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CALDERÓN INVERSE PROBLEM WITH PARTIAL DATA ON RIEMANN

SURFACES

COLIN GUILLARMOU AND LEO TZOU

Abstract. On a fixed smooth compact Riemann surface with boundary (M0, g), we show
that for the Schrödinger operator ∆ + V with potential V ∈ W 1,∞(M0), the Dirichlet-to-
Neumann map N|Γ measured on an open set Γ ⊂ ∂M0 determines uniquely the potential V .
We also discuss briefly the corresponding consequences for potential scattering at 0 frequency
on Riemann surfaces with asymptotically Euclidean or asymptotically hyperbolic ends.

1. Introduction

The problem of determining the potential in the Schrödinger operator by boundary mea-
surement goes back to Calderón [8]. Mathematically, it amounts to ask if one can detect some
data from boundary measurement in a domain (or manifold) Ω with boundary. The typical
model to have in mind is the Schrödinger operator P := ∆g + V where g is a metric and V a
potential, then we define the Cauchy data space by

C := {(u|∂Ω, ∂νu|∂Ω) ; u ∈ H1(Ω), u ∈ kerP}

where ∂ν is the interior pointing normal vector field to ∂Ω.

The first natural question is the following full data inverse problem: does the Cauchy data
space determine uniquely the metric g and/or the potential V ? In a sense, the most satis-
fying known results are when the domain Ω ⊂ R

n is already known and g is the Euclidean
metric, then the recovery of V has been proved in dimension n > 2 by Sylvester-Uhlmann
[28] and very recently in dimension 2 by Bukgheim [6]. A related question is the conductivity
problem which consists in taking V = 0 and replacing ∆g by −divσ∇ where σ is a definite
positive symmetric tensor. An elementary observation shows that the problem of recovering
a sufficiently smooth isotropic conductivity (i.e. σ = σ0Id for a function σ0) is contained in
the problem above of recovering a potential V . For domain of R

2, Nachman [25] used the ∂̄
techniques to show that the Cauchy data space determines the conductivity. Recently a new
approach developed by Astala and Päivärinta in [2] improved this result to assuming that
the conductivity is only a L∞ scalar function. This was later generalized to L∞ anisotropic
conductivities by Astala-Lassas-Päivärinta in [3]. We notice that there still are rather few
results in the direction of recovering the Riemannian manifold (Ω, g) when V = 0, for in-
stance the surface case by Lassas-Uhlmann [21] (see also [4, 15]), the real-analytic manifold
case by Lassas-Taylor-Uhlmann [20] (see also [14] for the Einstein case), the case of manifolds
admitting limiting Carleman weights and in a same conformal class by Dos Santos Ferreira-
Kenig-Salo-Uhlmann [9].
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The second natural, but harder, problem is the partial data inverse problem: if Γ1 and Γ2

are open subsets of ∂Ω, does the partial Cauchy data space for P

CΓ1,Γ2
:= {(u|Γ1

, ∂νu|Γ2
) ; u ∈ H1(∂M0), Pu = 0, u = 0 in ∂Ω \ Γ1}

determine the domain Ω, the metric, the potential? For a fixed domain of R
n, the recovery of

the potential if n > 2 with partial data measurements was initiated by Bukhgeim-Uhlmann
[7] and later improved by Kenig-Sjöstrand-Uhlmann [18] to the case where Γ1 and Γ2 are re-
spectively open subsets of the ”front” and ”back” ends of the domain. We refer the reader to
the references for a more precise formulation of the problem. In dimension 2, Astala-Lassas-
Päivärinta in [3] showed that for the conductivity equation on a simply connected domain,
knowledge of Neumann-Dirichlet map in addition to the Dirichlet-Neumann map on an open
neighbourhood of the boundary determines the conductivity globally. For the Schrödinger
equation, recent works of Imanuvilov-Uhlmann-Yamamoto [16] solves the problem for fixed
domains Ω of R

2 in the case when Γ1 = Γ2 and when the potential are in C2+α(Ω) for some
α > 0.

In this work, we address the same question when the background domain is a fixed Riemann
surface with boundary. We prove the following recovery result:

Theorem 1.1. Let (M0, g) be a smooth compact Riemann surface with boundary and let ∆g

be its positive Laplacian. Let V1, V2 ∈W 1,∞(M0) be two real potentials and, for i = 1, 2, let

(1) C
Γ
i =: {(u|Γ, ∂νu|Γ) ; u ∈ H1(M0), (∆g + Vi)u = 0, u = 0 on ∂M0 \ Γ}

be the respective Cauchy partial data spaces. If CΓ
1 = CΓ

2 then V1 = V2.

Here the space W 1,∞(M0) is the Sobolev space with one derivative in L∞. Notice that
when ∆g + Vi do not have L2 eigenvalues for the Dirichlet condition, the statement above
can be given in terms of Dirichlet-to-Neumann operators. Since ∆ĝ = e−2ϕ∆g when ĝ = e2ϕg
for some function ϕ, it is clear that in the statement in Theorem 1.1, we only need to fix the
conformal class of g instead of the metric g (or equivalently to fix the complex structure on
M0). Observe also that Theorem 1.1 implies that, for a fixed Riemann surface with boundary
(M0, g), the Dirichlet-to-Neumann map on Γ for the operator u → −divg(γ∇gu) determines
the isotropic conductivity γ if γ ∈W 3,∞(M0) in the sense that two conductivities giving rise
to the same Dirichlet-to-Neumann are equal. This is a standard observation by transforming

the conductivity problem to a potential problem with potential V := (∆gγ
1

2 )/γ
1

2 . So our
result also extends that of Henkin-Michel [15] in the case of isotropic conductivities.

The method to reconstruct the potential follows [6, 16] and is based on the construction
of a large set of special complex geometric optic solutions of (∆g + V )u = 0, more precisely
if Γ0 = ∂M0 \ Γ is the set where we do not know the Dirichlet-to-Neumann operator, we

construct solutions of the form u = Re(eΦ/h(a+ hr1)) + eϕ/hr2(h) with u|Γ0
= 0 where h > 0

is a small parameter, Φ and a are holomorphic functions on (M0, g) with Re(Φ) = ϕ, r1 is

independent of h while ||r2(h)||L2 = O(h3/2) as h → 0. The idea of [6] to reconstruct V (p)
for p ∈ M0 is to take Φ with a non-degenerate critical point at p and then use stationary
phase as h → 0. In our setting , one of our main contribution is the construction of the
holomorphic Carleman weights Φ which is quite more complicated since we are working on
a Riemann surface instead of a domain of C. In this exposition, the construction of these
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weights involves ideas from symplectic and differential topology and is quite different from
the method employed in [16]

A Carleman estimate on the surface for this degenerate weight needs to be proved, and
we modify the ideas of [16] to adapt it to surfaces. We also simplify the construction of [16]
of the geometric optic solutions. This allows us to relax the regularity assumption and deal
with Lipschitz potential. We also note that we provide a proof, in an appendix, of the fact
that the partial Cauchy data space CΓ determine the potential V on Γ, since it is a needed
in the proof of our main theorem.

In Section 6, we obtain two inverse scattering results as corollary of Theorem 1.1: first
for partial data scattering at 0 frequency for ∆ + V on asymptotically hyperbolic surfaces
with potential decaying at the conformal infinity, and secondly forfull data scattering at 0
frequency for ∆ + V with V compactly supported on an asymptotically Euclidean surface.

Another straightforward corollary in the asymptotically Euclidean case full data setting is
the recovery of a compactly supported potential from the scattering operator at a positive
frequency. The proof is essentially the same as for the operator ∆Rn + V once we know
Theorem (1.1), so we omit it.

2. Harmonic and Holomorphic Morse Functions on a Riemann Surface

2.1. Riemann surfaces. We start by recalling few elementary definitions and results about
Riemann surfaces, see for instance [10] for more details. Let (M0, g0) be a compact connected
smooth Riemannian surface with boundary ∂M0. The surface M0 can be considered as a
subset of a compact Riemannian surface (M,g), for instance by taking the double of M0

and extending smoothly the metric g0 to M . The conformal class of g on the closed surface
M induces a structure of closed Riemann surface, i.e. a closed surface equipped with a
complex structure via holomorphic charts zα : Uα → C. The Hodge star operator ⋆ acts on
the cotangent bundle T ∗M , its eigenvalues are ±i and the respective eigenspace T ∗

1,0M :=
ker(⋆ + iId) and T ∗

0,1M := ker(⋆ − iId) are sub-bundle of the complexified cotangent bundle
CT ∗M and the splitting CT ∗M = T ∗

1,0M ⊕ T ∗
0,1M holds as complex vector spaces. Since ⋆ is

conformally invariant on 1-forms on M , the complex structure depends only on the conformal
class of g. In holomorphic coordinates z = x + iy in a chart Uα, one has ⋆(udx + vdy) =
−vdx+ udy and

T ∗
1,0M |Uα ≃ Cdz, T ∗

0,1M |Uα ≃ Cdz̄

where dz = dx + idy and dz̄ = dx − idy. We define the natural projections induced by the
splitting of CT ∗M

π1,0 : CT ∗M → T ∗
1,0M, π0,1 : CT ∗M → T ∗

0,1M.

The exterior derivative d defines the De Rham complex 0 → Λ0 → Λ1 → Λ2 → 0 where Λk :=
ΛkT ∗M denotes the real bundle of k-forms on M . Let us denote CΛk the complexification of
Λk, then the ∂ and ∂̄ operators can be defined as differential operators ∂ : CΛ0 → T ∗

1,0M and

∂̄ : CΛ0 → T ∗
0,1M by

(2) ∂f := π1,0df, ∂̄ := π0,1df,

they satisfy d = ∂ + ∂̄ and are expressed in holomorphic coordinates by

∂f = ∂zf dz, ∂̄f = ∂z̄f dz̄.
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with ∂z := 1
2(∂x− i∂y) and ∂z̄ := 1

2(∂x + i∂y). Similarly, one can define the ∂ and ∂̄ operators

from CΛ1 to CΛ2 by setting

∂(ω1,0 + ω0,1) := dω0,1, ∂̄(ω1,0 + ω0,1) := dω1,0

if ω0,1 ∈ T ∗
0,1M and ω1,0 ∈ T ∗

1,0M . In coordinates this is simply

∂(udz + vdz̄) = ∂v ∧ dz̄, ∂̄(udz + vdz̄) = ∂̄u ∧ dz.
There is a natural operator, the Laplacian acting on functions and defined by

∆f := −2i ⋆ ∂̄∂f = d∗d

where d∗ is the adjoint of d through the metric g and ⋆ is the Hodge star operator mapping
Λ2 to Λ0 and induced by g as well.

2.2. Maslov Index and Boundary value problem for the ∂ Operator. In this subsec-
tion we consider the setting where M is an oriented Riemann surface with boundary ∂M0 and
Γ ⊂ ∂M0 is an open subset and we let Γ0 = ∂M0 \ Γ be its complement in ∂M0. Following
[22], we adopt the following notations: let E → M0 be a complex line bundle with complex
structure J : E → E and let D : C∞(M0, E) → C∞(M0, T

∗
0,1 ⊗ E) be a Cauchy-Riemann

operator acting on sections of the bundle E. Observe that in the case when E = M0 × C is
the trivial line bundle with the natural complex structure on M0, then D can be taken as the
operator ∂ introduced in (2). Denote by

DF : W ℓ,∞
F (M0, E) →W ℓ−1,∞(M0, T

∗
0,1M0 ⊗ E)

where F ⊂ E |∂M0
is a totally real subbundle (i.e. a subbundle such that JF ∩ F is the zero

section) and DF is the restriction of D to the L∞-based Sobolev space

W ℓ,∞
F (M0, E) := {ξ ∈W ℓ,∞(M0, E) | ξ(∂M0) ⊂ F}

In this setting, we have the following boundary value Riemann-Roch theorem stated in [22]:

Theorem 2.1. Let E → M0 be a complex line bundle over an oriented compact Riemann
surface with boundary and F ⊂ E |∂M0

be a totally real subbundle. Let D be a Cauchy-
Riemann operator on E acting on W ℓ,∞(M0, E), where ℓ ∈ N. Then
1) The following operators are Fredholm

DF : W ℓ,∞
F (M0, E) →W ℓ−1,∞(M0, T

∗
0,1M0 ⊗ E)

D∗
F : W ℓ,∞

F (M0, T
∗
0,1M0 ⊗ E) →W ℓ−1,∞(M0, E).

2) The real Fredholm index of DF is given by

Ind(DF ) = χ(M0) + µ(E,F )

where χ(M0) is the Euler characteristic of M0 and µ(E,F ) is the boundary Maslov index of
the subbundle F .
3) If µ(E,F ) < 0, then DF is injective, while if µ(E,F ) + 2χ(M0) > 0 the operator DF is
surjective.

In the case of a trivial bundle E = M0 × C and ∂M0 = ⊔mj=1∂iM0 is a disjoint union of

m circles, the Maslov index can be defined (see [22, p.554-555]) to be the degree of the map
ρ ◦ Λ : ∂M0 → ∂M0 where

Λ|∂iM0
: S1 ≃ ∂iM0 → GL(1,C)/GL(1,R)
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is the natural map given by the totally real subbundle (the space GL(1,C)/GL(1,R) being
the space of totally real subbundles of C over a circle) and

ρ : GL(1,C)/GL(1,R) → S1, ρ(A.GL(1,R)) := det(A2)/det(A∗A).

As an application, we obtain the following

Corollary 2.2. (i) Let ω ∈ C∞(M0, T
∗
0,1M0), then there exists u ∈ C∞(M0) holomorphic on

M0, real valued on Γ0, such that ∂̄u = ω.
(ii) For k ∈ N, let f ∈W k,∞(∂M0) be a real valued function, then there exists a holomorphic
function v ∈W k,∞(M0) such that Re(v)|Γ0

= f .
(iii) For k ∈ N, the space of W k,∞(M0) holomorphic functions on M0 which are real valued
on Γ0 is infinite dimensional.

Proof. (i) Let L ∈ N be arbitrary large and let us identify the boundary as a disjoint union
of circles ∂M0 =

∐m
i=1 ∂iM0 where each ∂iM0 ≃ S1. Since Γ will be the piece of the bound-

ary where we know the Cauchy data space, it is sufficient to assume that Γ is a connected
non-empty open segment of ∂1M0 = S1, and which can thus be defined in a coordinate θ
(respecting the orientation of the boundary) by Γ = {θ ∈ S1 | 0 < θ < 2π/k} for some integer

k. Define the totally real subbundle of F ⊂ E|∂M0
=

∐l
j=1(∂jM0 × C) by the following: on

∂1M0 ≃ S1 parametrized by θ ∈ [0, 2π], define Fθ = eia(θ)R. Where a : [0, 2π] → R is a smooth
nondecreasing function such that a(θ) = 0 in a neighbourhood [0, ǫ] of 0, a(2π/k) = 2Lπ for
some L ∈ N, and a(θ) = 2Lπ for all θ > 2π/k. For the rest of ∂2M0, .., ∂mM0, we just let
F |∂iM0

= S1 ×R. The Maslov index µ(E,F ) is then given by 2L and so, by theorem 2.1, DF

is surjective if 2χ(M0) + 2L > 0. Since L can be taken as large as we want this achieves the
proof of (i).

(ii) Let w ∈W k,∞(M0) be a real function with boundary value f on ∂M0, then by (i) there
exists R ∈ W k+1(M0) such that ∂̄R = −∂̄w and R purely real on Γ0, thus u := R + w is
holomorphic such that Re(u) = f on Γ0.

(iii) Taking the subbundle F as in the proof of (i), we have that dim kerDF = χ(M0) + 2L
if L satisfies 2χ(M0) + 2L > 0, and since L can be taken as large as we like-, this concludes
the proof. �

Lemma 2.3. Let {p0, p1, .., pn} ⊂M0 be a set of n+1 disjoint points such that p0 ∈ int(M0).
Let c1, . . . , cK ∈ C, N ∈ N, and let z be a complex coordinate near p0 such that p0 = {z = 0}.
Then there exists a holomorphic function f on M0 with zeros of order at least N at each pj,

such that f is real on Γ0 and f(z) = c0 + c1z + ...+ cKz
K +O(|z|K+1) in the coordinate z.

Proof. Consider the subbundle F as in the proof of (i) in Corollary 2.2. The Maslov
index µ(E,F ) is given by 2L and so for each N ∈ N, one can take L large enough to have
µ(F,E) + 2χ(M0) ≥ 2N(1 + n). Therefore by Theorem 2.1 the dimension of the kernel of ∂F
will be greater than 2(n + 1)N . Now, since for each pj and complex coordinate zj near pj ,
the map u→ (u(pj), ∂zju(pj), . . . , ∂

N−1
zj

u(pj)) ∈ C
N is linear, this implies that there exists a

non-zero element u ∈ kerDF which has zeros of order at least N at all pj.
Now we want the desired Taylor expansion at p0 in the coordinate z. Let us start with the

case K = 0. In the coordinate z, one has u(z) = αzM+O(|z|M+1) for some α 6= 0 andM ≥ N .
For each j = 0, . . . ,K, define the function rj(z) = χ(z)

cj
α z

−M+j where χ(z) is a smooth cut-off
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function supported near p0 and which is 1 near p0 = {z = 0}. Since M ≥ N > 1, this function
has a pole at p0 and trivially extends smoothly to M0\{p0}, which we still call r. Observe
that the function is holomorphic near p0 so that ∂rj is a smooth and compactly supported
section of T ∗

0,1M0 which is supported away from p0 and therefore trivially extends smoothly
to M0 to a one form denoted ωj. By the surjectivity assertion Corollary 2.2, we have that

there exists a smooth function Rj satisfying ∂Rj = −ωj and that Rj |Γ0
∈ R. We now have

that Rj+rj is a holomorphic function on M\{p0} and meromorphic in M with a pole of order
M−j and in coordinate z one has zM−j(Rj(z)+rj(z)) = cj+O(|z|). Setting fj = u(Rj+rj),
we have the desired meromorphic function in case K = j and c0 = . . . cj−1 = 0. Note that
f also vanish to order N at all p1, . . . , pn since u does. This achieves the proof by taking
appropriate linear combinations of fj. �

2.3. Morse holomorphic functions with prescribed critical points. The main result
of this section is the following

Proposition 2.1. Let p be an interior point of M0 and ǫ > 0 small. Then there exists a
holomorphic function Φ on M0 which is Morse on M0 (up to the boundary) and real valued on
Γ0, which has a critical point p′ at distance less than ǫ from p and such that Im(Φ(p′)) 6= 0.

Let O be a connected open set of M such that Ō is a smooth surface with boundary,
with M0 ⊂ Ō and Γ0 ⊂ ∂Ō. Fix k > 2 a large integer, we denote by Ck(Ō) the Banach
space of Ck real valued functions on Ō. Then the set of harmonic functions on Ō which
are in the Banach space Ck(Ō) (and smooth in O by elliptic regularity) is the kernel of the
continuous map ∆ : Ck(Ō) → Ck−2(Ō), and so it is a Banach subspace of Ck(Ō). The set
H ⊂ Ck(Ō) of harmonic functions u in Ck(Ō) such there exists v ∈ Ck(Ō) harmonic with
u + iv holomorphic on O is a Banach subspace of Ck(Ō) of finite codimension. Indeed, let
{γ1, .., γN} be a homology basis for O, then

H = kerL, with L : ker ∆ ∩ Ck(Ō) → C
N defined by L(u) :=

( 1

πi

∫

γj

∂u
)
j=1,...,N

.

For all Γ′
0 ⊂ ∂M0 such that the complement of Γ′

0 contains an open subset, we define

HΓ′

0
:= {u ∈ H;u|Γ′

0
= 0}.

We now show

Lemma 2.4. The set of functions u ∈ HΓ′

0
which are Morse in O is residual (i.e. a countable

intersection of open dense sets) in HΓ′

0
with respect to the Ck(Ō) topology.

Proof. We use an argument very similar to those used by Uhlenbeck [30]. We start by
defining m : O × HΓ′

0
→ T ∗O by (p, u) 7→ (p, du(p)) ∈ T ∗

pO. This is clearly a smooth map,

linear in the second variable, moreover mu := m(., u) = (·, du(·)) is Fredholm since O is finite
dimensional. The map u is a Morse function if and only if mu is transverse to the zero section,
denoted T ∗

0 O, of T ∗O, ie. if

Image(Dpmu) + Tmu(p)(T
∗
0 O) = Tmu(p)(T

∗
O), ∀p ∈ O such that mu(p) = (p, 0),

which is equivalent to the fact that the Hessian of u at critical points is non-degenerate (see
for instance Lemma 2.8 of [30]). We recall the following transversality theorem (see [30, Th.2]
based on the Sard-Smale theorem [26])



CALDERÓN PROBLEM WITH PARTIAL DATA ON RIEMANN SURFACES 7

Theorem 2.5. Let m : X × HΓ′

0
→ W be a Ck map, where X, HΓ′

0
, and W are separable

Banach manifolds with W and X of finite dimension. Let W ′ ⊂ W be a submanifold such
that k > max(1,dimX − dimW + dimW ′). If m is transverse to W ′ then the set {u ∈
HΓ′

0
;mu is transverse to W ′} is dense in HΓ′

0
, more precisely it is a residual set.

We want to apply it with X := O, W := T ∗O and W ′ := T ∗
0 O, and the map m is defined

above. We have thus proved Lemma 2.4 if one can show that m is transverse to W ′. Let
(p, u) such that m(p, u) = (p, 0) ∈W ′. Then identifying T(p,0)(T

∗O) with TpO⊕T ∗
pO, one has

D(p,u)m(z, v) = (z, dv(p) + Hessp(u)z)

where Hesspu is the Hessian of u at the point p, viewed as a linear map from TpO to T ∗
pO.

To prove that m is transverse to W ′ we need to show that (z, v) → (z, dv(p) + Hessp(u)z) is
onto from TpO⊕HΓ′

0
to TpO⊕T ∗

pO, which is realized for instance if the map v → dv(p) from
HΓ′

0
to T ∗

pO is onto. But from Lemma 2.3, we know that there exist holomorphic functions

v and ṽ on O such that v and ṽ are purely real on Γ′
0. Clearly the imaginary parts of v and

ṽ belong to HΓ′

0
. Furthermore, for a given complex coordinate z near p = {z = 0}, we can

arrange them to have series expansion v(z) = z +O(|z|2) and ṽ(z) = iz +O(|z|2) around the
point p. We see, by coordinate computation of the exterior derivative of Im(v) and Im(ṽ),
that d Im(v)(p) and d Im(ṽ)(p) are linearly independent at the point p. This shows our claim
and ends the proof of Lemma 2.4 by using Theorem 2.5. �

We now proceed to show that the set of all functions u ∈ HΓ′

0
such that u has no degenerate

critical points on Γ′
0 is also residual.

Lemma 2.6. For all p ∈ Γ′
0 and k ∈ N, there exists a holomorphic function u ∈ Ck(Ō), such

that Im(u)|Γ′

0
= 0 and ∂u(p) 6= 0.

Proof. The proof is quite similar to that of Lemma 2.3. By Lemma 2.3, we can choose a
holomorphic function v ∈ Ck(Ō) such that v(p) = 0 and Im(v)|Γ′

0
= 0, then either ∂v(p) 6= 0

and we are done, or ∂v(p) = 0. Assume now the second case and let M ∈ N be the order
of p as a zero of v. By Riemann mapping theorem, there is a conformal mapping from
a neighbourhood Up of p in Ō to a neighbourhood {|z| < ǫ, Im(z) ≥ 0} of the real line
Im(z) = 0 in C, and one can assume that p = {z = 0} in these complex coordinates.
Take r(z) = χ(z)z−M+1 where χ ∈ C∞

0 (|z| ≤ ǫ) is a real valued function with χ(z) = 1
in {|z| < ǫ/2}. Then ∂̄r vanishes in the pointed disc 0 < |z| < ǫ/2 and it is a compactly
supported smooth section of T ∗

1,0Ō outside, it can thus be extended trivially to a smooth

section of T ∗
1,0Ō denoted by ω. We can then use (i) of Corollary 2.2: there is a function R

such that ∂̄R = −ω and Im(R)|Γ′

0
= 0, and so ∂̄(R+r) = 0 in O\{p} and R+r is real valued

on Γ′
0 (remark that r is real valued on Γ′

0) and has a pole at p of order exactly M − 1. We
conclude that u := v(R+ r) satisfies the desired properties, it vanishes at p but with non zero
complex derivative at p. �

Lemma 2.7. Let Γ′
0 ⊂ ∂O be an open set of the boundary. Let φ : O → R be a harmonic

function with φ|Γ′

0
= 0. Let p ∈ Γ′

0 be a critical point of φ, then it is nondegenerate if and
only if ∂τ∂νu 6= 0 where ∂τ and ∂ν denote respectively the tangential and normal derivatives
along the boundary.

Proof. By Riemman mapping theorem, there is a conformal transformation mapping a
neighbourhood of p in Ō to a half-disc D := {|z| < ǫ, Im(z) ≥ 0} and ∂Ō = {Im(z) = 0}
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near p. Denoting z = x + iy, one has (∂2
x + ∂2

y)φ = 0 in D and ∂2
xφ|y=0 = 0, which implies

∂2
yφ(p) = 0. Since ∂ν = ef∂y and ∂τ = ef∂x for some smooth function f , and since dφ(p) = 0,

the conclusion is then straightforward. �

Let N∗∂Ō be the conormal-bundle of ∂Ō and N∗Γ′
0 be the restriction of this bundle to Γ′

0.
Denote the zero sections of these bundles respectively by N∗

0 ∂Ō and N∗
0 Γ′

0. We now define
the map

b : Γ′
0 × HΓ′

0
→ N∗Γ′

0, b(p, u) := (p, ∂νu).

For a fixed u ∈ HΓ′

0
, we also define bu(·) := b(·, u). Simple computations yield the

Lemma 2.8. Suppose that p ∈ Γ′
0 is such that ∂νu(p) = 0, then ∂τ∂νu(p) 6= 0 if and only if

Image(Dpbu) + T(p,0)(N
∗
0 Γ′

0) = T(p,0)(N
∗Γ′

0).

Proof. This can be seen by the fact that for all p ∈ Γ′
0 such that bu(p) = (p, 0),

Dpbu : TpΓ
′
0 → T(p,0)(N

∗Γ′
0) ≃ TpΓ

′
0 ⊕N∗

pΓ′
0

is given by w 7→ (w, ∂τ∂νu(p)w). �

At a point (p, u) such that b(p, u) = 0, a simple computation yields that the differential
D(p,u)b : TpΓ

′
0 × HΓ′

0
→ T(p,∂νu(p))(N

∗Γ′
0) is given by (w, u′) 7→ (w, ∂τ∂νu(p)w + ∂νu

′(p)).
This observation combined with Lemma 2.6 shows that for all (p, u) ∈ Γ′

0 × HΓ′

0
such that

b(p, u) = (p, 0), b is transverse to N∗
0 Γ′

0 at (p, 0). Now we can apply Theorem 2.5 with
X = Γ′

0, W = N∗Γ′
0 and W ′ = N∗

0 Γ′
0 we see that the set {u ∈ HΓ′

0
; bu is transverse to N∗

0 Γ′
0}

is residual in HΓ′

0
. In view of Lemmas 2.7, we deduce the

Lemma 2.9. The set of functions u ∈ HΓ′

0
such that u has no degenerate critical point on

Γ′
0 is residual in HΓ′

0
.

Observing the general fact that finite intersection of residual sets remains residual, the
combination of Lemma 2.9 and Lemma 2.4 yields

Corollary 2.10. The set of functions u ∈ HΓ′

0
which are Morse in O and have no degenerate

critical points on Γ′
0 is residual in HΓ′

0
with respect to the Ck(Ō) topology. In particular, it

is dense.

We are now in a position to give a proof of the main proposition of this section.

Proof of Proposition 2.1. As explained above, choose O in such a way that Ō is a smooth
surface with boundary, containing M0, that Γ0 ⊂ ∂O and O contains ∂M0\Γ0. Let Γ′

0 be
an open subset of the boundary of Ō such that the closure of Γ0 is contained in Γ′

0 and

∂Ō\Γ′
0 6= ∅. Let p be an interior point of M0. By lemma 2.3, there exists a holomorphic

function f = u + iv on Ō such that f is purely real on Γ′
0, v(p) = 1, and df(p) = 0 (thus

v ∈ HΓ′

0
).

By Corollary 2.10, there exist a sequence (vj)j of Morse functions vj ∈ HΓ′

0
such that

vj → v in Ck(M0) for any fixed k large. By Cauchy integral formula, there exist harmonic

conjugates uj of vj such that fj := uj + ivj → f in Ck(M0). Let ǫ > 0 be small and let
U ⊂ O be a neighbourhood containing p and no other critical points of f , and with boundary
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a smooth circle of radius ǫ. In complex local coordinates near p, we can identify ∂f and ∂fj
to holomorphic functions on an open set of C. Then by Rouche’s theorem, it is clear that ∂fj
has precisely one zero in U and vj never vanishes in U if j is large enough.

Fix Φ to be one of the fj for j large enough. By construction, Φ is Morse in O and has

no degenerate critical points on Γ0 ⊂ Γ′
0. We notice that, since the imaginary part of Φ

vanishes on all of Γ′
0, it is clear from the reflection principle applied after using the Riemann

mapping theorem (as in the proof of Lemma 2.7) that no point on Γ0 ⊂ Γ′
0 can be an accu-

mulation point for critical points. Now ∂M0\Γ0 is contained in the interior of O and therefore
no points on ∂M0\Γ0 can be an accumulation point of critical points. Since Φ is Morse in
the interior of O, there are no degenerate critical points on ∂M0\Γ0. This ends the proof. �

3. Carleman Estimate for Harmonic Weights with Critical Points

In this section, we prove a Carleman estimate using harmonic weight with non-degenerate
critical points, in way similar to [16]. Let us define Γ0 := {p ∈ ∂M0; ∂νϕ(p) = 0} and let
Γ := ∂M0 \ Γ0 its complement.

Proposition 3.1. Let (M0, g) be a smooth Riemann surface with boundary, and let ϕ : M0 →
R be Ck(M0) harmonic Morse function for k large. Then for all V ∈ L∞(M0) there exists an
h0 > 0 such that for all h ∈ (0, h0) and u ∈ C∞(M) with u|∂M0

= 0, we have

(3)

1

h
‖u‖2

L2(M0) +
1

h2
‖u|dϕ|‖2

L2(M0) + ‖du‖2
L2(M0)

+ ‖∂νu‖2
L2(Γ0)

≤ C
(
‖e−ϕ/h(∆g + V )eϕ/hu‖2

L2(M0) +
1

h
‖∂νu‖2

L2(Γ)

)

where ∂ν is the exterior unit normal vector field to ∂M0.

Proof. We start by modifying the weight as follows: if ϕ0 := ϕ : M0 → R is a real val-
ued harmonic Morse function with critical points {p1, . . . , pN} in the interior of M0, we let
ϕj : M0 → R be harmonic functions such that pj is not a critical point of ϕj for j = 1, . . . , N ,
their existence is insured by Lemma 2.3. For all ǫ > 0, we define the convexified weight

ϕǫ := ϕ− h
2ǫ(

∑N
j=0 |ϕj |2).

To prove the estimate, we shall localize in charts Ωj covering the surfaces. These charts
will be taken so that if Ωj ∩∂M0 6= ∅, then Ωj ∩∂M0 ≃ S1 is a connected component of ∂M0.
Moreover, by Riemann mapping theorem, this chart can be taken to be a neighbourhood of
|z| = 1 in {z ∈ C; |z| ≤ 1} and such that the metric g is conformal to the Euclidean metric
|dz|2.
Lemma 3.1. Let Ω be a chart of M0 as above and ϕǫ : Ω → R be as above. Then there are
constants C,C ′ > 0 such that for all ω ∈ C∞(M) supported in Ω and h > 0 small enough,
the following estimate holds:
(4)
C

ǫ
‖ω‖2

L2(M0) + C ′
(
− Im(〈∂τω, ω〉L2(∂M0)) +

1

h

∫

∂M0

|ω|2∂νϕǫdvg

)
≤ ‖e−ϕǫ/h∂̄eϕǫ/hω‖2

L2(M0)

where ∂ν and ∂τ denote respectively the exterior pointing normal vector fields and its rotation
by an angle +π/2.
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Proof. We use complex coordinates z = x+ iy in the chart Ω where ω is supported. Observe
that the Lebesgue measure dxdy is bounded below and above by dvg, g is conformal to |dz|2
and the boundary terms in (4) depend only on the conformal class, it suffices to prove the
estimates with respect to dxdy and the Euclidean metric. We thus integrate by parts with
respect to dxdy

4‖e−ϕǫ/h∂̄eϕǫ/hω‖2 =‖(∂x +
i∂yϕǫ
h

)ω + (i∂y +
∂xϕǫ
h

)ω‖2

=‖(∂x +
i∂yϕǫ
h

)ω‖2 + ‖(i∂y +
∂xϕǫ
h

)ω‖2

+
2

h

∫

Ω

(
∆ϕǫ|ω|2 −

1

2
∂xϕǫ.∂x|ω|2 −

1

2
∂yϕǫ.∂y|ω|2

)

+
2

h

∫

∂M0

∂νϕǫ|ω|2 − 2

∫

M0

(
∂xRe(ω).∂yIm(ω) − ∂xIm(ω).∂yRe(ω)

)

=‖(∂x +
i∂yϕǫ
h

)ω‖2 + ‖(i∂y +
∂xϕǫ
h

)ω‖2 +
1

h

∫

Ω
∆ϕǫ|ω|2

+
1

h

∫

∂M0

∂νϕǫ|ω|2 + 2

∫

∂M0

∂τRe(ω).Im(ω).

(5)

where ∆ := −(∂2
x + ∂2

y), ∂ν is the exterior pointing normal vector field to the boundary and
∂τ is the tangent vector field to the boundary (i.e. ∂ν rotated with an angle π/2) for the
Euclidean metric |dz|2. Then 〈ω∆ϕǫ, ω〉 = h

ǫ (|dϕ0|2 + |dϕ1|2 + .. + |dϕN |2)|ω|2, since ϕj are

harmonic, so the proof follows from the fact that |dϕ0|2 + |dϕ1|2 + .. + |dϕN |2 is uniformly
bounded away from zero. �

The main step to go from (4) to (3) is the following lemma which is a slight modification
of the proof in [16]:

Lemma 3.2. With the same assumptions as in Proposition 3.1, and if Ω is either an interior
chart of (M,g) or a chart containing a whole boundary connected component, then there are
positive constants c and C such that for all ǫ > 0 small, all 0 < h≪ ǫ and all smooth function
u supported in Ω with u|∂M0

= 0, we have

(6)
C

(
‖e−ϕǫ/h∆ge

ϕǫ/hu‖2
L2(M0) +

1

h
‖∂νu‖2

L2(Γ)

)
≥

c

ǫ

(1

h
‖u‖2

L2(M) +
1

h2
‖u|dϕ|‖2

L2(M) +
1

h2
‖u|dϕǫ|‖2

L2(M) + ‖du‖2
L2(M)

)
+ ‖∂νu‖2

L2(∂M0)

where ∂ν denote the unit normal vector field to ∂M0.

Proof. Since the norms induced by the metric g in the chart are conformal to Euclidean
norms, and there is f smooth such that ∆g = −e2f (∂2

x+∂2
y) = e2f∆ in the complex coordinate

chart, it suffices to get the estimate (6) for Euclidean norms and Laplacian. Clearly, we can
assume u ∈ H1

0 (M) to be real valued without loss of generality. Now letQ(z) be a holomorphic
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function in Ω which has no zeros, then by (4) we have

‖Qe−ϕǫ/h∆eϕǫ/hu‖2 = 16‖e−ϕǫ/h∂̄eϕǫ/hQe−ϕǫ/h∂eϕǫ/hu‖2 ≥
C

ǫ
‖∂u+

∂ϕǫ
h
u‖2 − 4Im

( ∫

∂M0

∂τω.ω̄
)

+
4

h

∫

∂M0

|ω|2∂νϕǫ

with ω := Qe−ϕǫ/h∂eϕǫ/hu and here everything is measured with respect to Euclidean metric
dx2 + dy2 and measure dxdy. Since u|∂M0

= 0, one has ω|∂M0
= (A+ iB)∂νu where A+ iB =

Q(〈∂ν , ∂x〉 − i〈∂ν , ∂y〉) and −Im(∂τω.ω̄) = (∂τA.B − A∂τB)|∂νu|2 we deduce that for some
c > 0

(7)

‖Qe−ϕǫ/h∆eϕǫ/hu‖2 ≥
c

ǫ

(
‖du‖2 +

1

h2
‖u|dϕǫ|‖2 +

2

h
〈∂xu, u∂xϕǫ〉 +

2

h
〈∂yu, u∂yϕǫ〉

)

+4

∫

∂M0

(A∂τB − ∂τAB)|∂νu|2 +
4

h

∫

∂M0

|Q|2|∂νu|2∂νϕǫ.

Using the fact that u is real valued, that ϕ is harmonic and that
∑N

j=0 |dϕj |2 is uniformly
bounded away from 0, we see that

2

h
〈∂xu, u∂xϕǫ〉 +

2

h
〈∂yu, u∂yϕǫ〉 =

1

h
〈u, u∆ϕǫ〉 ≥

C

ǫ
‖u‖2

for some C > 0 and therefore,

(8) ‖Qe−ϕǫ/h∆eϕǫ/hu‖2 ≥ c

ǫ
(‖du‖2 +

1

h2
‖u|dϕǫ|‖2 +

C

ǫ
‖u‖2) + boundary terms.

Now if the diameter of the support of u is chosen small (with size depending only on
|Hessϕ0|(p)) with a unique critical point p of ϕ0 inside, one can use integration by parts
and the fact that the critical point is non-degenerate to obtain

(9) ‖∂̄u‖2 +
1

h2
‖u|∂ϕ0|‖2 ≥ 1

h

∣∣∣∣
∫
∂z̄(u

2)∂zϕ0dxdy

∣∣∣∣ ≥
1

h

∣∣∣∣
∫
u2 ∂2

zϕ0 dxdy

∣∣∣∣ ≥
C ′

h
‖u‖2

for some C ′ > 0. Clearly the same estimate holds trivially if Ω does not contain critical point
of ϕ0. Using a partition of unity (θj)j in Ω and absorbing terms of the form ||u∂̄θj||2 into
the right hand side, one obtains (9) for any function u supported in Ω and vanishing at the
boundary. Thus, combining with (8), there are positive constants c, c′, C ′′ such that for h
small enough

c

ǫ
(‖du‖2 +

1

h2
‖u|dϕǫ|‖2 +

C

ǫ
‖u‖2) ≥ c

ǫ
(‖du‖2 +

1

h2
‖u|dϕ0|‖2 − C ′′

ǫ2
‖u‖2)

≥ c′

ǫ
(‖du‖2 +

1

h2
‖u|dϕ0|‖2 +

1

h
‖u‖2).

Combining now with (8) and using that |Q| is bounded below gives

‖e−ϕǫ/h∆eϕǫ/hu‖2 ≥ c′

ǫ
(‖du‖2 +

1

h2
‖u|dϕ|‖2 +

1

h
‖u‖2) + boundary terms.

Let us now discuss the boundary terms in (7). If ϕj are taken so that ∂νϕj = 0 on Γ0, then
∂νϕǫ = 0 on Γ0 and ∂νϕǫ = ∂νϕ+O(h/ǫ) on Γ and thus

1

h

∫

∂M0

|Q|2|∂νu|2|∂νϕǫ| ≤
C1

h

∫

Γ
|∂νu|2
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for some constant C1. We finally claim that there exist Q with no zeros in Ω such that
A∂τB − B∂τA is bounded below by a positive constant on ∂M0 ∩ Ω. Indeed, since the
chart near a connected component can be taken to be an interior neighbourhood of the circle
|z| = 1 in C, one can take A + iB = eit where t ∈ S1 parametrize the boundary compo-
nent, so that A∂τB − B∂τA = 1 since ∂τ = ∂t for the Euclidean metric. Since moreover
〈∂ν , ∂x〉 − i〈∂ν , ∂y〉 = A − iB = e−it, we deduce that on the boundary Q(t) = e2it and so it
suffices to take Q(z) = z2. This achieves the proof. �

Proof of Proposition 3.1. Using triangular inequality and absorbing the term ||V u||2 into
the left hand side of (3), it suffices to prove (3) with ∆g instead of ∆g + V . Let v ∈ C∞

0 (M),
we have by Lemma 3.2 that there exist constants c, c′, C,C ′ > 0 such that

c

ǫ

(1

h
‖e−ϕǫ/hv‖2 +

1

h2
‖e−ϕǫ/hv|dϕ|‖2 +

1

h2
‖e−ϕǫ/hv|dϕǫ|‖2 + ‖e−ϕǫ/hdv‖2

)
+ ‖e−ϕǫ/h∂νv‖2

Γ0

≤
∑

j

c′

ǫ

( 1

h
‖e−ϕǫ/hχjv‖2 +

1

h2
‖e−ϕǫ/hχjv|dϕ|‖2 +

1

h2
‖e−ϕǫ/hχjv|dϕǫ|‖2

+‖e−ϕǫ/hd(χjv)‖2
)

+ ‖e−ϕǫ/h∂νv‖Γ0

≤ C
(∑

j

‖e−ϕǫ/h∆g(χjv)‖2 + ‖e−ϕǫ/h∂νv‖2
Γ

)

≤ C ′
(
‖e−ϕǫ/h∆gv‖2 + ‖e−ϕǫ/hv‖2 + ‖e−ϕǫ/hdv‖2 + ‖e−ϕǫ/h∂νv‖2

Γ

)

where (χj)j is a partition of unity associated to the complex charts Ωj on M . Since constants

on both sides are independent of ǫ and h, we can take ǫ small enough so that C ′‖e−ϕǫ/hv‖2 +

C ′‖e−ϕǫ/hdv‖2 can be absorbed to the left side. Now set v = eϕǫ/hw with w|∂M0
= 0, then

we have
1

h
‖w‖2 +

1

h2
‖w|dϕ|‖2 +

1

h2
‖w|dϕǫ|‖2 + ‖dw‖2 + ‖∂νω‖2

Γ0

≤ C
(
‖e−ϕǫ/h∆ge

ϕǫ/hw‖2 + ‖∂νω‖2
Γ

)

Finally, fix ǫ > 0 and set u := e
1

ǫ

PN
j=0

|ϕj |2w and use the fact that e
1

ǫ

PN
j=0

|ϕj |2 is independent
of h and bounded uniformly away from zero and above, we then obtain the desired estimate
for 0 < h≪ ǫ. �

4. Complex Geometric Optics on a Riemann Surface

As explained in the Introduction, the method for identifying the potential at a point p is
to construct complex geometric optic solutions depending on a small parameter h > 0, with
phase a Carleman weight (here a Morse holomorphic function), and such that the phase has
a non-degenerate critical point at p, in order to apply the stationary phase method.

Choose p ∈ M0 such that there exists a holomorphic function Φ = ϕ + iψ which is Morse
on M0, C

k in M0 for large k ∈ N and such that ∂Φ(p) = 0 and Φ has only finitely many
critical points in M0. Furthermore we ask that Φ is purely real on Γ0. By Proposition 2.1
such points p form a dense subset of M0. Given such a holomorphic function, the purpose of
this section is to construct solutions u on M0 of (∆ + V )u = 0 of the form

(10) u = eΦ/h(a+ ha0 + hr1) + eΦ/h(a+ ha0 + hr1) + eϕ/hr2 with u|Γ0
= 0
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for h > 0 small, where a is holomorphic and u ∈ Ck(M0) for large k ∈ N, a0 ∈ W 2,∞(M0)
is holomorphic, moreover a(p) 6= 0 and a vanishes to high order at all other critical points
p′ ∈ M0 of Φ. Furthermore, we ask that the holomorphic function a is purely imaginary on
Γ0. The existence of such a holomorphic function is a consequence of Lemma 2.3. Given such
a holomorphic function on M0 we consider a compactly supported smooth extension to M ,
still denoted a.

The remainder terms r1, r2 will be controlled as h→ 0 and have particular properties near
the critical points of Φ. More precisely, r2 will be a OL2(h3/2) and r1 will be independent of
h and with an explicit expression, which can be used to obtain sufficient informations from
the stationary phase method.

4.1. Construction of r1. We shall construct r1 to satisfy

e−Φ/h(∆g + V )eΦ/h(a+ hr1) = O(h)

in L2 and r1 independent of h. We let G be the Green operator of the Laplacian on the
smooth surface with boundary M0 with Dirichlet condition, so that ∆gG = Id on L2(M0). In

particular this implies that ∂̄∂G = i
2⋆

−1 where ⋆−1 is the inverse of ⋆ mapping functions to

2-forms. We extend a to be a compactly supported Ck function on M0 and we will search for
r1 ∈W 2,∞(M0) independent of h satisfying

(11) e−2iψ/h∂e2iψ/hhr1 = −∂G(aV ) + ω +OW 1,∞(h)

where ω is a smooth holomorphic 1-form on M0. Indeed, using the fact that Φ is holomorphic
we have

e−Φ/h∆ge
Φ/h = −2i ⋆ ∂̄e−Φ/h∂eΦ/h = −2i ⋆ ∂̄e−

1

h
(Φ−Φ̄)∂e

1

h
(Φ−Φ̄) = −2i ⋆ ∂̄e−2iψ/h∂e2iψ/h

and applying −2i⋆∂̄ to (11), we obtain (note that ∂G(aV ) ∈W 2,∞(M0) by elliptic regularity)

e−Φ/h(∆g + V )eΦ/hhr1 = −aV +OL∞(h).

The form ω above, will be chosen as a correction term to optimize the use of the stationary
phase later, this is why we need the following

Lemma 4.1. Let {p0, ..., pN} be finitely many points on M0 and let g be a Ck section of
T ∗

1,0M0. Fix K ∈ N, then there exists a holomorphic function f on M such that ω = ∂f

satisfies (g − ω)(m) = O(d(m, pj)
K) for all j = 0, . . . , N and m ∈ M0, where here d(., .)

denotes the distance.

Proof. This is a direct consequence of Lemma 2.3 applied to the manifold M0 whose interior
contains {p0, ..., pN}. �

With this lemma, we choose ω to be a holomorphic 1-form on M0 such that at all critical
point p′ of Φ in M0, we have (∂G(aV )− ω)(q) = O(|q− p′|k) for all q ∈M0; this can be done
since ∂G(aV ) is a 1-form with value in T ∗

1,0M0.

We will construct r1 by observing that since ∂G(aV )− ω vanishes to high order at critical
points of Φ, we can define a function r1 ∈W 2,∞(M0) such that

2ir1∂ψ = −∂G(aV ) + ω.
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This can be done since both ∂ψ and the right hand side are valued in T ∗
1,0M0. Such r1 clearly

satisfies (11) and is independent of h.
We summarize the result of this section with the following

Lemma 4.2. Let k ∈ N be large and Φ ∈ Ck(M0) be a holomorphic function on M0 which
is Morse in M0. Let a ∈ Ck(M0) be a holomorphic function on M0. Then there exists
r1 ∈W 2,∞(M0) independent of h such that

e−Φ/h(∆ + V )eΦ/h(a+ hr1) = OL∞(h).

4.2. Construction of a0. We have constructed the correction terms r1 which solves the
Schrödinger equation to order h as stated in Lemma 4.2. In this subsection, we will construct
a holomorphic function a0 which annihilates the boundary value of the solution on Γ0. In
particular, we have the following

Lemma 4.3. There exists a holomorphic function a0 ∈W 2,∞(M0) such that

e−Φ/h(∆ + V )eΦ/h(a+ hr1 + ha0) = OL∞(h)

and
[eΦ/h(a+ hr1 + ha0) + eΦ/h(a+ hr1 + ha0)]|Γ0

= 0.

Proof. Since Φ is purely real on Γ0 and a is purely imaginary on Γ0, we see that this lemma
amounts to construct holomorphic functions a0 with the boundary condition

2Re(r1) + 2Re(a0) = 0 on Γ0.

To construct a0, it suffices to use (iii) in Corollary 2.2. �

4.3. Construction of r2. The goal of this section is to complete the construction of the
complex geometric optic solutions by the following proposition:

Proposition 4.1. There exist solutions to (∆+V )u = 0 with boundary condition u|Γ0
= 0 of

the form (10) with r1, a0 constructed in the previous sections and r2 satisfying ‖r2‖L2 ≤ Ch3/2.

This is a consequence of the following Lemma (which follows from the Carleman estimate
obtained above):

Lemma 4.4. Let V ∈ L∞(M0) and f ∈ L2(M0). For all h > 0 small enough, there exists a
solution v ∈ L2 to the boundary value problem

eϕ/h(∆g + V )e−ϕ/hv = f, v|Γ0
= 0,

satisfying the estimate

‖v‖L2 ≤ Ch
1

2‖f‖L2 .

Proof. The proof is the same as Proposition 2.2 of [16], we repeat the argument for the
convenience of the reader. Define for all h > 0 the real vector space A := {u ∈ H1

0 (M0); (∆g+
V )u ∈ L2(M0), ∂νu |Γ= 0} equipped with the real scalar product

(u,w)A :=

∫

M0

e−2ϕ/h(∆gu+ V u)(∆gw + V w) dvg.

Observe that since ψ is constant along Γ0, ∂νϕ = 0 on Γ0. Therefore, we may apply the
Carleman estimate of Proposition (3.1) to the weight ϕ to assert that the space A is a
Hilbert space equipped with the scalar product above. By using the same estimate, the linear
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functional L : w →
∫
M0

e−ϕ/hfw dvg on A is continuous and its norm is bounded by h
1

2 ||f ||L2 .

By Riesz theorem, there is an element u ∈ A such that (., u)A = L and with norm bounded by

the norm of L. It remains to take v := e−ϕ/h(∆gu+V u) which solves (∆g+V )e−ϕv = e−ϕ/hf
and which in addition satisfies the desired norm estimate. Furthermore, since∫

M0

e−ϕ/hv(∆g + V )wdvg =

∫

M0

e−ϕ/hfw dvg

for all w ∈ A, we have by Green’s theorem∫

∂M0

e−ϕ/hv∂νwdvg = 0 =

∫

Γ0

e−ϕ/hv∂νwdvg

for all w ∈ A. This implies v = 0 on Γ0. �

Proof of Proposition 4.1. We note that

(∆ + V )(eΦ/h(a+ hr1 + ha0) + eΦ/h(a+ hr1 + ha0) + eϕ/hr2) = 0

if and only if

e−ϕ/h(∆ + V )eϕ/hr2 = −e−ϕ/h(∆ + V )(eΦ/h(a+ hr1 + ha0) + eΦ/h(a+ hr1 + ha0)).

By Lemma 4.3, the right hand side of the above equation is OL2(h). Therefore, using Lemma
4.4 one can find such r2 which satisfies

‖r2‖L2 ≤ Ch3/2, r2 |Γ0
= 0.

Since the ansatz eΦ/h(a+ hr1 + ha0) + eΦ/h(a+ hr1 + ha0) is arranged to vanish on Γ0, the
solution

u = eΦ/h(a+ hr1 + ha0) + eΦ/h(a+ hr1 + ha0) + eϕ/hr2

vanishes on Γ0 as well. �

5. Identifying the potential

We now assume that V1, V2 ∈ W 1,∞(M0) are two real valued potentials such that the
respective Cauchy data spaces CΓ

1 ,C
Γ
2 for the operators ∆g +V1 and ∆g +V2 on Γ ⊂ ∂M0 are

equal. Let Γ0 = ∂M0 \ Γ be the complement of Γ in ∂M0, and possibly by taking Γ slightly
smaller, we may assume that Γ0 contains an open set. Let p ∈M0 be an interior point of M0

such that, using Proposition 2.1, we can choose a holomorphic Morse function Φ = ϕ+ iψ on
M0 with Φ purely real on Γ0, C

k in M0 for some large k ∈ N, with a critical point at p. Note
that Proposition 2.1 states that we can choose Φ such that none of its critical points on the
boundary are degenerate and such that critical points do not accumulate on the boundary.

Proposition 5.1. If the Cauchy data spaces agree, i.e. if CΓ
1 = CΓ

2 , then V1(p) = V2(p).

Proof. Let a be a holomorphic function on M0 which is purely imaginary on Γ0 with a(p) 6= 0
and a(p′) = 0 to large order for all other critical point p′ of Φ. The existence of a is insured
by Lemma 2.3. Let u1 and u2 be H2 solutions on M0 to

(∆g + Vj)uj = 0

constructed in Section 4 with Φ = φ+ iψ for Carleman weight for u1 and −Φ for u2, thus of
the form

u1 = eΦ/h(a+ ha0 + hr1) + eΦ/h(a+ ha0 + hr1) + eϕ/hr2
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u2 = e−Φ/h(a+ hb0 + hs1) + e−Φ/h(a+ hb0 + hs1) + e−ϕ/hs2
and with boundary value uj |∂M0

= fj, where fj vanishes on Γ0. We can write by Green
formula ∫

M0

u1(V1 − V2)u2dvg = −
∫

M0

(∆gu1.u2 − u1.∆gu2)dvg

= −
∫

∂M0

(∂νu1.f2 − f1.∂νu2)dvg.

Since the Cauchy data for ∆g + V1 agrees on Γ with that of ∆g + V2, there exists a solution
v of the boundary value problem

(∆g + V2)v = 0, v|∂M0
= f1,

satisfying ∂νv = ∂νu1 on Γ. Since fj = 0 on Γ0, this implies that

∫

M0

u1(V1 − V2)u2dvg = −
∫

M0

(∆gu1.u2 − u1.∆gu2)dvg = −
∫

∂M0

(∂νu1.f2 − f1.∂νu2)dvg

= −
∫

∂M0

(∂νv.f2 − v.∂νu2)dvg = −
∫

M0

(∆gv.u2 − v.∆gu2)dvg = 0

(12)

since ∆g + V2 annihilates both v and u2. We substitute in the full expansion for u1 and u2

and, setting V := V1 − V2, we have that

(13) 0 = I1 + I2 + o(h),

where

(14) I1 =

∫

M0

V (a2 + a2)dvg +

∫

M0

(e2iψ/h + e−2iψ/h)V |a|2dvg,

(15) I2 = 2hRe
( ∫

M0

V e2iψ/ha(s1 + b0) + V a(b0 + s1 + a0 + r1)dvg

)
.

We will apply the stationary phase to these two terms in the following two Lemmas, the
proofs of which are defered to the end of this section.

Lemma 5.1. The following estimate holds true

I1 =

∫

M0

V (a2 + a2)dvg + hCpV (p)|a(p)|2Re(e2iψ(p)/h) + o(h)

with Cp 6= 0 and independent of h.

Lemma 5.2. The following estimates holds true

I2 = 2hRe
( ∫

M0

V a(b0 + s1 + a0 + r1)dvg

)
+ o(h).

With these two lemma we can write (13) as

0 =

∫

M0

V (a2 + a2)dvg +O(h)

and thus we can conclude that

0 =

∫

M0

V (a2 + a2)dvg.
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Therefore, (13) becomes

0 = CpV (p)|a(p)|2Re(e2iψ(p)/h) + 2Re
( ∫

M0

V a(b0 + s1 + a0 + r1)dvg

)
+ o(1).

Since ψ(p) 6= 0 we may choose a sequence of hj → 0 such that Re(e2iψ(p)/hj ) = 1 and another

sequence h̃j → 0 such that Re(e2iψ(p)/h̃j ) = −1 for all j. Adding the expansion with h = hj
and h = h̃j , we deduce that

0 = 2CpV (p)|a(p)|2 + o(1)

as j → ∞, and since Cp 6= 0, a(p) 6= 0, we conclude that V (p) = 0. The set of p ∈ M0 for
which we can conclude this is dense in M0 by Proposition 2.1. Therefore we can conclude
that V (p) = 0 for all p ∈M0. �

We now prove Lemmas 5.1 and 5.2. First we will state an auxillary lemma which will be
useful throughout.

Lemma 5.3. Let f ∈ L1(M0), then as h→ 0
∫

M0

e2iψ/hfdvg = o(1).

Proof. Since Ck(M0) is dense in L1(M0) for all k ∈ N, it suffices to prove the Lemma for
f ∈ Ck(M0). Let ǫ > 0 be small, and choose cut off function χ which is identically equal to
1 on the boundary such that ∫

M0

χ|f |dvg ≤ ǫ.

Then, splitting the integral and using stationary phase for the 1 − χ term, we obtain
∣∣∣
∫

M0

e2iψ/hfdvg

∣∣∣ ≤
∣∣∣
∫

M0

(1 − χ)e2iψ/hfdvg

∣∣∣ +
∣∣∣
∫

M0

χe2iψ/hfdvg

∣∣∣ ≤ ǫ+Oǫ(h)

which concludes the proof by taking h small enough depending on ǫ. �

We see that Lemma 5.3 immediately implies Lemma 5.2. The principal term I1 will require
slightly more careful analysis:

Proof of Lemma 5.1. Let χ be a smooth cutoff function on M0 which is identically 1
everywhere except outside a small ball containing p and no other critical point of Φ, and
χ = 0 near p. We split the oscillatory integral in two parts:

∫

M0

(e2iψ/h + e−2iψ/h)V |a|2dvg =

∫

M0

χ(e2iψ/h + e−2iψ/h)V |a|2dvg

+

∫

M0

(1 − χ)(e2iψ/h + e−2iψ/h)V |a|2dvg

The phase ψ has nondegenerate critical points, therefore, a standard application of the sta-
tionary phase at p gives

∫

M0

(1 − χ)(e2iψ/h + e−2iψ/h)V (p)|a|2dvg = hCp|a(p)|2V (p)Re(e2iψ(p)/h) + o(h)
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where Cp is a non-zero number which depends on the Hessian of ψ at the point p. Define the

potential Ṽ (·) := V (·) − V (p), then we show that

(16)

∫

M0

(1 − χ)(e2iψ/h + e−2iψ/h)Ṽ |a|2dvg = o(h).

Indeed, by integration by parts and using ∆gψ = 0 one has
∫

M0

(1 − χ)(e2iψ/h + e−2iψ/h)Ṽ |a|2dvg =
h

2i

∫

M0

〈d(e2iψ/h − e−2iψ/h), dψ〉Ṽ (1 − χ)|a|2
|dψ|2 dvg

=
h

2i

∫

M0

(e2iψ/h − e−2iψ/h)〈d
( (1 − χ)|a|2Ṽ

|dψ|2
)
, dψ〉dvg

and 〈d((1 − χ)|a|2Ṽ /|dψ|2), dψ〉 ∈ L1(M0) by the non degeneracy of Hess(ψ), the fact that

Ṽ ∈ W 1,∞(M0) and that Ṽ (p) = 0. It then suffice to use Lemma 5.3 to conclude that (16)
holds. Using similar argument, we now show that

∫

M0

χ(e2iψ/h + e−2iψ/h)V |a|2dvg = o(h).

Indeed, since a vanishes to large order at all boundary critical points of ψ, we may write
∫

M0

χ(e2iψ/h + e−2iψ/h)V |a|2dvg =
h

2i

∫

M0

〈d(e2iψ/h − e−2iψ/h), dψ〉V χ|a|
2

|dψ|2 dvg

= − h

2i

∫

M0

(e2iψ/h − e−2iψ/h)divg

(
V
χ|a|2
|dψ|2∇

gψ
)
dvg

+
h

2i

∫

∂M0

(e2iψ/h − e−2iψ/h)V
|a|2
|dψ|2 ∂νψ dvg.

For the interior integral we use Lemma 5.3 to conclude that

− h

2i

∫

M0

(e2iψ/h − e−2iψ/h)divg

(
V
χ|a|2
|dψ|2∇

gψ
)
dvg = o(h)

and for the boundary integral, we write ∂M0 = Γ0 ∪ Γ and observe that on Γ0, ψ = 0 so
(e2iψ/h − e−2iψ/h) = 0, while on Γ we have V = 0 from the boundary determinacy proved in
Proposition 7.1 of the Appendix. Therefore

∫

M0

χ(e2iψ/h + e−2iψ/h)V |a|2dvg = o(h)

and the proof is complete. �

6. Inverse scattering

We first obtain, as a trivial consequence of Theorem 1.1, a result about inverse scattering
for asymptotically hyperbolic surface (AH in short). Recall that an AH surface is an open
complete Riemannian surface (X, g) such that X is the interior of a smooth compact surface
with boundary X̄, and for any smooth boundary defining function x of ∂X̄ , ḡ := x2g extends
as a smooth metric to X̄, with curvature tending to −1 at ∂X̄ . If V ∈ C∞(X̄) and V =
O(x2), then we can define a scattering map as follows (see for instance [17, 12] or [13]): first
the L2 kernel kerL2(∆g + V ) is a finite dimensional subspace of xC∞(X̄) and in one-to-one
correspondence with E := {(∂xψ)|∂X̄ ;ψ ∈ kerL2(∆g + V )} where ∂x := ∇ḡx is the normal
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vector field to ∂X̄ for ḡ, then for f ∈ C∞(∂X̄), there exists a function u ∈ C∞(X̄), unique
modulo kerL2(∆g + V ), such that (∆g + V )u = 0 and u|∂X̄ = f . Then one can see that the
scattering map S : C∞(∂X̄) → C∞(∂X̄)/E is defined by Sf := ∂xu|∂X̄ . We thus obtain

Corollary 6.1. Let (X, g) be an asymptotically hyperbolic manifold and let V1, V2 ∈ x2C∞(X̄)
be two potentials and Γ ⊂ ∂X̄ an open subset of the conformal boundary. Assume that

{∂xu|∂X̄ ;u ∈ kerL2(∆g + V1)} = {∂xu|∂X̄ ;u ∈ kerL2(∆g + V2)}
and let Sj be the scattering map for the operator ∆g + Vj for j = 1, 2. If S1f = S2f on Γ for
all f ∈ C∞

0 (Γ) then V1 = V2.

Proof. Let x be a smooth boundary defining function of ∂X̄ , and let ḡ = x2g be the
compactified metric and define V̄j := Vj/x

2 ∈ C∞(X̄). By conformal invariance of the
Laplacian in dimension 2, one has

∆g + Vj = x2(∆ḡ + V̄j)

and so if kerL2(∆g + V1) = kerL2(∆g + V2) and S1 = S2 on Γ, then the Cauchy data spaces

CΓ
i for the operator ∆ḡ+V̄j are the same. Then it suffices to apply the result in Theorem 1.1. �

Next we consider the asymptotically Euclidean scattering at 0 frequency. An asymptotically
Euclidean surface is a non-compact Riemann surface (X, g), which compactifies into X̄ and
such that the metric in a collar (0, ǫ)x × ∂X̄ near the boundary is of the form

g =
dx2

x4
+
h(x)

x2

where h(x) is a smooth one-parameter family of metrics on ∂X̄ with h(0) = dθ2
S1 is the metric

with length 2π on each copy of S1 that forms the connected components of ∂X̄ . Notice that
using the coordinates r := 1/x, g is asymptotic to dr2 + r2dθ2

S1 near r → ∞. A particular

case is given by the surfaces with Euclidean ends, ie. ends isometric to R
2 \ B(0, R) where

B(0, R) = {z ∈ R
2; |z| ≥ R}. Note that g is conformal to an asymptotically cylindrical metric,

or ’b-metric’ in the sense of Melrose [23],

gb := x2g =
dx2

x2
+ h(x)

and the Laplacian satisfies ∆g = x2∆gb
. Each end of X is of the form (0, ǫ)x × S1

θ and the
operator ∆gb

has the expression in the ends

∆gb
= −(x∂x)

2 + ∆∂X̄ + xP (x, θ;x∂x, ∂θ)

for some smooth differential operator P (x, θ;x∂x, ∂θ) in the vector fields x∂x, ∂θ down to
x = 0. Let us define Vb := x−2V , which is compactly supported and

H2m
b := {u ∈ L2(X,dvolgb

);∆m
gb
u ∈ L2(X,dvolgb

)}, m ∈ N0.

We also define the following spaces for α ∈ R

Fα := kerxαH2

b
(∆gb

+ Vb).

Since the eigenvalues of ∆S1 are {j2; j ∈ N0}, the relative Index theorem of Melrose [23,
Section 6.2] shows that ∆gb

+ Vb is Fredholm from xαH2
b to xαH0

b if α /∈ Z. Moreover,
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from subsection 2.2.4 of [23], we have that any solution of (∆gb
+ Vb)u = 0 in xαH2

b has an
asymptotic expansion of the form

u ∼
∑

j>α,j∈Z

ℓj∑

ℓ=0

xj(log x)ℓuj,ℓ(θ), as x→ 0

for some sequence (ℓj)j of non negative integers and some smooth function uj,ℓ on S1. In
particular, it is easy to check that kerL2(X,dvolg)(∆g + V ) = F1+ǫ for ǫ ∈ (0, 1).

Theorem 6.2. Let (X, g) be an asymptotically Euclidean surface and V1, V2 be two compactly
supported smooth potentials and x be a boundary defining function. Let ǫ ∈ (0, 1) and assume
that for any j ∈ Z and any function ψ ∈ kerxj−ǫH2

b
(∆g+V1) there is a ϕ ∈ kerxj−ǫH2

b
(∆g+V2)

such that ψ − ϕ = O(x∞), and conversely. Then V1 = V2.

Proof. The idea is to reduce the problem to the compact case. First we notice that by
unique continuation, ψ = ϕ where V1 = V2 = 0. Now it remains to prove that, if Rη denote
the restriction of smooth functions on X to {x ≥ η} and V is a smooth compactly supported
potential in {x ≥ η}, then the set ∪∞

j=0Rη(F−j−ǫ) is dense in the set NV of H2({x ≥ η})
solutions of (∆g + V )u = 0. The proof is well known for positive frequency scattering (see
for instance Lemma 3.2 in [24]), here it is very similar so we do not give much details. The
main argument is to show that it converges in L2 sense and then use elliptic regularity; the
L2 convergence can be shows as follows: let f ∈ NV such that

∫

x≥η
fψdvolg = 0, ∀ψ ∈ ∪∞

j=0F−j−ǫ,

then we want to show that f = 0. By Proposition 5.64 in [23], there exists k ∈ N and a
generalized right inverse Gb for Pb = ∆gb

+ Vb (here, as before, x2Vb = V ) in x−k−ǫH2
b , such

that PbGb = Id. This holds in x−k−ǫH2
b for k large enough since the cokernel of Pb on this

space becomes 0 for k large. Let ω = Gbf so that (∆gb
+ Vb)ω = f , and in particular this

function is 0 in {x < η}. The asymptotic behaviour of the integral kernel Gb(z, z
′) of Gb as

z → ∞ is given in Proposition 5.64 of [23] uniformly in z′ ∈ {x ≥ η}, we have for all J ∈ N

and using the radial coordinates (x, θ) ∈ (0, ǫ) × S1 for z in the ends

Gb(z, z
′) =

J∑

j=−k

ℓj∑

ℓ=0

xj(log x)ℓψj(θ, z
′) + o(xJ)

for some functions ψj,ℓ ∈ xk−j−ǫH2
b and some sequence (ℓj)j of non-negative integers. But

the fact that (∆gb
+ Vb)Gb(z, z

′) = δ(z − z′) as distributions implies directly that (∆gb
+

Vb)ψj(θ, .) = 0. Using our assumption on f , we deduce that
∫
X ψj(θ, z

′)f(z′)dvolgb
= 0 for

all j ∈ N0 and so the function ω vanish faster than all power of x at infinity. Then by unique
continuation, we deduce that ω = 0 in {x ≤ ǫ}. Since now ω ∈ H2, its Cauchy data at x = η
are 0 and ∆gb

+ Vb is self adjoint for the measure dvolgb
, we can use the Green formula to

obtain ∫

x≥η
|f |2dvolgb

=

∫

x≥η
ω(∆gb

+ Vb)f̄dvolgb
= 0.

The H2 density is easy using elliptic regularity. �
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7. Appendix : boundary determination

In this appendix, we give a short proof of the fact that the partial Cauchy data space on
Γ ⊂ ∂M determines the potential on Γ when the potential is in W 1,∞(M). This result is
shown for the conductivity problem on a domain of R

n in [19] under the assumption that
the conductivity has roughly n/2-derivatives, it is also shown in [29] for continuous potentials
on a smooth domain of R

n by using a limiting argument from the smooth case (which they
analyze using micolocal analysis near the boundary). Alessandrini [1] also proved such a result
under the assumption that the domain is Lipschitz and the coefficients of the operator are
in W 1,p for p > n, while Brown [5] studied the case of Lipschitz domains with a continuous
conductivity. Since the result in our setting is not explicitly written down, but certainly
known from specialists, we provide a short proof without too many details, and using the
approach of [5]. We shall prove

Proposition 7.1. Let Γ ⊂ ∂M0 be an non-empty open subset of the boundary. If V1, V2 ∈
W 1,∞(M) and their associated Cauchy data spaces CΓ

1 ,C
Γ
2 defined in (1) are equal, then V1|Γ =

V2|Γ.

The key to proving this proposition is the existence of solutions to (∆g + Vi)u = 0 which
concentrate near a point p ∈ Γ. First we need a solvability result for the equation (∆g+Vi)u =
f , which is an easy consequence of the Carleman estimate of Proposition 3.1, and follows the
method of Salo-Tzou [27, Section 6]. If we fix h > 0 small and take ϕ = 1 in the Carleman
estimate of Proposition 3.1, we obtain easily that there is a constant C such that for all
functions in H2(M0) satisfying u|∂M0

= 0

(17) ‖u‖2
H2 + ‖∂νu‖2

L2(Γ0) ≤ C(‖(∆ + Vi)u‖2
L2 + ‖∂νu‖2

L2(Γ))

As a consequence, we deduce the following solvability result: let

B := {w ∈ H2(M0) ∩H1
0 (M0) | ∂νw|Γ = 0}

be the closed subspace of H2(M0) under the H2 norm and let B∗ be its dual space then

Corollary 7.1. Let i = 1, 2, then for all f ∈ L2(M0) there exists u ∈ H2(M0) solving the
equation

(∆g + Vi)u = f

with boundary condition u|Γ0
= 0, and ‖u‖L2 ≤ C‖f‖B∗.

Proof. Set A := {w ∈ H1
0 (M0) | (∆g + Vi)w ∈ L2, ∂νw|Γ = 0} equipped with the inner

product

(v,w)A :=

∫

M0

(∆g + Vi)v(∆g + Vi)w̄ dvg.

Thanks to (17), A is a Hilbert space and A = B. For each f ∈ L2(M0), let us define the
linear functional on B

Lf : w 7→
∫

M0

wf dvg.

By (17), we have that for all w ∈ B

|Lf (w)| ≤ ‖f‖B∗‖w‖B ≤ ‖f‖B∗‖w‖A.

Therefore, by Riesz Theorem, there exists vf ∈ A such that
∫

M0

(∆g + V )vf (∆g + Vi)w dvg =

∫

M0

wfdvg
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for all w ∈ B. Furthermore, ‖(∆g +Vi)vf‖L2 ≤ ‖f‖B∗ . Setting u := (∆g +Vi)vf we have that
(∆g + Vi)u = f and ‖u‖L2 ≤ ‖f‖B∗ . To obtain the boundary condition for u, observe that
since ∫

M0

u(∆g + Vi)wdvg =

∫

M0

fw dvg

for all w ∈ B, by Green’s theorem
∫

∂M0

u∂νw dvg = 0 =

∫

Γ0

u∂νw dvg

for all w ∈ B. This implies u = 0 on Γ0. �

Clearly, it suffices to assume that Γ is a small piece of the boundary which is contained
in a single coordinate chart with complex coordinates z = x + iy where |z| ≤ 1, Im(z) > 0
and the boundary is given by {y = 0}. Moreover the metric is of the form e2ρ|dz|2 for some
smooth function ρ. Let p ∈ Γ and possibly by translating the coordinates, we can assume
that p = {z = 0}. Let η ∈ C∞(M0) be a cutoff function supported in a small neighbourhood
of p. For h > 0 small, we define the the smooth function vh ∈ C∞(M0) supported near p via
the coordinate chart Z = (x, y) ∈ R

2 by

(18) vh(Z) := η(Z/
√
h)e

1

h
α·Z

where α := (i,−1) ∈ C
2 is chosen such that α ·α = 0. We thus get (∂2

x+∂2
y)e

α·Z = 0 and thus

∆ge
α·Z = 0 by conformal covariance of the Laplacian. Therefore, we have in local coordinates

(19) ∆gvh(Z) =
1

h
e

1

h
α·Z(∆gη)(

Z√
h

) +
2

h3/2
e

1

h
α·Z〈dη( Z√

h
), α.dZ〉g.

Lemma 7.2. If V ∈ W 1,∞(M0), there exists a solution uh ∈ H2 to (∆g + V )u = 0 of the
form

uh = vh +Rh,

with vh defined in (18) and ‖Rh‖L2 ≤ Ch5/4, satisfying supp(Rh|∂M0
) ⊂ Γ.

Proof of Lemma 7.2. We need to find Rh satisfying ‖Rh‖L2 ≤ Ch5/4 and solving

(∆g + V )Rh = −(∆g + V )vh =: Mh.

Thanks to Corollary 7.1, it suffices to show that ‖Mh‖B∗ ≤ Ch5/4. Thus, let w ∈ B, then we
have by (19) ∫

M0

wMh dvg = I1 + I2 + I3

where

I1 :=

∫

|Z|≤
√
h
wVivhe

2ρdZ, I2 :=
1

h

∫

|Z|≤
√
h
we

1

h
α·Zχ1(

Z√
h

)e2ρdZ,

I3 :=
2

h3/2

∫

|Z|≤
√
h
wχ2(

Z√
h

)e
1

h
α·Z dZ

and χ1 = ∆gη, χ2 = i∂xη−∂yη. In the above equation the third term I3 has the worst growth
when h→ 0. We will analyze its behavior and the preceding terms can be treated in similar
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fashion. One has

I3 = − h1/2

∫

|Z|≤
√
h
wχ2(

Z√
h

)(∂x − i∂y)
2e

1

h
α·ZdZ

= − h1/2

∫

|Z|≤
√
h
(∂x − i∂y)

2(wχ2(
Z√
h

))e
1

h
α·xdZ.

Notice that the boundary term in the integration by parts vanishes because w ∈ H1
0 and

∂νw|∂M0
vanishes on the support of η. The term (∂x− i∂y)2(wχ2(

Z√
h
)) has derivatives hitting

both χ2(
Z√
h
) and w. The worst growth in h would occur when both derivatives hit χ2(

Z√
h
) in

which case a h−1 factor would come out. Combined with the h1/2 term in front of the integral
this gives a total of a h−1/2 in front. By this observation we have improved the growth from
h−3/2 to h−1/2. Repeating this line of argument and using Cauchy-Schwarz inequality, we can
see that |I3| ≤ Ch5/4‖w‖H2 (an elementary computation shows that functions of the form

χ(Z/
√
h)e

1

h
α·Z have L2 norm bounded by Ch3/4). Therefore, ‖ 1

h3/2
χ2(

Z√
h
)e

1

h
α·Z‖B′ ≤ Ch5/4

and we are done. �

Proof of Proposition 7.1. It suffices to plug the solutions u1
h, u

2
h from Proposition 7.2 into

the boundary integral identity (12). A simple calculation using the fact that V1 − V2 is in
W 1,∞ yields that

0 =

∫

M0

u1
h(V1 − V2)u

2
h dvg = Ch3/2(V1(p) − V2(p)) + o(h3/2)

and we are done. �

7.1. Acknowledgements. This work started during a summer evening in Pisa thanks to
the hospitality of M. Mazzucchelli and A.G. Lecuona. We thank Sam Lisi, Rafe Mazzeo,
Mikko Salo, Eleny Ionel for pointing out very helpful references. C.G. thanks MSRI and the
organizers of the ’Analysis on Singular spaces’ 2008 program for support during part of this
project. Part of this work was done while C.G. was visiting IAS under an NSF fellowship
number No. DMS-0635607. L.T is supported by NSF Grant No. DMS-0807502.

References

[1] G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary

measurements, J. Diff. Equations 84, 252-272.
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