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Abstract

Kriging was first introduced in the field of geostatistics. Nowadays, it is
widely used to model computer experiments. Since the results of deter-
ministic computer experiments have no experimental variability Kriging
is appropriate in that it interpolates observations at data points. More-
over Kriging quantifies prediction uncertainty which plays a major role in
many applications. Among practitioners we can distinguish those who use
Universal Kriging where the parameters of the model are estimated and
those who use Bayesian Kriging where model parameters are random vari-
ables. The aim of this paper is to show that the prediction uncertainty
has a correct interpretation only in the case of Bayesian Kriging. Different
cases of prior distributions have been studied and it is shown that in one
specific case, Bayesian Kriging supplies an interpretation as a conditional
variance for the prediction variance provided by Universal Kriging. Finally,
a simple petroleum engineering case study presents the importance of prior
information in the Bayesian approach.

Keywords: Universal Kriging, Bayesian Kriging, Informative Prior, Gaus-
sian Random Field, Computer Experiments, Markov chain Monte-Carlo.

1 Introduction

Kriging is widely used to model computer experiments ([1], [2]). Since the results
of deterministic computer experiments have no experimental variability Kriging is
appropriate in that it interpolates observations at data points. But the major ad-
vantage of Kriging is its ability to quantify the prediction uncertainty which plays
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a major role in many applications from uncertainty propagation [3] to global op-
timisation [4]. These works are often based on the traditional ”plug-in Kriging”,
also called Universal Kriging in reference of the initial work from geostatistics.
However, several publications ([5], [6], [7] and [8]) illustrate that the traditional
”plug-in Kriging” underestimate the true variance. Indeed it does not take into
account the uncertainty that comes from the covariance parameters estimation.
The authors of [5] show that the correct approach is to use the Bayesian frame-
work. Several supplemental discussions deal with the effects of the priors ([9],
[10]).

From these earlier perspectives, the aim of the article is to emphasize that
Bayesian Kriging supplies an interpretation as a conditional variance for the pre-
diction variance provided by Universal Kriging (prior information on the mean
only). This article is also a way to study the impact on prediction of different
standard prior distributions (conjugate and non informative) based on both the
location parameter as well as covariance parameters and to validate theoretically
the simulations which are used in the last part of this article. Our main contri-
bution is to illustrate the interest of considering informative priors derived from
physics to conduct Bayesian analyses instead of considering traditional non infor-
mative or conjugate priors. The article is divided in 3 parts. Section 2 recalls the
equations of Universal Kriging (predictor and prediction variance) together with
the expressions of the parameters estimators obtained by maximum likelihood.
In section 3 a link is made between Universal Kriging and Bayesian Kriging by
studying different traditional prior distributions and using simulation results. A
case study is developed in section 4 where Bayesian Kriging with different in-
formative prior distributions is computed, and the accuracy of predictions are
compared.

2 Prediction uncertainty in Universal Kriging

Let D be included in R
k, k ≥ 1. We suppose that the output y is a function of

x ∈ D. We assume that y is the realization of a Gaussian random field (Y (x))x∈D

such that:
E (Y (x)) = f(x)T β (1)

and Cov (Y (x), Y (x + h)) = σ2R(h|θ) (2)

where f(x) = (f0(x) . . . fp(x))T is a known trend vector, β = (β0 . . . βp)
T is the

vector of trend parameters, R(.|θ) is a correlation function and θ = (θ1 . . . θk)
T

is the vector of correlation parameters, often called the range parameter since its
unit is homogeneous to a distance.
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Note the Gaussian spatial correlation function is used for the examples of
sections 3 and 4 which is defined by

∀h ∈ R
k, R(h|θ) = exp

(

−

k
∑

i=1

(

hi

θi

)2
)

.

This choice supposes that the output is an infinitely differentiable function.
Depending on the characteristics of the studied response, other correlation func-
tions such as spherical or exponential could be used.

Furthermore, let y = (y1 . . . yn)T be the output observed at locations X =
(x1 . . . xn)T .

In the case where all the parameters of the model (trend, range and variance)
are known, the kriging predictor1, also called Simple Kriging YSK (x0), and the
prediction variance σ2

SK (x0) at a new location x0 are given by ([11], [2]):

YSK (x0) = f (x0)
T β + rT

θ R−1
θ (y − Fβ) (3)

and σ2
SK (x0) = σ2

(

1 − rT
θ R−1

θ rθ

)

(4)

where
Rθ = (R (xi − xj|θ))1≤i,j≤n

rθ = (Rθ (x0, x1) . . . Rθ (x0, xn))T

F = (f (x1) . . . f (xn))T

Here, from the theoretical point of view, the predictor and its variance can
be interpreted as the expectation and the variance of Y (x0) conditional on the
observations.

However, in practice, the parameters of the external trend and/or those of the
covariance function are not known. They are usually estimated through the opti-
mization of a criterion, such that maximum likelihood (ML) or cross-validation.
The kriging predictor YUK (x0), called Universal Kriging, and its prediction vari-
ance σ2

UK (x0) are then modified to take into account parameter estimation. Using
ML estimation, the expressions of kriging predictor and prediction variance are
([11], [2]):

YUK (x0) = f (x0)
T β̂ML + rT

θ̂ML

R−1

θ̂ML

(

y − F β̂ML

)

(5)

1The kriging predictor and the studied output, as functions of space variables, will be some-
times called surface hereafter.
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and

σ2
UK (x0) = σ̂2

[

1 − rT
θ̂ML

R−1

θ̂ML

rθ̂ML

+
(

f (x0)
T − rT

θ̂ML

R−1

θ̂ML

F
)(

F T R−1

θ̂ML

F
)−1 (

f (x0)
T − rT

θ̂ML

R−1

θ̂ML

F
)T
]

(6)

where the parameters are obtained by solving recursively the following simulta-
neous equations:

β̂ML =
(

F T R−1
θ F

)−1
F T R−1

θ y

σ̂2
ML =

(

y − F β̂ML

)T

R−1
θ

(

y − F β̂ML

)

n − (p + 1)

θ̂ML = argmin

[

n

2
+

n

2
log
(

2πσ̂2
ML

)

+
1

2
log (det Rθ)

]

It can be noted that YUK (x0) of expression (5) is obtained by substituting β
by its estimate in (3). Besides, the variance of Universal Kriging (6) is larger than
Simple Kriging (4) since uncertainty on β is included. Unfortunately, expressions
(5) and (6) can not be interpreted as conditional expectation and variance. In-
deed, the probability law of θ̂ML is not known, this is therefore the same for β̂ML

and σ̂2
ML whose expressions depend on θ̂ML. Besides, expression (6) considers

neither uncertainty due to covariance parameters estimation nor to variance es-
timation.

The following part emphasises the already known results that only the Bayesian
context allows interpreting σ2

UK (x0) as a conditional variance ([1]). Moreover this
section recalls the impact on prediction of different standard prior distributions
(conjugate and non informative) based on the location parameter as well as on
the covariance parameters. Finally it validates the simulations used in the last
part of this article.

3 The Bayesian approach to interpreting Uni-

versal Kriging’s prediction variance

This section will be illustrated with the set of data of [12], where the output is
the temperature of a chemical reaction (Figure 1). The mass ratio of oxidant to
fuel being burned (the input) is increased from no oxidant to a surfeit of oxidant.
In this process, the reaction increases in temperature to a maximum and then
decreases as excess oxidant is added. The output is observed on 11 regularly
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Figure 1: Data set

distributed values on the interval [0, 1].

From here, we will assume that (Y (x) |β, σ2, θ)x∈D is a Gaussian random field

such that expectation and spatial covariance function are equal to f (x)T β and
σ2R (.|θ) respectively. Moreover, model parameters are considered random with
prior joint density denoted by π.

In this Bayesian context, the predicted value at any point x of domain D and
the prediction variance are simply given by the expectation and the variance of
the output conditional on the observations, i.e. E (Y (x)|y) and Var (Y (x)|y).

The Bayesian rules give the following general expression for any function g:

E (g (Y (x)) |y) =

∫

β

∫

σ2

∫

θ

E
(

g (Y (x)) |y, β, σ2, θ
)

π
(

β, σ2, θ|y
)

dβdσ2dθ (7)

The conditional variance, the conditional density etc. derive from this formula.
In the right term of expression (7) one can recognize the Simple Kriging:

Y (x)|y, β, σ2, θ is indeed a Gaussian random variable with mean YSK (x) and
variance σ2

SK (x).

3.1 Known variance, known correlation parameters and

conjugate prior for trend parameters.

This case is interesting because analytical calculations can be conducted when
the prior law of trend parameters is assumed to be Gaussian.
Let β be a Gaussian random vector with mean µ and variance λΣ, where λ is a
positive scalar and Σ is a symmetric definite positive matrix with its maximum
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eigenvalue equal to 1. The posterior distribution of β is also Gaussian with the
following parameters:

E (β|y) = µ + λΣF T
(

λFΣF T + σ2Rθ

)−1
(y − Fµ)

Var (β|y) = λΣ − λ2ΣF T
(

λFΣF T + σ2Rθ

)−1
FΣ

As mentioned before, Y (x0) |y, β is Gaussian with the same parameters as the
Simple Kriging:

E (Y (x0) |y, β) =
(

f (x0)
T − rT

θ R−1
θ F

)

β + rT
θ R−1

θ y

V ar (Y (x0) |y, β) = σ2
(

1 − rT
θ R−1

θ rθ

)

The posterior distribution for the output is also Gaussian:

E (Y (x0) |y) =
(

f (x0)
T − rT

θ R−1
θ F

) [

µ + ΣF T
(

λFΣF T + σ2Rθ

)−1
(y − Fµ)

]

+rT
θ R−1

θ y

V ar (Y (x0) |y) =
(

f (x0)
T − rT

θ R−1
θ F

) [

λΣ − λ2ΣF T
(

λFΣF T + σ2Rθ

)−1
FΣ
]

(

f (x0)
T − rT

θ R−1
θ F

)T

Two particular cases can be noticed.
Firstly, when λ tends to zero, we obtain the equations of Simple Kriging given
by (3) and (4).

Secondly, when λ tends to infinity, the first moments of the posterior distri-
bution of β tend to the expectation and the variance of the ML estimator (see
Figure 2):

E (β|y)λ→∞ =
(

F T R−1
θ F

)−1
F T R−1

θ y = β̂ML

Var (β|y)λ→∞ = σ2
(

F T R−1
θ F

)−1
= Var

(

β̂ML

)

Figure 2 presents the change over λ of E (β|y) and Var (β|y) with λ varying
from 1 to 109, the prior distribution is Gaussian with mean equal to 2500. When
the variance tends to infinity (non informative prior), the posterior distribution
tends to the ML’s one. In such a case, the moments of the posterior distribution
of Y (x0) tend to:

E (Y (x0) |y) =
(

f (x0)
T − rT

θ R−1
θ F

)

β̂ML + rT
θ R−1

θ y (8)

6



0 5 10 15

24
85

24
95

log(lambda)

P
os

te
rio

r e
xp

ec
ta

tio
n E(beta|y)

UK

0 5 10 15

0
5

10
15

log(lambda)

P
os

te
rio

r v
ar

ia
nc

e 
(1

e4
)

Var(beta|y)
UK

Figure 2: Expectation and variance of the posterior distribution of β.

V ar (Y (x0) |y) = σ2

[

(

f (x0)
T − rT

θ R−1
θ F

)

(

F T R−1
θ F

)−1
(

f (x0)
T − rT

θ R−1
θ F

)T

+
(

1 − rT
θ R−1

θ rθ

)]

(9)
This result can be observed in Figure 3 which presents the evolution of

V ar (Y (x0) |y) with respect to λ for different values of x0, the prior distribution
is Gaussian with mean equal to 2500. In this example, the trend function f (x)
is equal to 1. In expressions (8) and (9) one recognizes the predicted value and
the prediction variance supplied by Universal Kriging. Hence, Universal Kriging
is confounded with Bayesian Kriging in the particular case of a uniform prior
distribution for β, and when σ2 and θ are constants. This is not yet the case for
other prior distributions as will be shown in section 3.2.
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Figure 3: Variance of the posterior distribution of Y (x0) for x0 = 0.25, 0.45 and
0.95 with a Gaussian prior distribution.
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3.2 Known correlation parameters and non informative

priors for trend and variance parameters.

This second case is interesting because the posterior distributions are centred
on the maximum likelihood estimators. Nevertheless, the prediction variance of
Universal Kriging does not correspond to a conditional variance.

Let us define the joint prior density as π (β, α) =
1

α
, where α =

1

σ2
.

Thus, theoretical results ([13]) give

π (β, α|y) = φ
(

β|σ2
)

γ (α) (10)

In expression (10), φ is the density of the normal distribution centred on β̂ML

and with variance σ2
(

F T R−1F
)−1

, and γ is the density of the gamma distri-

bution with a shape of
n − (p + 1)

2
and a scale of

2

(n − (p + 1)) σ̂2
ML

. Hence,

the mean of this distribution is exactly
1

σ̂2
ML

. Thus, in Bayesian context with

non informative prior (defined as above), the joint posterior distribution of the
trend parameters and the variance is centred on the ML estimators, i.e. on the
same parameters as those used in Universal Kriging. Therefore, it is interesting
to compare the two approaches into details: Figure 4 represents a comparison
between YUK(x) and YBK(x) = E (Y (x)|y) (figure 4a) and between σUK(x) and
σBK(x) =

√

Var (Y (x)|y) (figure 4b) when the prior is non informative.
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Figure 4: Comparison between Universal and Bayesian Kriging when the prior is
non informative.
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One can observe on this figure that YUK (x) and YBK (x) give the same results.
In this particular case, the Universal Kriging estimator can be interpreted as a
conditional expectation. Nevertheless, it is not the same for the prediction vari-
ance of Universal Kriging σ2

UK (x) which is inferior to Bayesian variance σ2
BK (x).

This difference is mainly explained by the fact that σ2
UK takes only into account

the uncertainty due to the estimation of β and not the uncertainty due to the
one of σ2.

Thus, this short example shows that σ2
UK(x) can not be interpreted as a

conditional variance and that Universal Kriging underestimates uncertainty when
compared to uncertainty of non informative Bayesian Kriging.

3.3 Known correlation parameters and conjugate priors

for trend and variance parameters.

The aim of this case is to validate the Markov chain Monte-Carlo simulations
(MCMC), useful in practice to get samples from posterior distributions which are
not explicitly known (for example, when there is a prior distribution on θ).

Let the prior distribution be the conjugate prior (Gaussian for β and Gamma
for α = σ−2):

π (β, α) = φ

(

µ,
Σ

α

)

γ

(

a1,
1

a2

)

The posterior distribution is then well known (Gaussian for β and Gamma for
α = σ−2):

π (β, α|y) = φ

(

µY ,
ΣY

α

)

γ

(

a11,
1

a22

)

where
µY = ΣY

(

F T R−1y + Σ−1µ
)

and ΣY =
(

Σ−1 + F T R−1F
)−1

a11 = a1 +
n

2
and a22 = a2 +

µT Σ−1µ + yT R−1y − µT
Y Σ−1

Y µY

2

The Metropolis Hastings algorithm (see [14]) is used to compute MCMC simula-
tions with a Gaussian random walk.

Figure 5 presents the law adequacy between theoretical posterior distributions
and data simulated using a MCMC method in the case of the conjugate prior.
Figure 5a presents the posterior distribution of β|σ2 and Figure 5b the posterior
distribution of σ−2.
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Figure 5: Law adequacy between theoretical posterior distribution (left) and data
simulated using a MCMC method in case of the conjugate prior (right).

Table 1: Comparison of the parameters of the sample simulated by MCMC and
theoretical parameters in the case of the conjugate prior.

β α
Prior distribution µ σ2 a1/a2 a1/a

2
2

2500 10002 10−5 10−10

Posterior distribution µY ΣY a11/a22 a11/a
2
22

Theoretical results 2477 0.23 2.50 10−6 9.17 10−13

Simulation results 2482 0.22 2.50 10−6 9.61 10−13

Table 1 and Figure 5 show that the resulting posterior distributions are close
to the theoretical ones. The short difference comes from imprecision of the sam-
pling method. Thus, simulations will be used to compute the distribution of the
output at any point of the domain conditional on the observations and for ev-
ery kind of prior distributions, proper or improper. Note that the surfaces are
generally compared through the first two moments of the distribution: posterior
expectation and posterior variance. In this Bayesian context, the posterior vari-
ance includes all sources of uncertainty that comes from the trend, the variance
and the correlation function.
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3.4 Prior distribution on β, σ2 and θ

Let us consider the same experimental case as Martin and Simpson [12] where
the prior is:

π

(

β,
1

σ2
, θ

)

=
1

(σ2)3/2

Here, the posterior distributions are sampled for all model parameters (trend,
variance and also correlation) using MCMC techniques. The results are vali-
dated by a comparison to the posterior distributions of Martin and Simpson’s
paper.

In this example, one can compare Universal Kriging where the model pa-
rameters are estimated by maximum likelihood and Bayesian Kriging which is
a mixture of Kriging models where parameters follow the posterior distribution.
Figure 6 presents a comparison between Universal Kriging and Bayesian Krig-
ing. Bellow, the graph on the left presents YBK (x) − YUK (x), and shows that
estimators are different, especially near the origin of the domain. Regarding un-
certainty (graph on the right), standard deviation of Universal Kriging is always
smaller than that of Bayesian Kriging. Thus, expectation and variance provided
by Universal Kriging and Bayesian Kriging are different. In particular, Universal
Kriging underestimates uncertainty, a result already observed previously.
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Figure 6: Comparison between Universal Kriging and Bayesian Kriging in the
non informative case where the prior is π (β, σ−2, θ) = σ−3.

Another advantage of the Bayesian approach is the assessment of the whole
distribution of the predicted values. For example, a very asymmetric posterior
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distribution will not be detected by universal approach.

At the same time, Bayesian Kriging avoids the optimization of the likelihood
function which is often badly conditioned, especially in high dimension, when
little information is available. Besides, the difference between approaches in-
creases with dimension. Several publications ([3], [13]) have dealt with this topic.
However, these authors only use generic prior distributions: conjugate or non
informative. The section 4 proposes a novel way to get prior information.

4 Case study: Impact of the choice of the prior

A petroleum case study is considered to illustrate the general interest of Bayesian
Kriging. The goal is to propagate uncertainty from geophysical parameters to
the field oil production. The geophysical parameters (permeability, porosity etc.)
which are used to describe the oil reservoir are not precisely known yet have
a profound influence on the oil production: indeed, a high permeability and a
high porosity generally yield high production levels. The resulting oil production
probability distribution will be carefully analyzed to decide if the field should be
exploited.

The oil production of a given field can be simulated using computationally
intensive computer experiments. In this case study we consider a 3D streamlines
oil production simulator (namely 3DSL R© [15]). The simulator output is the field
oil production (FOPT) after 7000 days. We deal with 3 inputs which have a ma-
jor impact on the output: two permeability factors (LMULTKZ and KRWMAX)
and the well’s bottom hole pressure (LBHP). They were transformed to belong
to the range [-1, 1]. Then the simulator is used to propagate uncertainty from
geophysics parameters (inputs) to the oil production (output). A single run of
3DSL R© takes a long time (2.5 CPU time2), so very few simulations are avail-
able. A metamodel, obtained by Kriging for example, is built and uncertainty
is propagating through the surrogate, instead of through the simulator itself. In
this section we show how Bayesian Kriging can more accurately estimate the
production probability law than Universal Kriging. How the choice of the prior
influences the results will be demonstrated: by comparing Bayesian Kriging with
a non informative and informative priors.

The idea presented here consists in using simplified simulations which go much
faster, to derive informative prior for Bayesian Kriging. Indeed we can easily tune

2Since CPU time has been higly dependant on the hardware, we have provided relative time
values for the simulators’ responses
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the 3DSL R© simulation parameters to speed up simulations. However, these sim-
ulations become less accurate and can not be directly used as a data set to fit
Kriging models. Nevertheless they can be used to provide prior information for
Bayesian Kriging. Two different approches are considered to speed up simula-
tions: in both ways the number of nodes on each stream line is smaller by a
factor of ten. Some constraints such as the actualization of the field pressure are
relaxed. Nonetheless, the main difference comes from the time step used to do
the calculus which is more accurate in the first approach. Simulations obtained
by the first approach (resp. second approach) will be called Degraded 1 (resp.
Degraded 2) simulations.

In order to compare the simulations, a full factorial design at 11 levels in each
direction has been done. The whole surface contains 1331 points. Table 2 shows
that 3DSL R© simulations and Degraded 1 simulations are highly correlated with
a correlation coefficient of 0.95. As expected, Degraded 1 simulations are closer
to 3DSL R© than Degraded 2. It should be noted that the correlation is very good
in the directions of KRWMAX and LBHP (coefficient higher than 0.97). Figure
7, which presents a comparison between the 3DSL R©, Degraded 1 and Degraded
2 simulations in directions LMULTKZ, KRWMAX and LBHP, also displays this
accuracy. It is not the case in the direction of LMULTKZ with a correlation
coefficient of 0.61. Degraded 2 simulations are less correlated with 3DSL R© than
Degraded 1. This can be observed by lower figures in Table 2 and also on Figure
7, which shows the mean of the response in each direction.

Table 2: Correlation among the 3 sets of simulations.

Correlation Coefficient ALL LMULTKZ KRWMAX LBHP
3DSL R©/Degraded 1 0.95 0.61 0.97 0.98
3DSL R©/Degraded 2 0.80 -0.19 0.89 0.91

Degraded 1/Degraded 2 0.89 0.56 0.96 0.94

Let us focus on two points of Figure 7:

• curve’s level: Degraded 2 simulations seem to be closer to 3DSL R© than to
Degraded 1,

• curve’s variations: Degraded 1 simulations seem to be closer to 3DSL R© than
to Degraded 2, a result which corresponds to the correlation coefficients of
Table 2.
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Figure 7: Comparison among 3DSL R©, Degraded 1 and Degraded 2.

Regarding CPU time, Figure 8 presents a comparison of CPU times which
illustrates that one 3DSL R© simulation takes around 2.5 CPU time as opposed to
0.25 for a Degraded 1 run and only 0.18 for a Degraded 2. Thus, Degraded 1 and
Degraded 2 simulations are quite close to 3DSL R© but are less time consuming.
These simple-to-compute metamodels will quickly provide useful information to
compute Bayesian Kriging.
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Figure 8: Comparison of CPU times for the full factorial design 33.

As afore mentioned, we want to build a predictive metamodel for 3DSL R© in
order to propagate uncertainty. Our study is limited to surrogates obtained by
Kriging (Universal or Bayesian) estimated using very few runs. The trend of the
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Kriging model will supposed to be linear with respect to the factors3 . This choice
can be discussed in the direction of KRWMAX, where the trend is more quadratic
than linear (cf. Figure 7). However, it is not a problem to underestimate the cur-
vature, the residual term for Kriging is then more substantial, which simplifies
identifying the correlation parameters. A comparison of different trends could
have been interesting but has not yet been done.

We will compare four different strategies equivalent with respect to CPU time
consumption:

• ”UK” strandard approach using Universal Kriging on 20 3DSL R© simula-
tions,

• ”no info BK” a Bayesian approach using a non informative Kriging on
the same 20 runs,

• ”info 1 BK” a Bayesian approach on 17 3DSL R© simulations using a prior
distribution obtained from 24 Degraded 1 simulations,

• ”info 2 BK” a Bayesian approach on 18 3DSL R© simulations using a prior
distribution obtained from 24 Degraded 2 simulations.

Indeed, the four strategies almost take the same amount of CPU computation
time: 41.55 units for the first two strategies, 39.20 for the third and 40.36 for the
last one.

The embedded space filling designs used to fit kriging in the different strate-
gies are plotted in Figure 9. The 17 runs design is plotted in black circles, the
run which is added to compose the 18 runs design is represented by a triangle.
Finally the two last runs to compose the 20 runs design are represented by squares.

Note that the non informative law (see section 3.3) used to compute strategy
”no info BK” is the following:

π (β, σ, θ) =
π (θ)

σ
(11)

To the best of our knowledge, little information is known about θ. We will
use a uniform distribution on [0,10]. A longer range would not be coherent with
the size of the domain, where the maximal estrangement between two points is
equal to 2.

3Y
(

x|β, σ2, θ
)

= β0 + β1MULTKZ + β2KRWMAX + β3LBHP + Z (x) where
Cov (Z(x), Z(x + h)) = σ2R (h|θ)
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Figure 9: Projection of the embedded designs used to fit kriging.

Note also that Bayesian Kriging with the same non informative prior has been
computed on the 24 degraded simulations in order to extract the prior distribu-
tion needed by ”info 1 BK” and ”info 2 BK”.

Expectations and variances of posterior distributions obtained on Degraded
1 & 2 simulations are summed up on Table 34. There are several differences be-
tween these two sets of data, especially on β1, θ and σ2. In the case Degraded
2 simulations, β1 is equal to zero (LMULKZ has no influence on FOPT). More-
over, the range parameters are smaller and the total variance appears also smaller.

Table 3: Parameters posterior distributions on the 24 runs.

β0 β1 β2 β3 σ2 θ1 θ2 θ3

24 runs of E (.|Y ) -0.40 -0.23 -0.52 -0.64 2.12 3.57 0.76 2.71
Degraded 1 Std (.|Y ) 0.78 0.57 0.88 0.53 0.88 1.93 0.31 1.30
24 runs of E (.|Y ) -0.56 0.00 -0.63 -0.58 1.69 2.25 0.48 0.97
Degraded 2 Std (.|Y ) 0.61 0.42 0.68 0.70 0.68 0.78 0.19 0.35

The prior used for ”info 1 BK” (resp. ”info 2 BK”) is centred on parame-
ters shown in the first two lines (resp. the last two lines) of Table 3. For example,
mean and variance of σ2 are a priori equal to 2.12 and 0.88 in strategy ”info 1

BK”, whereas they are equal to 1.69 and 0.68 in ”info 2 BK”.
Concerning distributions, the Normal law is chosen for β and θ and Lognormal
for σ2.

4The parameter values are not expressed in the same scale as the output’s (see Figure 7).
Actually, data were centred and reduced before modelling.
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Table 4 presents the comparison of the four strategies which are evaluated
through 4 indicators computed on the whole surface of N=1331 points:

• the Root Mean Square Error: RMSE =

√

√

√

√

1

N

N
∑

i=1

(

FOPT (xi) − Ŷ (xi)
)2

• the Mean Absolute Error: MAE =
1

N

N
∑

i=1

∣

∣

∣
FOPT (xi) − Ŷ (xi)

∣

∣

∣

• the Average Standard Deviation: AStD =
1

N

N
∑

i=1

√

σ2
Ŷ

(xi)

• and the Probability of exceeding: PR =
1

N

N
∑

i=1

1|FOPT (xi)−Ŷ (xi)|>2σ
Ŷ

(xi)
.

The RMSE and the MAE are average distances between the real surface
composed of 1331 runs of 3DSL R© and the surface which has been estimated by
one of the four strategies. The AStD represents the average uncertainty provided
by each strategy. The Pr is the proportion of the points which are outside the

interval:
[

Ŷ (x) − 2σŶ (x) ; Ŷ (x) − 2σŶ (x)
]

.

Table 4: Comparison of the four strategies.

”UK” ”no info BK” ”info 1 BK” ”info 2 BK”

RMSE 205 042 204 042 166 770 223 845
MAE 159 402 143 190 125 748 171 786
AStD 99 457 141 573 188 411 258 394
Pr 40 % 19 % 8 % 4 %

”Info 1 BK” appears the best strategy. Indeed, its RMSE and its MAE
are smaller than those of other strategies. The average uncertainty provided by

this strategy is well estimated: the interval
[

Ŷ (x) − 2σŶ (x) ; Ŷ (x) − 2σŶ (x)
]

contains 92% of the output of 3DSL R©. Thus, the information that is obtained
from Degraded 1 simulations and introduced through Bayesian Kriging is useful:
the prediction surface and its uncertainty are accurate.
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We observed that ”info 2 BK” gives a RMSE and a MAE higher than other
strategies. The information introduced using Degraded 2 simulations degrades
the estimation of the surface. The difference between the surfaces obtained by
the three Bayesian strategies can be observed through the difference of posterior
distributions (see Table 5). The posterior distribution obtained after using the
fastest and less accurate Degraded 2 simulations appears remarkable: mean of
σ2, θ2 and θ3 are smaller in this distribution than in the others. Note that this
distribution is less dispersed.

”No info BK” and ”UK” give similar results according to RMSE and
MAE (see Table 4). Indeed, when the prior is non informative, information used
with Bayesian Kriging is only given by data. Thus, this case is close to Universal
Kriging. However the average standard deviation (AStD) appears much smaller

with UK than with BK. Thus, the interval
[

Ŷ (x) − 2σŶ (x) ; Ŷ (x) − 2σŶ (x)
]

contains only 60% of the output with UK against 81% with BK. The uncertainty
announced by UK is widely underestimated, especially because it does not take
into account the uncertainty on correlation parameters.

Table 5: Parameters posterior distributions for the three Bayesian strategies.

β0 β1 β2 β3 σ2 θ1 θ2 θ3

”info 1 E (.|Y ) -0.41 0.19 -0.41 -0.47 1.88 3.74 0.87 3.32
BK” Std (.|Y ) 0.55 0.30 0.64 0.32 0.40 1.16 0.19 0.88

”info 2 E (.|Y ) -0.41 0.17 -0.60 -0.21 1.00 2.98 0.70 1.48
BK” Std (.|Y ) 0.42 0.22 0.51 0.37 0.14 1.21 0.18 0.96

”no info E (.|Y ) -0.50 0.54 0.32 -0.18 2.64 3.54 1.05 4.75
BK” Std (.|Y ) 0.99 0.46 1.07 0.41 0.75 1.37 0.25 2.00

One last remark must be added relating to the impact of the design. The good
results obtained with strategy ”info 1 BK” are not only due to appropriate prior
information but also from the impact of the design. For example (not presented
here in detail) it is puzzling that the 20 runs design gives poorer results than that
of 17 runs (see Table 6) with all kind of Kriging methods, since the former includes
the latter. A deeper study is needed in order to provide a better understanding
of the phenomenon.
In addition, the results mentioned above are still the same, even when the source
of variability coming from the design is removed.
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Table 6: Comparison between Universal Kriging and Bayesian Kriging on the 17
runs design.

”UK” ”no info BK” ”info 1 BK” ”info 2 BK”

RMSE 175 595 186 976 166 770 200 200
MAE 132 935 135 422 125 748 151 905
AStD 136 832 199 505 188 411 281 317
Pr 22 % 7 % 8 % 2 %

5 Conclusions

The first objective of this paper was to show that in most cases, prediction vari-
ance of Universal Kriging can not be interpreted as the variance of the response
conditional on the observations. Indeed, it only takes into account the uncer-
tainty induced by the estimation of trend parameters and not those created by
approximating variance and correlation parameters. Therefore, it underestimates
the resulting uncertainty on the response. This result has also been observed in
the 3D case study.

The second aim of this paper is to propose different strategies to get infor-
mative prior information. The performance of Bayesian kriging then depends on
the choice of the prior:

• If one uses a non informative prior there is no risk: the results will be
close to those obtained by universal kriging: close predictors but a better
prediction variance. It is then very interesting to use Bayesian Kriging
especially in contexts where techniques used are based on the prediction
variance [4]. However, before applying Bayesian Kriging on a data set, one
must compute the posterior distribution using MCMC techniques which can
be hard task.

• If one uses an informative prior, two different things can occur. First if
the prior is well adapted Bayesian Kriging gives excellent results: accurate
predictor and precise prediction variance. On the contrary, if the prior is
not well adapted Bayesian Kriging furnishes poor results. Hence, if the
confidence in the prior is weak, one should use a non informative prior.
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