accuracy. 

As shown in Eq. 4, the standard deviation of the classical 
estimator is biased. As a result, more than 50% of the f̂P
calculated from the classical estimator are less than the actual 
one. Moreover, the lower bound of the confidence interval is 
0.37%, which means there is a five per cent chance to 
underestimate Pf by a factor of at least 2.7 (1.00/0.37=2.7). 
This result provides an incentive for finding a way to improve 
the conservativeness of the probability estimate. 
 The CSP and CEC estimators are biased on the 
conservative side. As expected, the CEC is more conservative 
than the CSP. As a consequence, CEC is more biased and the 
risk of large overestimate is increased. The CEC confidence 
interval shows that there is a five per cent chance to 
overestimate Pf by at least a factor of 5.5, while this value is 
3.6 for the CSP estimator; on the other hand it leads to 94 
percent conservative results, while the CSP estimator leads to 
only 82 percent conservative results. The choice between the 
CSP and CEC estimators will be a choice between accuracy 
and conservativeness. 
 The Bootstrap p95 estimator achieves 92 percent 
conservativeness and the Bootstrap CVaR90 93 percent 
conservativeness. From the upper bounds of both estimations, 
5



Statistics obtained over 5000 simulations 
Pf (%) Beta Estimators 

90% C.I. Mean 90% C.I. Mean 
% of cons. 

results* 
Classical [ 0.37  ;  2.1 ] 1.05 [ 2.0 ; 2.7 ] 2.34 48 

CSP [ 0.63  ;  3.6 ] 1.86 [ 1.8 ; 2.5 ] 2.12 82 

CEC [ 0.95  ;  5.5 ] 2.97 [ 1.6 ; 2.3 ] 1.96 94 

Boot. p95 [ 0.83  ;  3.7 ] 2.06 [ 1.8 ; 2.4 ] 2.07 92 

Boot. CVaR90 [ 0.88  ;  3.8 ] 2.15 [ 1.8 ; 2.4 ] 2.05 93 
Actual 1.00 2.33

* Refers to the percent of the 5000 simulation runs that resulted in a conservative estimate for each method.

Table 2: Means and confidence intervals of different estimates f̂P  ofX  and corresponding β values whereX  is the 
standard normal random variable 

2.33≥
we see that the risk of overestimating Pf by at least a factor of 
3.7 is five percent. 

The amplitude of error in the reliability index β is much 
lower than the amplitude in the probability of failure. For the 
CEC estimator, the lower bound of the confidence interval 
corresponds to 31% error ((2.33-1.6)/2.33=0.31). For the 
bootstrap estimators, this error is reduced to 23%. The mean 
errors are respectively 16% and 11%. 

corresponds to 31% error ((2.33-1.6)/2.33=0.31). For the 
bootstrap estimators, this error is reduced to 23%. The mean 
errors are respectively 16% and 11%. 

Bootstrap methods appear to be more efficient than the 
biased fitting (CSP and CEC) in terms of accuracy and 
conservativeness. For an equivalent level of conservativeness 
(92-94 percent), the level of bias is reduced and the risk of 
overestimations is lower. However, as mentioned earlier, the 
bootstrap method needs a minimum sample size to be used. It 
has been observed that when very small samples are available 
(10 to 50 data), the accuracy of the bootstrap method drops 
dramatically. In such a case, the optimization based methods 
should be used instead. 

Bootstrap methods appear to be more efficient than the 
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(92-94 percent), the level of bias is reduced and the risk of 
overestimations is lower. However, as mentioned earlier, the 
bootstrap method needs a minimum sample size to be used. It 
has been observed that when very small samples are available 
(10 to 50 data), the accuracy of the bootstrap method drops 
dramatically. In such a case, the optimization based methods 
should be used instead. 

6. APPLICATION TO A COMPOSITE PANEL UNDER
THERMAL LAODING 
6. APPLICATION TO A COMPOSITE PANEL UNDER
THERMAL LAODING 

In this section, the conservative estimates are applied to 
evaluate the probability of failure of a composite laminates 
panel under mechanical and thermal loadings. The panel is 
used for a hydrogen tank in aerospace structures. The 
cryogenic operating temperatures are responsible for large 
residual strains due to the different coefficients of thermal 
expansion of the fiber and the matrix, which is challenging in 
design. 

In this section, the conservative estimates are applied to 
evaluate the probability of failure of a composite laminates 
panel under mechanical and thermal loadings. The panel is 
used for a hydrogen tank in aerospace structures. The 
cryogenic operating temperatures are responsible for large 
residual strains due to the different coefficients of thermal 
expansion of the fiber and the matrix, which is challenging in 
design. 
 Qu et al. (2003) [11] performed the deterministic and 
probabilistic design optimizations of composite laminates 
under cryogenic temperatures, using response surface 
approximations for probability of failure calculations. Acar 
and Haftka (2005) [12] found that using CDF estimations for 
strains improves the accuracy of probability of failure 
calculation. In this paper, the optimization problem that is 
addressed by Qu et al. (2003) [11] is considered. The 
geometry, material parameters and the loading conditions are 
taken from that paper. The objective is to explore the 
possibilities to improve the estimation of the probability of 
failure calculations in a conservative way. 
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6.1. Problem Definition 6.1. Problem Definition 
The composite panel is subject to resultant stress caused 

by mechanical loading (Nx is 33 MPa and Ny is 16 MPa) and 
The composite panel is subject to resultant stress caused 

by mechanical loading (Nx is 33 MPa and Ny is 16 MPa) and 
thermal loading due to the operating temperature 20K – 300K 
(Figure 6). The objective is to minimize the weight of the 
composite panel that is a symmetric balanced laminate with 
two ply angles (that means an eight-layer composite) 

thermal loading due to the operating temperature 20K – 300K 
(Figure 6). The objective is to minimize the weight of the 
composite panel that is a symmetric balanced laminate with 
two ply angles (that means an eight-layer composite) 
[ ]1 2,θ θ± ± . The design variables are the ply angles and the 
ply thicknesses [ ]1 2,t t . The geometry and loading condition 
are shown in Figure 6. 
 The material used in the laminates composite is 
IM600/133 graphite-epoxy, defined by the mechanical 
properties listed in Table 3. 

Table 3: Mechanical properties of the laminate composite 
Elastic properties 1 2 12 12, ,  and E E G ν  

Coefficients of thermal expansion 1 2 and α α  
Stress-free temperature zeroT  

Failure strains 1 1 2 2 12, , ,  and L U L U Uε ε ε ε γ
Safety factor FS  

The minimum thickness of each layer is taken as 0.127 
mm, which is based on the manufacturing constraints as well 
as for preventing hydrogen leakage. The failure is defined 
when the strain values of the first ply exceed failure strains. 
The deterministic optimization problem is formulated as: 

1 2

1 2

1 1

2 2

12 12

4( )

. . , 0.127
L

F

L U
F

U
F

Minimize h t t

s t t t

S

S

S

ε ε

ε ε

γ γ

= +

≥

≤ ≤

≤ ≤

≤

1

2

Uε

ε

   (15) 

where  is chosen at 1.4. FS

The solutions for the deterministic optimization problem 
found by Qu et al. (2003)[11] are summarized in Table 4. 
Three optima are found with equal total thickness but different 
ply angles and ply thicknesses. 

 Table 4: Deterministic optima found by Qu et al. (2003)[11] 
θ1 (deg) θ2 (deg) t1 (mm) t2 (mm) h (mm) 
27.04 27.04 0.254 0.381 2.540 

0 28.16 0.127 0.508 2.540 
25.16 27.31 0.127 0.508 2.540 
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Figure 6: Geometry and loading of the cryogenic laminate 
6.2. Calculation of the Probability of Failure 
Given the material properties and the design variables at 

the optimum design, the ply strains can be calculated using 
Classical Lamination Theory. Due to the manufacturing 
variability, the material properties and failure strains are 
considered as random variables. All random variables are 
assumed to follow uncorrelated normal distributions. The 
coefficients of variation are given in Table 5. 

are a function of the temperature. Since 

the design must be feasible for the entire range of temperature, 
strain constraints are applied at 21 different temperatures, 
which are uniformly distributed from 20K to 300K. First, the 
mean values of the random variables are calculated for a given 
temperature, and then, a set of random samples are generated 
according to their distributions. The mean of the other 
parameters are given in Table 6. 

2 12 1 2, , , andE G α α

Table 5: Coefficients of variation of the random variables 
1 2 12 12, , ,E E G ν  1 2,α α  

zeroT 1 1,L Uε ε 2 2 12, ,L U Uε ε γ
0.035 0.035 0.03 0.06 0.09 

Table 6: Mean of random parameters 
1E  12ν zeroT 1

Lε
21.5x106 0.359 300 -0.0109 

1
Uε 2

Lε 2
Uε 12

Uγ

0.0103 -0.013 0.0154 0.0138 

The critical strain is the transverse strain on the first ply 
(direction 2 in Figure 6). The limit-state is defined as the 
difference between the critical strain and the failure strain: 

2 2
UG ε ε= −    (16) 

Then, the probability of failure is given as: 

1 (f GP F= − 0) ,  (17) 
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where  is the CDF of the limit-state. GF

7.04)

 The probabilistic distribution of the limit-state function is 
in general unknown. In a real-world problem, one could 
generate a large sample prior to the optimization to determine 
the distribution type, for instance in the middle of the 
optimization domain, and then assumes that the limit state 
follows that distribution everywhere inside the domain. In this 
paper, we generate 1,000 samples at the first optimum design 

 to determine which distribution type fits 
the best the critical strain data. First, we standardize the data 
by subtracting the mean of the sample and divide by the 
standard deviation of the sample; then, we perform a 
Kolmogorov-Smirnov test to determine whether or not the 
standardized sample belongs to a standard normal distribution. 

1 2( 2θ θ= =

The null hypothesis H0 tested is that the data has a 
standard normal distribution. The test statistic is the maximum 
distance KS between the sample empirical distribution and 
standard normal distribution. We reject the null hypothesis if 
KS is greater than a certain value. 
Here we found for 1,000 samples: 
KS = 0.0163; Rejection region: reject H0 if:  0.0428KS ≥
We cannot reject the null hypothesis, so we conclude that the 
data is normal. The power of the test is 0.9519. 

Since both critical strain and failure strain are normally 
distributed, the limit-state is also normally distributed. Thus, 
the probability of failure can be estimated by using the 
methods described in previous sections. 

6.3 Results 
At the first optimum design , 100 

samples of critical strain are generated using the distributions 
of the input random variables and MCS. Using five different 
estimators, the mean and the standard deviation are estimated, 
from which the probability of failure 

1 2( 27.04)θ θ= =

f̂P  is calculated. This 
procedure is repeated 5,000 times in order to evaluate the 
statistical properties of the estimates. Since the exact 
probability of failure is unavailable, a large sample size (107) 
is used to compute Pf and compare it with the five different 
estimates. 



Statistics obtained over 5000 simulations 
Pf (x10-4) Beta Estimators 

90% C.I. Mean 90% C.I. Mean % of cons. results 

Classical [ 0.7 ; 15.4 ] 5.7 [ 3.0 ; 3.8 ] 3.36 48 

CSP [ 2.1 ; 47.5 ] 17.3 [ 2.6 ; 3.5 ] 3.03 85 

CEC [ 4.3 ; 78.5 ] 29.6 [ 2.4 ; 3.3 ] 2.85 95 

Boot. p95 [ 3.2 ; 43.9 ] 17.6 [ 2.6 ; 3.4 ] 2.99 92 

Boot. CVaR90 [ 3.5 ; 45.2 ] 18.5 [ 2.6 ; 3.4 ] 2.98 93 
Actual 4.4 3.33

Table 7: Means and confidence intervals of different estimates (×10f̂P −4) and corresponding β values of composite panel. 
The actual  is approximated using 10fP 7 samples.  

  Table 7 summarizes the results of five different estimation is the sample size. Increasing the sample size will 

estimators for the probability of failure and reliability index of 
the composite panel. The use of classical estimators of 
and  leads to a five percent chance of underestimating 

µ
σ fP

by at least a factor of 6 (4.4/0.7=6), which is strongly 
unconservative, whereas the CEC estimator is 95% 
conservative (the 5% percentile is equal to the actual fP ). 
However, the right tail of its distribution and the bias are very 
large. The CSP results conform to the bootstrap results in 
terms of mean and variability, but it is less conservative. 
 Bootstrap p95 is 92% conservative and Bootstrap 
CVaR90 is 93% conservative. The upper bounds of their 
confidence interval are almost two times lower than the CEC 
estimator, for an equivalent level of conservativeness. We can 
conclude that bootstrap estimators outperform the estimators 
based on biased fitting. 
 We see here that the error in Pf estimation can be very 
large. However, this error is reasonable in terms of reliability 
index: for the Bootstrap p95, the confidence interval shows 
that there is 95% chance that the error remains less than 22%. 
For the unbiased reliability index, this value is equal to 10%. 
Thus, we can consider in first approximation that a 95% 
conservativeness level doubles the error in the reliability index 
estimate compared to the unbiased estimate. 

The overall performance of the conservative estimators is 
not as good as the numerical example in Section 4. Indeed, the 
actual probability of failure is of the order of 10−4 instead of 
10−2 previously. Since we estimate the value of the CDF at a 
farther point in the tail, the variability is logically increased. 

7. EFFECT OF SAMPLE SIZES AND TARGET
PROBABILITY OF FAILURE ON ESTIMATES 
QUALITY 

In Section 5, it is shown that the upper bound of the 
confidence interval using the Bootstrap estimators is 3.7 times 
the actual probability of failure (that means, there is five per 
cent chance to overestimate the true probability of failure by a 
factor of minimum 3.7). In Section 6, however, this ratio rises 
to the value of 10. Such a large difference is due to the values 
of the target probability: of the order of 10−2 and 10−4 for 
Tables 2 and 7, respectively. Indeed, in order to estimate a 
lower value of the probability of failure, we need to use the 
tail of the CDF, which increases the variability of the 
estimation. Another critical factor in the accuracy of the 
reduce the variability of CDF fitting and, as a consequence, 
the upper bound of the confidence interval.  
 Controlling the level of uncertainty is crucial in 
optimization in order to avoid over-design. We want to 
quantify a measure of the uncertainty in f̂P  as a function of 
the sample size and the value of the actual fP . Such a measure 
can help deciding on the appropriate sample size to compute 
the estimate. 
 It turns out that Bootstrap p95 performs well based on 
the previous two examples. Thus, in this section we consider 
only this estimator. The estimator achieved a 92% 
conservativeness level with 100 samples on both cases; since 
the accuracy of the bootstrap method increases with sample 
size, the chance of being conservative will slightly increase 
with higher sample sizes. Thus, the focus in this section is on 
the risk of large overestimation; i.e., the 95% unilateral 
confidence interval of the conservative estimate. 

To obtain a measure of the uncertainty in f̂P as a 
function of the sample size and the actual fP , three different 
sample sizes are used: 100, 200 and 500. In addition, seven 
different probabilities of failure are estimated: (1×10−5, 
3×10−5, 1×10−4, 3×10−4, 1×10−3, 3×10−3 and 1×10−2). Since the 
samples are generated from standard normal distribution, the 
seven failures are defined for X greater, respectively, than 
4.26, 4.01, 3.72, 3.43, 3.09, 2.75 and 2.33.   For a given 
sample size and fP , the upper bound of the confidence interval 
of the p95 estimator is calculated using 5000 repetitions. 
Results are presented in Figure 7 for probability of failure, and 
in Figure 8 for reliability index. The error is measured in terms 
of ratios for probabilities of failure, and in terms of relative 
error for reliability index. 

As expected, the variability of f̂P  increases when the 
sample size and actual fP  decrease. Here, the most 
unfavorable case is when the sample size is equal to 100 and 
the actual fP  is equal to 10−5. In such a case, there is a five 
percent chance to overestimate fP  by more than 30 times its 
actual value! On the other hand, the case with 500 samples 
leads to a very reasonable variability. 
 The relative error in β appears to be almost independent 
of the actual probability of failure. For a sample size of 100, 
8
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Figure 7: Evolution of the unilateral confidence interval of Bootstrap p95 with respect to the actual probability of failure 
for sample with N(0,1) distributions. Variability of Bootstrap p95 is greater for small sample sizes and low Pf. 

Figure 8: Evolution of the unilateral confidence interval of the reliability index of the Bootstrap P95 with respect to the 
actual probability of failure for sample with N(0,1) distributions. The relative error in β depends only on sample size and 
do not exceeds 25% with 100 samples. 
there is 95% chance that the error remains below 25%. For a 
sample size of 500, the upper bound of the confidence interval 
is 11%. 
 For any given reliability analysis problem, careful 
attention needs to be given to the level of accuracy that is 
reached by probability of failure estimates. The graph in 
Figure 7 can address this issue by providing the adequate 
sample size to compute reliable estimates. In 
cost-effectiveness approach, it may also help deciding on 
allocating greater number of simulations to low probability 
designs than to high probability design in order to get constant 
level of accuracy. 

8. CONCLUDING REMARKS
The estimation of the probability of failure of a system is 

crucial in reliability analysis and design. In the context of 
expensive numerical experiments, or when a limited number 
of data samples are available, the direct use of Monte-Carlo 
9

Simulation is not practical, and estimation of continuous 
distributions is necessary. However, it is shown that the 
classical ways to estimate a CDF may lead to dangerous 
underestimates of the probability of failure. 
 In this paper, several methods of estimating the 
probability of failure based on finite samples are tested. The 
first method constrains distribution fitting in order to bias the 
probability of failure estimate. Then, it is also shown how to 
use the bootstrap method to obtain distributions of probability 
of failure estimators, and how to use this bootstrap distribution 
to define conservative estimators.  
 In the case of samples generated from standard normal 
distribution, the numerical test case shows that both methods 
improve the chance of the estimation to be conservative. 
Bootstrap based estimators appear to provide much better 
results than optimization based methods. However, 
optimization based methods can be used when the sample size 
is very small, where the bootstrap method cannot be used. 



 We have also applied these procedures to estimate the 
probability of failure of composite laminates at cryogenic 
temperatures. We found that estimating the probability of 
failure from the mean and standard deviation of a sample lead 
to a five percent chance of underestimating the probability of 
failure by a factor of four. Using conservative estimations 
allows us to provide safe estimations with confidence levels, 
but at a price of accuracy. 
 For both the analytical example and the composite 
laminates, it is found that the conservative estimates based on 
the bootstrap approach outperform one-sided fits to the 
experimental CDF. That is, for the same confidence in the 
conservativeness of the probability estimate, the penalty in the 
accuracy of the estimate is substantially smaller. 
 Controlling the uncertainty of the conservative 
estimation is crucial to limit the risks of over-design. To 
address this issue, we explored the influence of sample sizes 
and target probability of failure on estimates quality. We 
showed that larger sample sizes are required to avoid large 
variability in probability of failure estimates when that 
probability is small. However, the variability in the reliability 
index is independent of its value. A cost-effectiveness 
approach might be used to determine where to allocate 
computational resources (i.e., sample sizes) in order to get 
acceptable levels of accuracy. Such approach will be explored 
in a future work. 
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