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Abstract

In this paper, we partially solve an open problem, due to J. C. Molluzzo in 1976,
on the existence of balanced Steinhaus triangles modulo a positive integer n, that are
Steinhaus triangles containing all the elements of Z/nZ with the same multiplicity.
For every odd number n, we build an orbit in Z/nZ, by the linear cellular automa-
ton generating the Pascal triangle modulo n, which contains infinitely many balanced
Steinhaus triangles. This orbit, in Z/nZ, is obtained from an integer sequence said to
be universal. We show that there exist balanced Steinhaus triangles for at least 2/3 of
the admissible sizes, in the case where n is an odd prime power. Other balanced Stein-
haus figures, as Steinhaus trapezoids, generalized Pascal triangles, Pascal trapezoids
or lozenges, also appear in the orbit of the universal sequence modulo n odd. We prove
the existence of balanced generalized Pascal triangles for at least 2/3 of the admissible
sizes, in the case where n is an odd prime power, and the existence of balanced lozenges
for all the admissible sizes, in the case where n is a square-free odd number.

1 Introduction

Let n be a positive integer and denote by Z/nZ the finite cyclic group of order n. Let S =
(aj)j∈Z be a doubly infinite sequence of elements in Z/nZ. The derived sequence ∂S of S is the
sequence obtained by pairwise adding consecutive terms of S, that is ∂S = (aj + aj+1)j∈Z.
This operation of derivation can be repeated and then, the ith derived sequence ∂iS is
recursively defined by ∂0S = S and ∂iS = ∂∂i−1S for all positive integers i. The sequence
of all the iterated derived sequences of S is called the orbit OS = (∂iS)i∈N of S. For every
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non-negative integer i and for every integer j, we denote by ai,j the jth term of ∂iS. Since,
for every non-negative integer i and for every integer j, we have ai+1,j = ai,j + ai,j+1 by the
linear local rule of this cellular automaton, then the orbit of S can be seen as the multiset
in Z/nZ defined by

OS =

{

ai,j =
i
∑

k=0

(

i

k

)

aj+k

∣

∣

∣

∣

∣

i ∈ N, j ∈ Z

}

,

where
(

i
k

)

is the binomial coefficient
(

i
k

)

= i!
(i−k)!k!

. For every non-negative integer i, the ith

row of OS is the sequence Ri = ∂iS = (ai,j)j∈Z and, for every integer j, the jth diagonal
and the jth anti-diagonal of OS are the sequences Dj = (ai,j)i∈N and ADj = (ai,j−i)i∈N

respectively. Orbits of integer sequences and the canonical projection map πn : Z −։ Z/nZ

are also considered in this paper. Elementary figures appear in this linear cellular automaton.
Examples of them in Z/5Z are depicted in Figure 1.

0 4 3 1 2 4 2 0 3 1 3 4 0 1 0 0 0 1 3 2 0 2 0 3 3 3 3 4 1 0 0 1 4 1 0
4 2 4 3 1 1 2 3 4 4 2 4 1 1 0 0 1 4 0 2 2 2 3 1 1 1 2 0 1 0 1 0 0 1

3 1 1 2 4 2 3 0 2 3 1 1 0 2 1 0 1 0 4 2 4 4 0 4 2 2 3 2 1 1 1 1 0 1 4
4 2 3 1 1 0 3 2 0 4 2 1 2 3 1 1 1 4 1 1 3 4 4 1 4 0 0 3 2 2 2 1 1 0

1 1 0 4 2 1 3 0 2 4 1 3 3 0 4 2 2 0 0 2 4 2 3 0 0 4 0 3 0 4 4 3 2 1 2
2 1 4 1 3 4 3 2 1 0 4 1 3 4 1 4 2 0 2 1 1 0 3 0 4 4 3 3 4 3 2 0 3 3

1 3 0 0 4 2 2 0 3 1 4 0 4 2 0 0 1 2 2 3 2 1 3 3 4 3 2 1 2 2 0 2 3 1 0
4 3 0 4 1 4 2 3 4 0 4 4 1 2 0 1 3 4 0 0 3 4 1 2 2 0 3 3 4 2 2 0 4 1

0 2 3 4 0 0 1 0 2 4 4 3 0 3 2 1 4 2 4 0 3 2 0 3 4 2 3 1 2 1 4 2 4 0 1
2 0 2 4 0 1 1 2 1 3 2 3 3 0 3 0 1 1 4 3 0 2 3 2 1 0 4 3 3 0 1 1 4 1

Figure 1: Examples of Steinhaus figures in Z/5Z : the Steinhaus triangle ∇(2, 4, 3, 1, 1), the Pascal triangle
∆(4, 2, 1, 3, 0, 2, 4, 1, 3), the lozenge ♦(4, 4, 2, 4, 1, 1, 0), the Steinhaus trapezoid ST ((1, 1, 4, 1, 1, 3, 4), 4) and
the Pascal trapezoid PT ((2, 0, 3, 3, 3, 3, 4, 1, 0, 0, 1, 4, 1), 4).

Now, let Sm = (a0, . . . , am−1) be a finite sequence of length m > 1 in Z/nZ. The Steinhaus
triangle ∇Sm, associated with Sm, is the collection of all the iterated derived sequences of
Sm, that is the finite orbit ∇Sm = OSm

= {Sm, ∂Sm, . . . , ∂m−1Sm}. Namely, it is the multiset
in Z/nZ defined by

∇Sm =

{

i
∑

k=0

(

i

k

)

aj+k

∣

∣

∣

∣

∣

0 6 i 6 m − 1, 0 6 j 6 m − 1 − i

}

.

The triangle ∇Sm is said to be of order m, since the set of all the Steinhaus triangles
associated with a sequence of length m constitutes a Z/nZ−module of rank m. For every
positive integer m, a Steinhaus triangle of order m has a cardinality of

(

m+1
2

)

. These triangles
have been named in honor of H. Steinhaus, who proposed this construction, for the binary
case Z/2Z, in his book on elementary mathematical problems [14]. The Steinhaus trapezoid
ST (Sm, h), of order m and of height h, with 1 6 h 6 m, is the collection of the h first
derived sequences of Sm, that is,

ST (Sm, h) =

h−1
⋃

i=0

∂iSm = ∇Sm \ ∇∂hSm.
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A Steinhaus trapezoid of order m and of height h has a cardinality of h(2m−h+1)/2. Now,
let S2m−1 = (a0, . . . , a2m−2) be a finite sequence of length 2m − 1 in Z/nZ. The generalized
Pascal triangle (or Pascal triangle for short) ∆S2m−1, associated with S2m−1, is the triangle
of height m, built from the top to the base, appearing in the center of the Steinhaus triangle
∇S2m−1. Namely, it is the multiset in Z/nZ defined by

∆S2m−1 =

{

i
∑

k=0

(

i

k

)

am−1−j−k

∣

∣

∣

∣

∣

0 6 j 6 i 6 m − 1

}

.

Obviously, the generalized Pascal triangle associated with the sequence (0, . . . , 0, 1, 0, . . . , 0)
of length 2m−1 in Z/nZ, the sequence of zeros with the central term equal to 1, corresponds
with the m first rows of the standard Pascal triangle modulo n. A Pascal triangle of order
2m− 1 has a cardinality of

(

m+1
2

)

. The Pascal trapezoid PT (S2m−1, h), of order 2m− 1 and
of height h, is the collection of the h last rows of the Pascal triangle ∆S2m−1, that is,

PT (S2m−1, h) = ∆S2m−1 \ ∆(aj)h6j62m−h−2.

A Pascal trapezoid of order 2m − 1 and of height h has a cardinality of h(2m − h + 1)/2.
Finally, the lozenge ♦S2m−1, associated with the sequence S2m−1, is the multiset union of
the Pascal triangle ∆S2m−1 and of the Steinhaus triangle ∇∂mS2m−1. The lozenge ♦S2m−1

is then the multiset in Z/nZ defined by

♦S2m−1 = ∆S2m−1

⋃

∇∂mS2m−1 =

{

i+j
∑

k=0

(

i + j

k

)

am−1−j−k

∣

∣

∣

∣

∣

0 6 i, j 6 m − 1

}

.

A lozenge of order 2m − 1 has a cardinality of m2.

In 1963 [14], H. Steinhaus posed the elementary problem which consists to determined if
there exists, for every positive integer m such that (m + 1)m/2 is even, a binary Steinhaus
triangle of order m containing as many 0’s as 1’s. This problem was solved, for the first
time, by H. Harborth in 1972 [10]. For every positive integer m ≡ 0 or 3 (mod 4), he
explicitly build at least four such binary Steinhaus triangles of order m. Other solutions of
the Steinhaus’s problem appear in the literature [7, 8, 9]. A generalization of this problem
in any finite cyclic group was posed by J. C. Molluzzo in 1976 [13].

A finite multiset M in Z/nZ is said to be balanced if each element of Z/nZ appears in M
with the same multiplicity. Thus, if we denote by mM : Z/nZ −→ N the multiplicity function
associated with M , then the multiset M is balanced if and only if mM is the constant function
on Z/nZ equal to |M |/n, where |M | denotes the cardinality of M .

Problem 1.1 (Molluzzo,1976). Let n be a positive integer. For every positive integer m such
that the binomial coefficient

(

m+1
2

)

is divisible by n, does there exist a balanced Steinhaus
triangle of order m in Z/nZ?

In this paper, we explicitly build balanced Steinhaus triangles of order m in Z/nZ, for every
positive integer m ≡ 0 (mod n) or m ≡ −1 (mod 3n) and for every odd number n. This
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answers in the affirmative Problem 2 of [5]. In [5], the author completely and positively
solved this Molluzzo’s problem in Z/3k

Z, for all k > 1. Moreover, for every odd number n,
he showed that there exist at least ϕ(n)n balanced Steinhaus triangles of order m in Z/nZ,
for every m ≡ 0 or −1 (mod ϕ(rad(n))n), where ϕ is the Euler totient function and rad(n)
is the radical of n, that is the product of the distinct prime factors of n. As observed in
[6], this problem of Molluzzo does not always admit a positive solution. Indeed, it can be
verified, by exhaustive search, that there is no balanced Steinhaus triangle of order m = 5 in
Z/15Z or of order m = 6 in Z/21Z. Here, we are also interested in the generalization of the
Molluzzo’s problem on each kind of Steinhaus figures defined above, not only on Steinhaus
triangles.

Problem 1.2. Let n be a positive integer. For each kind of Steinhaus figures, do there exist
balanced Steinhaus figures in Z/nZ for all admissible sizes, i.e. for all Steinhaus figures
whose cardinality is divisible by n? In other words,

• for every positive integer m such that
(

m+1
2

)

is divisible by n, does there exist a balanced
Steinhaus triangle of order m?

• for every positive integers m and h such that h 6 m and h(2m − h + 1)/2 is divisible
by n, does there exist a balanced Steinhaus trapezoid of order m and of height h?

• for every positive integer m such that
(

m+1
2

)

is divisible by n, does there exist a balanced
Pascal triangle of order 2m − 1?

• for every positive integers m and h such that h 6 m and h(2m − h + 1)/2 is divisible
by n, does there exist a balanced Pascal trapezoid of order 2m − 1 and of height h?

• for every positive integer m such that m2 is divisible by n, does there exist a balanced
lozenge of order 2m − 1?

For every positive integers n and k and for every k−tuples of elements A = (a0, . . . , ak−1)
and D = (d0, . . . , dk−1) in Z/nZ, or in Z, the k−interlaced arithmetic progression IAP (A, D)
is the sequence with first terms (a0, . . . , ak−1) and with common differences (d0, . . . , dk−1),
that is the doubly infinite sequence IAP (A, D) = (aj)j∈Z defined by aj0+jk = aj0 + jdj0, for
all integers j and for every integer j0, 0 6 j0 6 k − 1. For k = 1, we denote by AP (a0, d0)
the arithmetic progression with first element a0 and with common difference d0.

Let US = IAP ((0,−1, 1), (1,−2, 1)) be the universal sequence of integers. The main goal of
this article is to show that, for every odd number n, the orbit of the projection πn(US) of
the universal sequence in Z/nZ contains infinitely many balanced Steinhaus figures. More
precisely, we obtain the following theorem.

Theorem 1.3. Let n be an odd number. Then, the orbit of the projection πn(US) of the
universal sequence in Z/nZ contains :

• balanced Steinhaus triangles of order m, for every positive integer m ≡ 0 (mod n)
or m ≡ −1 (mod 3n). This partially solves the Molluzzo’s problem for 2/3 of the
admissible orders m, in the case where n is an odd prime power.
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• balanced Steinhaus trapezoids of order m and of height h, for every positive integers
m ≡ 0 (mod n) or m ≡ −1 (mod 3n) and h ≡ m (mod n) or h ≡ m + 1 (mod 3n).

• balanced Pascal triangles of order 2m − 1, for every positive integer m ≡ −1 (mod n)
or m ≡ 0 (mod 3n). This also gives a partial solution of Problem 1.2 for 2/3 of the
admissible orders 2m − 1, in the case where n is an odd prime power.

• balanced Pascal trapezoids of order 2m − 1 and of height h, for every positive integers
m ≡ −1 (mod n) or m ≡ 0 (mod 3n) and h ≡ m + 1 (mod n) or h ≡ m (mod 3n).

• balanced lozenges of order 2m − 1, for every positive integer m ≡ 0 (mod n). This
completely solves Problem 1.2, for the lozenges, in the case where n is a square-free
odd number.

There also exist many results on Steinhaus figures for the binary case Z/2Z. The five smallest
and the three greatest possible numbers of 1’s in a binary Steinhaus triangle was determined
by G. J. Chang [4]. H. Harborth and G. Glenn [11] proved that every positive integer is
realizable as the number of 1’s in a generalized binary Pascal triangle, that is, for every
natural k, there exists a binary sequence S of length 2mk − 1 such that ∆S contains exactly
k elements equal to 1. They also determined the minimum value for mk. The maximum
number of 1’s in the binary Steinhaus figures (like Steinhaus triangles, generalized Pascal
triangles, parallelograms or trapezoids) was studied by M. Bartsch in her Ph.D. Thesis [2].
Symmetries in the binary Steinhaus triangles and in the binary generalized Pascal triangles
were explored in [1, 3].

This paper is organized as follows : doubly arithmetic triangles (DAT for short) in Z/nZ,
that are triangles where all the rows are arithmetic progressions of the same common dif-
ference and where all the diagonals are also arithmetic progressions of the same common
difference, are studied in Section 2. We show that these triangles constitute a source of
balanced multisets in Z/nZ, for n odd, while they are never balanced in Z/nZ, for n even.
Moreover, we prove that, for every positive integer n, the orbit associated with the sequence
of zeros is the only doubly arithmetic orbit in Z/nZ. In Section 3, the interlaced doubly
arithmetic orbits, i.e. the orbits that are an interlacing of doubly arithmetic multisets, are
considered. We determine all the interlaced doubly arithmetic orbits in Z and, in Section 4,
we show that the projection of these particular orbits in Z/nZ, for n odd, contains infinitely
many balanced Steinhaus figures. This result is refined in Section 5, by considering antisym-
metric sequences. In Section 6, a particular case of this antisymmetric refinement leads to
the universal sequence US and we prove Theorem 1.3. Finally, in Section 7, we recall the
results, on the generalized Molluzzo’s problem, obtained in this paper and we pose new open
problems on the existence of balanced Steinhaus figures in the additive cellular automata
of dimension 1 and in the cellular automaton of dimension 2 where the standard Pascal
tetrahedron appears.
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2 DAT : a source of balanced multisets

For every positive integers n and m and for every elements a, d1 and d2 in Z/nZ, the doubly
arithmetic triangle DAT (a, d1, d2, m) is the triangle of order m in Z/nZ, with first element
a and where each diagonal and each row are arithmetic progressions of respective common
differences d1 and d2, that is the multiset in Z/nZ defined by

DAT (a, d1, d2, m) = {a + id1 + jd2 | 0 6 i 6 m − 1 , 0 6 j 6 m − 1 − i} .

In this section, we show that the doubly arithmetic triangles constitute a source of balanced
multisets in Z/nZ, for n odd. Obviously, we can see that the anti-diagonals of a DAT are
arithmetic progressions of common difference d1 − d2. We begin by determining a necessary
condition, on the common differences d1 and d2, to obtain balanced DAT in Z/nZ.

Proposition 2.1. Let n and m be two positive integers and let a, d1 and d2 be in Z/nZ.
If the doubly arithmetic triangle DAT (a, d1, d2, m) is balanced, then the common differences
d1, d2 and d1 − d2 are invertible in Z/nZ.

Proof. For n = 1 or m = 1, it is clear. Suppose now that n > 1 and m > 1. Let
DAT (a, d1, d2, m) be a doubly arithmetic triangle in Z/nZ where at least one of the common
differences d1, d2 and d1−d2 is not invertible. Without loss of generality, suppose that it is d2.
If not, we can consider the rotations DAT (a, d2, d1, m) or DAT (a+(m−1)d2,−d2, d1−d2, m)
of DAT (a, d1, d2, m). Let δ1 and δ2 be two integers whose respective residue classes modulo
n are d1 and d2. We distinguish different cases upon the greatest common divisor of δ1, δ2

and n.

Case 1. If q = gcd(δ1, δ2, n) 6= 1, then we consider the projection map πq : Z/nZ −։ Z/qZ.
All the elements of the triangle πq(DAT (a, d1, d2, m)) = DAT (πq(a), 0, 0, m) are equal to
πq(a). Therefore, the triangle DAT (a, d1, d2, m) is not balanced in Z/nZ since its projection
in Z/qZ is not.

Case 2. If gcd(δ1, δ2, n) = 1, then we set q = gcd(δ2, n) 6= 1 and we consider the projec-
tion πq(DAT (a, d1, d2, m)) = DAT (πq(a), πq(d1), 0, m) in Z/qZ, where πq(d1) is invertible in
Z/qZ. Since the (kq + l)th row of ∇ = DAT (πq(a), πq(d1), 0, m) is the constant sequence, of
length m − kq − l + 1, equal to πq(a) + lπq(d1), for all integers l, 0 6 l 6 q − 1, and for all
positive integers k such that kq + l 6 m − 1, it follows that we have

m∇(πq(a)) > m∇(πq(a)+πq(d1)) > m∇(πq(a)+2πq(d1)) > . . . . . . > m∇(πq(a)+(q−1)πq(d1)).

Therefore ∇ is not balanced in Z/qZ and thus DAT (a, d1, d2, m) is not in Z/nZ.

Remark. For every even number n, there is no balanced DAT in Z/nZ since at least one
element of {d1, d2, d1 − d2} is not invertible in Z/nZ, by parity of n.
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Remark. Another necessary condition for a DAT , of order m, to be balanced in Z/nZ is that
its cardinality, that is the binomial coefficient

(

m+1
2

)

, must be divisible by n. But these two
necessary conditions are not sufficient : as depicted in Figure 2, the triangle DAT (0, 8, 1, 5)
is not balanced in Z/15Z, although its cardinality

(

6
2

)

= 15 is divisible by n = 15 and its
common differences 8, 1 and 7 are invertible in Z/15Z.

0 1 2 3 4
8 9 10 11

1 2 3
9 10

2

Figure 2: The doubly arithmetic triangle DAT (0, 8, 1, 5) in Z/15Z.

The following theorem is the main theorem of this section.

Theorem 2.2. Let n be an odd number and let d1 and d2 be two invertible elements in
Z/nZ whose difference d1 − d2 is also invertible. Then, the doubly arithmetic triangle
DAT (a, d1, d2, m) is balanced in Z/nZ, for all positive integers m ≡ 0 or −1 (mod n).

Proof. Let m be a positive integer multiple of n. For every positive integer i, 0 6 i 6 m−1,
we denote by Ri the ith row of DAT (a, d1, d2, m), that is Ri = (a + id1 + jd2)06j6m−1−i.
We prove that, for every integer λ such that 0 6 λ 6 m/n − 2, the n consecutive rows
{Rλn, Rλn+1, . . . , R(λ+1)n−1} are balanced. Consider the permutation σ which assigns to each
integer i, 0 6 i 6 n − 1, the positive integer σ(i), 0 6 σ(i) 6 n − 1, whose residue class
modulo n corresponds with i(d1−d2)d1

−1 and denote by ki the cardinality of the permutation
orbit of i following σ. Let ∇(i, j) = a + id1 + jd2 denote the jth term in the ith row of
DAT (a, d1, d2, m). Now, we show that, for every positive integer i, 0 6 i 6 n − 1, the
concatenation ∪l=ki−1

l=0 Rλn+σl(i) is balanced in Z/nZ. Since

∇
(

λn + σl(i), m − 1 − λn − σl(i)
)

+ d2 = a + (λn + σl(i))d1 + (m − λn − σl(i))d2

= a + σl(i)(d1 − d2) = a + σl+1(i)d1 = ∇
(

λn + σl+1(i), 0
)

,

for all positive integers l, 0 6 l 6 ki − 1, it follows that the concatenation ∪l=ki−1
l=0 Rλn+σl(i) is

an arithmetic progression with invertible common difference d2 and of length a multiple of n.
Therefore, its multiplicity function is constant on Z/nZ. Finally, since the set of the n first
non-negative integers {0, 1, . . . , n − 1} is a disjoint union of orbits following σ, the multiplic-
ity function of ∪i=n−1

i=0 Rλn+i is constant on Z/nZ and thus the triangle DAT (a, d1, d2, m) is
balanced in Z/nZ.
For every positive integer m ≡ −1 (mod n), the doubly arithmetic triangle DAT (a, d1, d2, m)
is obtained from the balanced triangle DAT (a, d1, d2, m+1) by rejecting its right side. Since
it is an arithmetic progression with invertible common difference d1 − d2 and of length
m + 1 ≡ 0 (mod n), it follows that this right side contains all the elements of Z/nZ with
the same multiplicity. This completes the proof.
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Remark. For every odd number n and for every invertible element d in Z/nZ, the doubly
arithmetic triangles DAT (a, d,−d, m), DAT (a, d, 2d, m) and DAT (a, 2d, d, m) are balanced
in Z/nZ, for all positive integers m ≡ 0 or −1 (mod n).

Let n be a positive integer and let d1 and d2 be two elements of Z/nZ. The orbit OS,
associated with a doubly infinite sequence S in Z/nZ, is said to be (d1, d2)−doubly arithmetic
if each subtriangle appearing in it is a DAT with common differences (d1, d2), that is if OS is
an orbit where all the diagonals are arithmetic progressions with the same common difference
d1 and where all the rows are arithmetic progressions with the same common difference d2.

Now, we prove that, for every positive integer n, there does not exist doubly arithmetic orbit
in Z/nZ, except the trivial orbit generated by the sequence of zeros in Z/nZ.

Proposition 2.3. Let n be a positive integer. The orbit associated with the sequence of zeros
is the only doubly arithmetic orbit in Z/nZ.

Proof. It is clear that if OS is (d1, d2)−doubly arithmetic, then S is an arithmetic progression
with common difference d2. We set S = AP (a, d2). It is known [5], and easy to retrieve,
that the derived sequence ∂S of S is an arithmetic progression with common difference 2d2.
Moreover, it is also d2, by the doubly arithmetic structure of the orbit OS and thus, the
common difference d2 vanishes. By the local rule in OS, we obtain that a + d1 = 2a and
a + 2d1 = 4a. Therefore, we have a = d1 = 0 and S is the sequence of zeros. This completes
the proof.

Even if there does not exist non-trivial doubly arithmetic orbit, the results of this section
will be useful in next sections, where orbits with an interlaced doubly arithmetic structure
are studied.

3 Interlaced doubly arithmetic orbits of integers

For every positive integers n, k1 and k2 and for every doubly infinite sequence S in Z/nZ, or
in Z, the orbit OS = {ai,j|ai+1,j = ai,j + ai,j+1, i ∈ N, j ∈ Z} is said to be (k1, k2)−interlaced
doubly arithmetic if, for every integer i0, 0 6 i0 6 k1 − 1, and for every integer j0, 0 6 j0 6

k2 − 1, the submultiset {ai0+ik1,j0+jk2
|i ∈ N, j ∈ Z} is doubly arithmetic, i.e. if we have

ai0+ik1,j0+jk2
= ai0,j0 + i(ai0+k1,j0 − ai0,j0) + j(ai0,j0+k2

− ai0,j0),

for every non-negative integer i and for every integer j.

Determine all the interlaced doubly arithmetic orbits (IDAO for short) in Z/nZ seems to
be very difficult. Nethertheless, the IDAO in Z are determined in this section and their
projection in Z/nZ will be considered in next sections. First, it is clear that the sequence S,
associated with a (k1, k2)−interlaced doubly arithmetic orbit OS, is a k2−interlaced arith-
metic progression. We begin by showing that the interlaced arithmetic structure of a sequence
is preserved under the derivation process.
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Proposition 3.1. Let n and k be two positive integers and let (a0, . . . , ak−1) and (d0, . . . , dk−1)
be two k-tuples of elements in Z/nZ, or in Z. Then, we have

∂IAP ((a0, . . . , ak−1), (d0, . . . , dk−1))
= IAP ((a0 + a1, . . . , ak−2 + ak−1, ak−1 + a0 + d0), (d0 + d1, . . . , dk−2 + dk−1, dk−1 + d0)) .

Proof. Consider S = IAP ((a0, . . . , ak−1), (d0, . . . , dk−1)) = (xj)j∈N
and ∂S = (yj)j∈N

. Then,
for all integers l, we have

yj0+lk = xj0+lk + xj0+lk+1 = (aj0 + ldj0) + (aj0+1 + ldj0+1) = (aj0 + aj0+1) + l(dj0 + dj0+1),

for all integers j0 such that 0 6 j0 6 k − 2, and

y(k−1)+lk = x(k−1)+lk+x(l+1)k = (ak−1+ldk−1)+(a0+(l+1)d0) = (ak−1+a0+d0)+l(dk−1+d0),

for j0 = k − 1. This completes the proof.

Then, we can explicitly determine all the iterated derived sequences of an interlaced arith-
metic progression.

Proposition 3.2. Let n and k be two positive integers and let A and D be two k-tuples of
elements in Z/nZ, or in Z. Then, for every non-negative integer i, we have

∂iIAP (A, D) = IAP (ACi + DTi , DCi) ,

where Ci is the circulant matrix, of size k, defined by

Ci = Circ

(

∑

l>0

(

i

lk

)

,
∑

l>0

(

i

lk − 1

)

, . . . ,
∑

l>0

(

i

lk + 1

)

)

,

and where Ti is the Toeplitz matrix, of size k, defined by

Ti =

(

∑

l>0

l

(

i

r − s + lk

)

)

16r,s6k

.

Proof. By iteration on i. Trivial for i = 0. For i = 1, Proposition 3.1 leads to

C1 = Circ(1, 0, . . . , 0, 1) =















1 0 · · · 0 1
1 1 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1 1















and T1 =

















0 · · · · · · 0 1
... 0
... 0

...
...

...
0 · · · · · · · · · 0

















.

Suppose that the result is true for some positive integer i and prove it for i + 1. First, the
(i + 1)th derived sequence of S = IAP (A, D) is equal to

∂i+1S = ∂∂iS = ∂IAP (ACi + DTi , DCi)

= IAP (ACiC1 + D (TiC1 + CiT1) , DCiC1) .

9



Since the product of two circulant matrices is also a circulant matrix, it follows that

Ci+1 = CiC1 = Circ

(

∑

l>0

(

i

lk

)

,
∑

l>0

(

i

lk − 1

)

, . . . ,
∑

l>0

(

i

lk + 1

)

)

Circ (1, 0, . . . , 0, 1)

= Circ

(

∑

l>0

(

i

lk

)

+
∑

l>0

(

i

lk − 1

)

,
∑

l>0

(

i

lk − 1

)

+
∑

l>0

(

i

lk − 2

)

, . . . . . .

. . . . . . ,
∑

l>0

(

i

lk

)

+
∑

l>0

(

i

lk + 1

)

)

= Circ

(

∑

l>0

(

i + 1

lk

)

,
∑

l>0

(

i + 1

lk − 1

)

, . . . ,
∑

l>0

(

i + 1

lk + 1

)

)

.

Moreover, we have Ti+1 = TiC1 + CiT1 = (βr,s)16r,s6k, where

βr,s = (TiC1)r,s + (CiT1)r,s =

k
∑

u=1

(Ti)r,u(C1)u,s +

k
∑

v=1

(Ci)r,v(T1)v,s

=











































































Tir,s + Tir,s+1 =
∑

l>0

l

(

i

r − s + lk

)

+
∑

l>0

l

(

i

r − s + lk − 1

)

=
∑

l>0

l

(

i + 1

r − s + lk

)

for s ∈ {1, . . . , k − 1},

Tir,1 + Tir,k + Cir,1 =
∑

l>0

l

(

i

r − 1 + lk

)

+
∑

l>0

l

(

i

r − k + lk

)

+
∑

l>0

(

i

r − 1 + lk

)

=
∑

l>0

(l − 1)

(

i

r − k + lk − 1

)

+
∑

l>0

l

(

i

r − k + lk

)

+
∑

l>0

(

i

r − k + lk − 1

)

=
∑

l>0

l

(

i + 1

r − k + lk

)

for s = k.

This completes the proof.

The main result of this section is the complete characterization of the IDAO in Z.

Theorem 3.3. Every interlaced doubly arithmetic orbit OS in Z is generated by an interlaced
arithmetic progression of the form S = IAP ((a0, a1, a2), (d,−2d − 3Σ, d + 3Σ)), with Σ =
a0 + a1 + a2 and where a0, a1, a2 and d are integers.

We begin by showing that these interlaced arithmetic progressions, announced in Theo-
rem 3.3, well generate interlaced doubly arithmetic orbits of integers.

Proposition 3.4. Let a0, a1, a2 and d be integers and let Σ = a0 + a1 + a2. Then, the orbit
OS, associated with S = IAP ((a0, a1, a2)(d,−2d − 3Σ, d + 3Σ)), is (6, 3)−interlaced doubly
arithmetic.
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Proof. Let OS = {ai,j|ai+1,j = ai,j + ai,j+1, i ∈ N, j ∈ Z} be the orbit associated with S
and let Mi0,j0 be the submultiset Mi0,j0 = {ai0+6i,j0+3j|i ∈ N, j ∈ Z}, for all integers i0 ∈
{0, 1, 2, 3, 4, 5} and for all integers j0 ∈ {0, 1, 2}. We can prove, by induction on i, that, for
every non-negative integer i and for every integer j, we have

a6i,3j = a0 − 2i(d + 3Σ) + jd,
a6i,3j+1 = a1 − 2id − j(2d + 3Σ),
a6i,3j+2 = a2 + 2i(2d + 3Σ) + j(d + 3Σ),
a6i+1,3j = (a0 + a1) − 2i(2d + 3Σ) − j(d + 3Σ),
a6i+1,3j+1 = (a1 + a2) + 2i(d + 3Σ) − jd,
a6i+1,3j+2 = (a0 + a2 + d) + 2id + j(2d + 3Σ),
a6i+2,3j = (a1 + Σ) − 2id − j(2d + 3Σ),
a6i+2,3j+1 = (a2 + Σ + d) + 2i(2d + 3Σ) + j(d + 3Σ),
a6i+2,3j+2 = (a0 − 2Σ) − 2i(d + 3Σ) + jd,
a6i+3,3j = (a1 + a2 + 2Σ + d) + 2i(d + 3Σ) − jd,
a6i+3,3j+1 = (a0 + a2 − Σ + d) + 2id + j(2d + 3Σ),
a6i+3,3j+2 = (a0 + a1 − 4Σ − 2d) − 2i(2d + 3Σ) − j(d + 3Σ),
a6i+4,3j = (a2 + 2Σ + 2d) + 2i(2d + 3Σ) + j(d + 3Σ),
a6i+4,3j+1 = (a0 − 4Σ − d) − 2i(d + 3Σ) + jd,
a6i+4,3j+2 = (a1 − Σ − 2d) − 2id − j(2d + 3Σ),
a6i+5,3j = (a0 + a2 − 2Σ + d) + 2id + j(2d + 3Σ),
a6i+5,3j+1 = (a0 + a1 − 5Σ − 3d) − 2i(2d + 3Σ) − j(d + 3Σ),
a6i+5,3j+2 = (a1 + a2 + 4Σ + d) + 2i(d + 3Σ) − jd.

Thus, the 18 submultisets Mi0,j0 are doubly arithmetic. This completes the proof.

Now, we show that there is no other sequence generating IDAO in Z. Since, for every positive
integers k1 and k2, a (k1, k2) − IDAO is also a (k1k2, k1k2) − IDAO, we suppose that we
have k1 = k2 = k in the sequel. Then, the problem of determining all the (k, k) − IDAO
can be converted into a system of linear equations.

Proposition 3.5. Let n and k be two positive integers. Let A and D be two k-tuples of
elements in Z/nZ, or in Z, and let S = IAP (A, D) be a k−interlaced arithmetic progression.
Then, the orbit OS is (k, k)−interlaced doubly arithmetic if and only if A and D verify

(

Wk
2 WkTk

T

0k Wk

)(

AT

DT

)

= 0,

where Wk = Ck − Ik = Circ
((

k
0

)

,
(

k
1

)

, . . . ,
(

k
k−1

))

, that is the Wendt’s matrix of size k.

The proof of this proposition is based on the following two lemmas.

Lemma 3.6. Let n and k be two positive integers and let S be a k−interlaced arithmetic
progression in Z/nZ, or in Z. Then, the orbit OS = {ai,j|ai+1,j = ai,j + ai,j+1, i ∈ N, j ∈ Z}
is (k, k)−interlaced doubly arithmetic if and only if we have (1) : for every integer i0, 0 6

i0 6 k−1, and for every positive integer i, the row Rik+i0 is of the same common differences
than Ri0, and (2) : for every integer j0, 0 6 j0 6 k − 1, the sequence (aik,j0)i∈N is an
arithmetic progression.
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Proof. If the orbit OS is (k, k)−interlaced doubly arithmetic, then it is clear that the asser-
tions (1) and (2) are verified. Suppose now that (1) and (2) hold. We begin by showing (3)
: for every integer j0, 0 6 j0 6 k − 1, and for every integer j, the sequence (aik,j0+jk)i∈N is
an arithmetic progression. Indeed, for every non-negative integer i, we have

aik,j0+jk
(1)
= aik,j0 + j(a0,j0+k − a0,j0)

(2)
= a0,j0 + i(ak,j0 − a0,j0) + j(a0,j0+k − a0,j0)

= a0,j0+jk + i(ak,j0 − a0,j0).

Moreover, since ai0+ik,j0 =
∑i0

l=0

(

i0
l

)

aik,j0+l by the automaton’s local rule, it follows that we
have

ai0+ik,j0+jk
(1)
= ai0+ik,j0 + j(ai0,j0+k − ai0,j0) =

i0
∑

l=0

(

i0
l

)

aik,j0+l + j(ai0,j0+k − ai0,j0)

(3)
=

i0
∑

l=0

(

i0
l

)

(a0,j0+l + i(ak,j0+l − a0,j0+l)) + j(ai0,j0+k − ai0,j0)

=

i0
∑

l=0

(

i0
l

)

a0,j0+l + i

(

i0
∑

l=0

(

i0
l

)

ak,j0+l −

i0
∑

l=0

(

i0
l

)

a0,j0+l

)

+ j(ai0,j0+k − ai0,j0)

= ai0,j0 + i(ai0+k,j0 − ai0,j0) + j(ai0,j0+k − ai0,j0),

for all integers i0 and j0, 0 6 i0, j0 6 k − 1, and for all integers i and j.

Lemma 3.7. For all non-negative integers i and j such that 0 6 j 6 i, we have

1. Ci = C1
i,

2. Ti = TjCi−j + CjTi−j.

Proof. The first assertion follows from the recursive definition of Ci. For the second assertion,
we proceed by induction on i. The result is trivial for i = 0 and for i = 1. Suppose it is true
until i and prove it for i+1. It is clear for j = 0 and for j = i+1. Let j be an integer such that
1 6 j 6 i. By the recursive definition of Ti+1 and the induction hypothesis, we obtain that
Ti+1 = TiC1 +CiT1 = (TjCi−j +CjTi−j)C1 +CiT1 = TjCi−j+1 +Cj(Ti−jC1 +Ci−jT1) =
TjCi−j+1 + CjTi−j+1.

We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5. Let S = IAP (A, D) be a k−interlaced arithmetic progression of
elements in Z/nZ, or in Z. We know that the orbit OS is (k, k)−interlaced doubly arithmetic
if and only if the assertions (1) and (2) are verified by Lemma 3.6. We consider the equations
(1′) and (2′) :

(1′) : DWk = 0,

(2′) : AWk
2 + DTkWk = 0.
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First, by Proposition 3.2, the assertions (1) and (1′) are equivalent :

(1)
Prop.3.2
⇐⇒ DCi0+ik = DCi0, for all integers i > 0 and i0, 0 6 i0 6 k − 1,

⇐⇒ D(Cik − Ik)Ci0 = 0, for all integers i > 0 and i0, 0 6 i0 6 k − 1,

Lem.3.7
⇐⇒ D(Ck − Ik)

i−1
∑

l=0

Ck
lCi0 = 0, for all integers i > 0 and i0, 0 6 i0 6 k − 1,

⇐⇒ DWk = 0 (1′).

Proposition 3.2 also permits to put assertion (2) in equation as follows :

(2) ⇐⇒ (aik,0, aik,1, . . . , aik,k−1)i∈N is arithmetic,

Prop.3.2
⇐⇒ (ACik + DTik)i∈N is arithmetic,

⇐⇒ A(C(i+2)k − 2C(i+1)k + Cik) + D(T(i+2)k − 2T(i+1)k + Tik) = 0, for all i > 0.

Moreover, Lemma 3.7 leads to

C(i+2)k − 2C(i+1)k + Cik = (Ck
2 − 2Ck + Ik)Cik = Wk

2Cik,

and

T(i+2)k − 2T(i+1)k + Tik = (T2kCik + C2kTik) − 2(TkCik + CkTik) + Tik.

Finally, since DCk = D if the assertion (1′) is verified, it follows that

T(i+2)k − 2T(i+1)k + Tik

(1′)
= D(T2k − 2Tk)Cik = D(TkCk + CkTk − 2Tk)Cik

= DTkWkCik,

and thus

(1) + (2) ⇐⇒ (1′) + AWk
2Cik + DTkWkCik = 0, for all i ∈ N ⇐⇒ (1′) + (2′).

This completes the proof.

In his Ph.D. dissertation about Fermat’s Last Theorem [15], E. A. Wendt investigated the
resultant of Xk − 1 and (X + 1)k − 1, which corresponds to the determinant of Wk. E.
Lehmer proved, for the first time, that the determinant of Wk vanishes if and only if k is
divisible by 6 [12]. It is also known that the Wendt’s matrix Wk is of rank k if k is not
divisible by 6 and of rank k − 2 else.

Proposition 3.8.

rank(Wk) =

{

k if k 6≡ 0 (mod 6),
k − 2 if k ≡ 0 (mod 6).
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Sketch of proof. The eigenvalues of Wk are λl = (1+ωl)k−1, for all integers l, 0 6 l 6 k−1,
where ω is a primitive kth root of unity [12]. Then, we can show that λl = 0 if and only if
k is divisible by 6 and then, ωl = e2iπ/3 or ωl = e−2iπ/3. The result follows.

We are now able to prove the main theorem of this section.

Proof of Theorem 3.3. If k is not divisible by 6, then the Wendt’s matrix Wk is of rank k
by Proposition 3.8. This implies that A = D = (0, . . . , 0) and thus S is the sequence of
zeros. Otherwise, if k is divisible by 6, then Proposition 3.4 implies that the vector space of
(k, k)−interlaced doubly arithmetic orbits is of dimension greater or equal to 4. Moreover,
since rank(Wk

2) = rank(Wk) = k − 2 by Proposition 3.8, it follows that the matrix

(

Wk
2 WkTk

T

0k Wk

)

is of rank greater or equal to 2k − 4. Therefore, there is no other (k, k)− IDAO than these
announced in Theorem 3.3. This completes the proof.

4 Balanced Steinhaus figures modulo an odd number

In this section, we show that, for every odd number n, the projection in Z/nZ of the IDAO
in Z, obtained in the precedent section, contains infinitely many balanced Steinhaus figures.

Theorem 4.1. Let n be an odd number and let a0, a1, a2 and d be in Z/nZ such that d,
d + 3Σ and 2d + 3Σ, where Σ = a0 + a1 + a2, are invertible. Then, the following Steinhaus
figures, contained in the orbit of S = IAP ((a0, a1, a2), (d,−2d− 3Σ, d + 3Σ)), are balanced :

• every Steinhaus triangle of order m in OS, for every integer m ≡ 0 or −1 (mod 6n),

• every Steinhaus trapezoid of order m and of height h in OS, for every integer m ≡ 0
or −1 (mod 6n) and for every integer h ≡ m or m + 1 (mod 6n),

• every Pascal triangle of order 2m−1 in OS, for every integer m ≡ 0 or −1 (mod 6n),

• every Pascal trapezoid of order 2m− 1 and of height h in OS, for every integer m ≡ 0
or −1 (mod 6n) and for every integer h ≡ m or m + 1 (mod 6n),

• every lozenge of order 2m − 1 in OS, for every integer m ≡ 0 (mod 6n).

Proof. Let OS = {ai,j|ai+1,j = ai,j + ai,j+1, i ∈ N, j ∈ Z} be the orbit associated with S. Con-
sider the submultisets Mi0,j0 = {ai0+6i,j0+6j |i ∈ N, j ∈ Z}, for i0 and j0 in {0, 1, 2, 3, 4, 5}.
Each of these 36 submultisets is doubly arithmetic since the orbit OS is (6, 3)−interlaced
doubly arithmetic by Proposition 3.4. The following tabular gives their common differences
d1, d2, d1 − d2.
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Mi0,j0 d1 d2 d1 − d2

M1,2 , M1,5 , M3,1 , M3,4 , M5,0 , M5,3 2d 2(2d + 3Σ) −2(d + 3Σ)
M0,1 , M0,4 , M2,0 , M2,3 , M4,2 , M4,5 −2d −2(2d + 3Σ) 2(d + 3Σ)
M1,1 , M1,4 , M3,0 , M3,3 , M5,2 , M5,5 2(d + 3Σ) −2d 2(2d + 3Σ)
M0,0 , M0,3 , M2,2 , M2,5 , M4,1 , M4,4 −2(d + 3Σ) 2d −2(2d + 3Σ)
M0,2 , M0,5 , M2,1 , M2,4 , M4,0 , M4,3 2(2d + 3Σ) 2(d + 3Σ) 2d
M1,0 , M1,3 , M3,2 , M3,5 , M5,1 , M5,4 −2(2d + 3Σ) −2(d + 3Σ) −2d

Thus, each submultiset Mio,jo
is doubly arithmetic, with invertible common differences d1, d2

and d1−d2. Let λ be a positive integer and let ∇ be a Steinhaus triangle, of order m = 6λn or
m = 6λn−1, that appears in OS. Since ∇∩Mi0,j0, for i0 and j0 in {0, 1, 2, 3, 4, 5}, is a doubly
arithmetic triangle, of order λn or λn− 1 and with invertible common differences d1, d2 and
d1 − d2, it follows from Theorem 2.2 that the 36 subtriangles are balanced. Therefore their
union, the Steinhaus triangle ∇, is also balanced in Z/nZ. Similarly, every Pascal triangle,
of order 2m − 1 in OS, is balanced, for all positive integers m ≡ 0 or −1 (mod 6n), since it
can be decomposed into 36 subtriangles, which are balanced doubly arithmetic triangles by
Theorem 2.2 again. For the trapezoids, a Steinhaus trapezoid (resp. Pascal trapezoid), of
order m (resp. 2m−1) and of height h in OS, can be seen as the multiset difference between
a Steinhaus triangle of order m and a Steinhaus triangle of order m − h (resp. between a
Pascal triangle of order 2m−1 and a Pascal triangle of order 2(m−h)−1). Therefore, these
trapezoids are balanced, for all positive integers m ≡ 0 or −1 (mod 6n) and for all positive
integers h ≡ m or m + 1 (mod 6n). Finally, a lozenge, of order 2m − 1 in OS, is balanced,
for all positive integers m ≡ 0 (mod 6n), since it is the multiset union of a Steinhaus pascal
of order 2m − 1 and of a Steinhaus triangle of order m − 1, which are both balanced in
Z/nZ.

The case where a0 = 0, a1 = 1, a2 = 2 and d = 1 in Z/3Z, i.e. the orbit associated with
the sequence IAP ((0, 1, 2), (1, 1, 1)), is illustrated in Figure 3. In this example, balanced
Steinhaus figures are depicted in gray : there are a balanced Steinhaus triangle of order 18,
a balanced Pascal triangle of order 35 and a balanced lozenge of order 35.

5 The antisymmetric case

In this section, we refine Theorem 4.1 by considering the antisymmetric sequences in Z/nZ.

A finite sequence S = (a0, . . . , am−1), of length m > 1 in Z/nZ, or in Z, is said to be
antisymmetric if we obtain the opposite sequence −S, by reading S from the right to the
left, i.e. if we have am−1−j = −aj , for all integers j, 0 6 j 6 m − 1.

For examples, the sequences (1, 4, 0, 3, 6) and (2, 6, 1, 5) are antisymmetric in Z/7Z. It is
known, see [5], that the antisymmetry of the finite sequences is preserved by the derivation
process.

15



0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

Figure 3: Balanced Steinhaus figures in the orbit of IAP ((0, 1, 2), (1, 1, 1)) in Z/3Z.
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Proposition 5.1. Let n be a positive integer and let S = (a0, . . . , am−1) be a finite sequence
of length m > 1 in Z/nZ, or in Z. Then, the sequence S is antisymmetric if and only if its
derived sequence ∂S is also antisymmetric and we have a⌊m/2⌋ + am−⌊m/2⌋ = 0, where ⌊m/2⌋
is the floor of m/2.

Proof. We set ∂S = (b0, . . . , bm−2) = (a0 + a1, . . . , am−2 + am−1). If S is antisymmetric,
then ∂S is also antisymmetric since, for all integers j such that 0 6 j 6 m − 2, we have
bm−2−j = am−2−j + am−1−j = −aj+1 − aj = −bj . Conversely, if ∂S is antisymmetric and
a⌊m/2⌋ + am−⌊m/2⌋ = 0, we proceed by decreasing induction on j. Since

m−2−j
∑

k=j

bk =

m−2−j
∑

k=j

(ak + ak+1) = aj + 2

m−2−j
∑

k=j+1

ak + am−1−j ,

it follows that

aj + am−1−j =

m−2−j
∑

k=j

bk − 2

m−2−j
∑

k=j+1

ak = 0,

by the decreasing induction hypothesis. This completes the proof.

The main interest of the antisymmetric sequences, in Z/nZ, is that their multiplicity function
admits a certain symmetry. Indeed, it is clear that, if S is an antisymmetric sequence in
Z/nZ, then its multiplicity function mS verifies mS(x) = mS(−x), for all elements x in Z/nZ.
The same equality appears for the multiplicity function of the Steinhaus or Pascal triangles
generated by antisymmetric sequences.

Proposition 5.2. Let n be a positive integer and let S be an antisymmetric sequence, of
length m > 1 in Z/nZ. Then, we have m∇S(x) = m∇S(−x), for all elements x in Z/nZ.

Proof. Since all the derived sequences ∂iS, for 0 6 i 6 m − 1, are antisymmetric by Propo-
sition 5.1, it follows that m∇S(x) =

∑m−1
i=0 m∂iS(x) =

∑m−1
i=0 m∂iS(−x) = m∇S(−x), for all

elements x in Z/nZ.

Proposition 5.3. Let n be a positive integer and let S be an antisymmetric sequence, of
length 2m−1 > 1 in Z/nZ. Then, we have m∆S(x) = m∆S(−x), for all elements x in Z/nZ.

Now, for every odd number n, we determine all the integer sequences generating IDAO in
Z and whose the 3n first terms of the projection in Z/nZ are antisymmetric.

For every doubly infinite sequence S = (aj)j∈Z in Z/nZ, or in Z, and for every integers j0

and j1 such that j0 6 j1, we denote by S[j0, j1] the subsequence of S indexed between j0

and j1, that is S[j0, j1] = (aj0, aj0+1, . . . , aj1).

Proposition 5.4. Let n be an odd number. Let a0, a1, a2 and d be in Z/nZ and let Σ =
a0 + a1 + a2. Then, the subsequence Sm = IAP ((a0, a1, a2), (d,−2d− 3Σ, d + 3Σ))[0, m− 1],
of length m ≡ 0 (mod 3n) in Z/nZ, is antisymmetric if and only if Σ = 0 and a1 = −d, i.e.
if we have Sm = IAP ((a,−d, d − a), (d,−2d, d))[0, m− 1].
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Proof. Set m = 3λn and Sm = IAP ((a0, a1, a2), (d,−2d−3Σ, d+3Σ))[0, m−1] = (a0, . . . , am−1)
in Z/nZ. If Sm is antisymmetric, then the terms aj must verify






a3j + a3(λn−j−1)+2 = 0
a3j+1 + a3(λn−j−1)+1 = 0
a3j+2 + a3(λn−j−1) = 0

⇐⇒







a0 + a2 − d − 3(j + 1)Σ = 0
2a1 + 2d + 3Σ = 0
a0 + a2 − d + 3jΣ = 0

, for all 0 6 j 6 n−1.

This leads to a1 = −d, a2 = d − a0 and Σ = 0, since n is odd, and thus Sm = ((a0,−d, d −
a0), (d,−2d, d))[0, m− 1], as announced.

Let n be an odd number and let a and d be two elements in Z/nZ with d invertible. We refine
Theorem 4.1 by considering the orbit OS of the sequence S = IAP ((a,−d, d−a), (d,−2d, d)).
Let ∇0 be the Steinhaus triangle, of order 3n, generated by the 3n first terms of S and let
∆0 be the Pascal triangle, of order 6n − 3, adjacent with ∇0, as depicted in Figure 4, that
are ∇0 = ∇S[0, 3n − 1] and ∆0 = ∆∂S[1, 6n − 3].

∇0
∆0

Figure 4: ∇0 = ∇S[0, 3n − 1] and ∆0 = ∆∂S[1, 6n − 3].

We begin by showing that these triangles are balanced in Z/nZ.

Proposition 5.5. Let n be an odd number and let a and d be in Z/nZ with d invertible. We
consider the 3−interlaced arithmetic progression S = IAP ((a,−d, d − a)(d,−2d, d)). Then,
the triangles ∇0 = ∇S[0, 3n − 1] and ∆0 = ∆∂S[1, 6n − 3] are balanced in Z/nZ.

Proof. First, since the derived sequences of S = IAP ((a,−d, d − a), (d,−2d, d)) are :

∂3iS = (−1)iIAP ((a − id,−(i + 1)d, (2i + 1)d − a), (d,−2d, d)),
∂3i+1S = (−1)iIAP ((a − (2i + 1)d, id − a, (i + 2)d), (−d,−d, 2d)),
∂3i+2S = (−1)iIAP ((−(i + 1)d, (2i + 2)d − a, a − id), (−2d, d, d)),

for all non-negative integers i, it follows that ∂3nS = −S. Moreover, the orbit OS is
(6, 3)−interlaced doubly arithmetic and thus each row (resp. each diagonal) of OS is periodic
of period 3n (resp. of period 6n). This leads to the following periodic decomposition of the
orbit OS into triangles ∇0 and ∆0 :

∇0 ∇0 ∇0 ∇0 ∇0 ∇0 ∇0 ∇0 ∇0

-∇0 -∇0 -∇0 -∇0 -∇0 -∇0 -∇0 -∇0

∇0 ∇0 ∇0 ∇0 ∇0 ∇0 ∇0 ∇0 ∇0

∆0 ∆0 ∆0 ∆0 ∆0 ∆0 ∆0 ∆0

-∆0 -∆0 -∆0 -∆0 -∆0 -∆0 -∆0 -∆0 -∆0

∆0 ∆0 ∆0 ∆0 ∆0 ∆0 ∆0 ∆0
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Particularly, the Steinhaus triangle ∇S[0, 6n − 1], of order 6n, and the Pascal triangle
∆∂S[1, 12n− 3], of order 12n− 3, which are balanced by Theorem 4.1, admit the decompo-
sition :

∇S[0, 6n − 1] =

∇0 ∇0

-∇0

∆0

and ∆∂S[1, 12n − 3] =

∆0

-∇0

-∆0 -∆0

.

The sequences S[0, 3n−1] and ∂S[1, 6n−3] are antisymmetric in Z/nZ, by Propositions 5.4
and 5.1, and thus we deduce, from Propositions 5.2 and 5.3, that the multiplicity functions
m−∇0

and m−∆0
correspond with m∇0

and m∆0
, since m∇0

(x) = m∇0
(−x) = m−∇0

(x) and
m∆0

(x) = m∆0
(−x) = m−∆0

(x), for all x in Z/nZ. Finally, the multiplicity functions m∇0

and m∆0
are constant because they are solutions of the following system of equations

3m∇0
+ m∆0

= m∇S[0,3n−1] =
1

n

(

3n + 1

2

)

,

m∇0
+ 3m∆0

= m∆∂S[1,6n−3] =
1

n

(

3n

2

)

.

Therefore, the elementary triangles ∇0 and ∆0 are balanced in Z/nZ.

Finally, we obtain the refinement of Theorem 4.1 announced above.

Theorem 5.6. Let n be an odd number and let a and d be in Z/nZ with d invertible. Then,
the following Steinhaus figures, contained in the orbit of S = IAP ((a,−d, d−a), (d,−2d, d)),
are balanced :

• the Steinhaus triangles ∇S[0, 3λn − 1], of order 3λn, and ∇∂S[0, 3λn − 2], of order
3λn − 1, for every positive integer λ,

• the Steinhaus trapezoid ST (S[0, 3λn − 1], h) of order 3λn and of height h, for every
positive integer λ and for every positive integer h ≡ 0 or 1 (mod 3n) ; the Steinhaus
trapezoid ST (∂S[0, 3λn − 2], h), of order 3λn − 1 and of height h, for every positive
integer λ and for every positive integer h ≡ −1 or 0 (mod 3n),

• the Pascal triangle ∆∂S[−m, m− 2], of order 2m− 1, for every positive integer m ≡ 0
or −1 (mod 3n),

• the Pascal trapezoid PT (∂S[−m, m− 2], h), of order 2m− 1 and of height h, for every
positive integer m ≡ 0 or −1 (mod 3n) and for every positive integer h ≡ m or m + 1
(mod 3n),

• the lozenge ♦∂S[−m, m − 2], of order 2m − 1, for every positive integer m ≡ 0
(mod 3n).
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Proof. For every positive integer λ, the Steinhaus triangle ∇S[0, 3λn − 1] and the Pascal
triangle ∆∂S[−3λn, 3λn−2] are balanced because they are multiset union of the elementary
triangles ∇0, −∇0, ∆0 and −∆0, which are balanced in Z/nZ by Proposition 5.5. The
Steinhaus triangle ∇∂S[0, 3λn − 2] is balanced, since it is obtained from ∇S[0, 3λn − 1] by
rejecting the first row, which is a 3-interlaced arithmetic progression with invertible common
differences and of length 3λn and thus contains 3λ times each element of Z/nZ. Similarly, the
Pascal triangle ∆∂S[−3λn+1, 3λn−3] is balanced, since it is obtained from ∆∂S[−3λn, 3λn−
2] by rejecting the last row, which is also balanced. For the trapezoids, the Steinhaus
trapezoids (resp. Pascal trapezoids) announced in this theorem are multiset differences of the
balanced Steinhaus triangles (resp. balanced Pascal triangles), that appeared above. Finally,
the lozenge ♦∂S[−3λn, 3λn−2] is the multiset union of the Pascal triangle ∆∂S[−3λn, 3λn−
2] and the Steinhaus triangle ∇(−1)λ∂S[−3λn,−2] = ∇(−1)λ∂S[0, 3λn − 2], which are
balanced, for all positive integers λ.

6 The universal sequence modulo an odd number

Let US = IAP ((0,−1, 1), (1,−2, 1)) be the universal sequence of integers introduced in
Section 1. In this section, we refine Theorem 5.6 by studying this universal sequence modulo
an odd number n, namely the sequence

S = dπn(US) = IAP ((0,−d, d), (d,−2d, d)),

where d is invertible in Z/nZ. It corresponds to the sequence S of Theorem 5.6, with a = 0.
First, each element of its orbit OS = {ai,j|ai+1,j = ai,j + ai,j+1, i ∈ N, j ∈ Z} can be expressed
as a function of d.

Proposition 6.1. Let n be an odd number and let d be an invertible element in Z/nZ.
We consider the universal sequence S = IAP ((0,−d, d), (d,−2d, d)) in Z/nZ and its orbit
OS = {ai,j|ai+1,j = ai,j + ai,j+1, i ∈ N, j ∈ Z}. Then, for every non-negative integers i and
j, we have

ai,j = (−1)i
∑

k>0

(

k

j + 2i − k

)

(−1)k(k − i)d.

Proof. We begin by proving this equality for i = 0. Let (uj)j∈N and (vj)j∈N be the sequences,

in Z/nZ, defined by uj =
∑

k>0

(

k
j−k

)

(−1)kkd and vj =
∑

k>0

(

k
j−k

)

(−1)kd, for all non-
negative integers j. Then, for every positive integer j > 2, we have

uj =
∑

k>0

((

k − 1

j − k − 1

)

+

(

k − 1

j − k

))

(−1)k(k−1)d+
∑

k>0

(

k

j − k

)

(−1)kd = −uj−2−uj−1+vj .

By the same way, we can prove that the sequence (vj)j∈N verifies the relationship vj +
vj−1 + vj−2 = 0, for all positive integers j > 2. It follows that v3j = d, v3j+1 = −d and
v3j+2 = 0, for all non-negative integers j. We complete the proof by induction on j. If
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we suppose that u3j = jd, u3j+1 = −(1 + 2j)d and u3j+2 = (1 + j)d, then we obtain that
u3j+3 = −u3j+2 − u3j+1 + v3j+3 = (j + 1)d, u3j+4 = −u3j+3 − u3j+2 + v3j+4 = −(3 + 2j)d and
u3j+5 = −u3j+4−u3j+3+v3j+5 = (2+j)d. Therefore, we have a0,j = uj =

∑

k>0

(

k
j−k

)

(−1)kkd,
for all non-negative integers j, and this completes the proof for i = 0. Finally, for every
positive integers i and j, we obtain

ai,j =

i
∑

l=0

(

i

l

)

a0,j+l =

i
∑

l=0

(

i

l

)

∑

k>0

(

k

j + l − k

)

(−1)kkd

=
∑

k>0

i
∑

l=0

(

i

k

)(

k

j + l − k

)

(−1)kkd =
∑

k>0

(

i + k

j + i − k

)

(−1)kkd

= (−1)i
∑

k>i

(

k

j + 2i − k

)

(−1)k(k − i)d = (−1)i
∑

k>0

(

k

j + 2i − k

)

(−1)k(k − i)d.

In the sequel of this section, we suppose that n is an odd number and that S is the universal
sequence modulo n, that is S = IAP ((0,−d, d), (d,−2d, d)), where d is an invertible element
in Z/nZ. Let ∇1, ∇2 and ∇3 be the Steinhaus triangles, of order n, associated with the
sequences S[0, n−1], S[n, 2n−1] and S[2n, 3n−1] respectively and let ∆1, ∆2 and ∆3 be their
adjacent Pascal triangles, of order 2n−3, as depicted in Figure 5, that are : ∇1 = ∇S[0, n−1],
∇2 = ∇S[n, 2n − 1], ∇3 = ∇S[2n, 3n − 1], ∆1 = ∆∂S[1, 2n − 3], ∆2 = ∆∂S[n + 1, 3n − 3]
and ∆3 = ∆∂S[2n + 1, 4n − 3].

∇1 ∇2 ∇3
∆1 ∆2 ∆3

Figure 5: The elementary triangles ∇1, ∇2, ∇3, ∆1, ∆2 and ∆3.

We begin by showing that these triangles, or unions of them, are balanced in Z/nZ.

Proposition 6.2. Let n be an odd number and let d be an invertible element in Z/nZ.
We consider the universal sequence S = IAP ((0,−d, d), (d,−2d, d)) modulo n and these
elementary triangles ∇1 = ∇S[0, n − 1], ∇2 = ∇S[n, 2n − 1], ∇3 = ∇S[2n, 3n − 1], ∆1 =
∆∂S[1, 2n− 3], ∆2 = ∆∂S[n+1, 3n− 3] and ∆3 = ∆∂S[2n+1, 4n− 3]. Then, the multisets
∇2, ∇1

⋃

∇3, ∆3 and ∆1

⋃

∆2 are balanced in Z/nZ.

The proof of this proposition is based on the following lemma.

A finite sequence S = (a0, . . . , am−1), of length m > 1 in Z/nZ, is said to be symmetric if it
is the same sequence read from the left to the right than read from the right to the left, i.e.
if we have aj = am−1−j , for all non-negative integers j, 0 6 j 6 m − 1.
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Lemma 6.3. Let n be an odd number and let ∇ = {ai,j|0 6 i 6 m − 1, 0 6 j 6 m − 1 − i}
be a Steinhaus triangle, of order m > 1 in Z/nZ. Then, the anti-diagonals AD2j and AD2j+1

are respectively antisymmetric and symmetric, for all integers j, 0 6 2j 6 2j + 1 6 m − 1,
if and only if we have ai,i = 0, for all integers i, 0 6 i 6 (m − 1)/2.

Proof. For every non-negative integer i, 0 6 i 6 (m − 1)/2, if the sequence AD2i =
(a0,2i, . . . , a2i,0) is antisymmetric, then it follows that we have 2ai,i = 0 and thus ai,i = 0, since
n is odd. Conversely, suppose now that ai,i = 0, for all non-negative integers i, 0 6 i 6 (m−
1)/2. We proceed by induction on j. For j = 0, it is clear that AD0 = (a0,0) = (0) is antisym-
metric and that AD1 = (a0,1, a1,0) = (a1, a1) is symmetric. Suppose that the result is true for
j−1, i.e. that the sequences AD2j−2 and AD2j−1 are respectively antisymmetric and symmet-
ric, and prove it for j. We begin by showing that aj−k,j+k = −aj+k,j−k, for all non-negative
integers k, 0 6 k 6 j. For k = 0, it comes from hypothesis aj,j = 0. Suppose it is true for all
the integers in {0, . . . , k−1}. Since aj−k,j+k−1 = aj+k−1,j−k by symmetry of AD2j−1, we obtain
that aj−k,j+k = aj−(k−1),j+k−1−aj−k,j+k−1 = −aj+k−1,j−(k−1)−aj+k−1,j−k = −aj+k,j−k and thus
AD2j is antisymmetric. We now prove that aj−k,j+1+k = aj+1+k,j−k, for all non-negative inte-
gers k, 0 6 k 6 j. For k = 0, it follows from the equality aj+1,j = aj,j + aj,j+1 = aj,j+1. Sup-
pose it is true for all the integers in {0, . . . , k−1}. Since aj−k,j+k = −aj+k,j−k by antisymme-
try of AD2j, we have aj−k,j+k+1 = aj−k+1,j+k − aj−k,j+k = aj+k,j−(k−1) + aj+k,j−k = aj+k+1,j−k

and thus AD2j+1 is symmetric. This concludes the proof.

Proof of Proposition 6.2. First, we consider the Steinhaus triangle ∇0 = ∇S[0, 3n − 1], of
order 3n, and the Pascal triangle ∆0 = ∆∂S[1, 6n− 3], of order 6n− 3, which are balanced,
by Proposition 5.5. If we denote by OS = {ai,j|ai+1,j = ai,j + ai,j+1, i ∈ N, j ∈ Z} the or-
bit associated with the universal sequence S = IAP ((0,−d, d), (d,−2d, d)) in Z/nZ, then
Proposition 6.1 implies that we have an,j = −a0,2n+j , a2n,j = an,j and a3n,j = −a0,j , for
all integers j. This leads to the following decomposition of ∇0 and ∆0 into the elementary
triangles ∇1, ∇2, ∇3, ∆1, ∆2 and ∆3 :

∇0 =

∇1 ∇2 ∇3
∆1 ∆2

-∇3 -∇1
-∆3

∇2

and ∆0 =

∆3

-∆1 -∆2

-∇2

∆2 ∆3 ∆1

∇3 ∇1

.

For every integer k in {0, 1, 2, 3}, we denote by Dj(∇k) and ADj(∇k) the jth diagonal and
the jth anti-diagonal of ∇k, for every integer j, 0 6 j 6 n−1, and by Dj(∆k) and ADj(∆k)
the jth diagonal and the jth anti-diagonal of ∆k, for every integer j, 0 6 j 6 n−2. Since we
have ai,i = 0, for all non-negative integers i, from the general expression of ai,j appearing in
the proof of Proposition 3.4, it follows, from Lemma 6.3, that the sequences AD2j(∇0) and
AD2j+1(∇0) are respectively antisymmetric and symmetric, for all non-negative integers j,
0 6 2j 6 2j + 1 6 3n− 1. This implies the following equalities on the multiplicity functions
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-∆3
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Figure 6: The Steinhaus triangle ∇0.

of the anti-diagonals in the triangles ∇2 and ∇3 :

mAD2j(∇3)(x) = mAD2j(∇2)(−x) and mAD2j+1(∇3)(x) = mAD2j+1(∇2)(x),

for all elements x in Z/nZ, and for all non-negative integers j, 0 6 2j 6 2j + 1 6 n − 1.
Moreover, we know, from Proposition 5.4, that the sequence S[0, 3n − 1] is antisymmetric
and, thus, all the rows of ∇0 are also antisymmetric by Proposition 5.1. Therefore, we have

mADj(∇3)(x) = mDn−1−j(∇1)(−x) and mADj(∇2)(x) = mDn−1−j (∇2)(−x),

for all elements x in Z/nZ, and for all non-negative integers j, 0 6 j 6 n − 1. This leads to
the equality

m∇1
(x)+m∇3

(x) =

n−1
∑

j=0

mDj(∇1)(x) +

n−1
∑

j=0

mADj(∇3)(x) =

n−1
∑

j=0

mADn−1−j (∇3)(−x) +

n−1
∑

j=0

mADj(∇3)(x)

=
n−1
∑

j=0

(

mADj(∇3)(−x) + mADj(∇3)(x)
)

=
n−1
∑

j=0

(

mADj(∇2)(−x) + mADj(∇2)(x)
)

=

n−1
∑

j=0

mADj(∇2)(x) +

n−1
∑

j=0

mADn−1−j(∇2)(−x) = 2m∇2
(x),
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for all x in Z/nZ. Similarly, if we consider the diagonals and the anti-diagonals in the
triangles ∆1, ∆2 and −∆3, as depicted in Figure 6, then we obtain that m∆1

+m∆2
= 2m−∆3

.
The antisymmetry in ∇0 also implies the following equalities : m∇1

= m−∇3
, m∇3

= m−∇1
,

m∇2
= m−∇2

, m∆1
= m−∆2

, m∆2
= m−∆1

and m∆3
= m−∆3

. Therefore, the multiplicity
functions of the elementary triangles verify the following equations :

m∇1
+ m∇3

= 2m∇2
,

m∆1
+ m∆2

= 2m∆3
.

Finally, since the triangles ∇0 and ∆0 are balanced in Z/nZ, it follows that the multiplicity
functions m∇2

and m∆3
are solutions of the following system of equations

6m∇2
+ 3m∆3

= m∇0
=

1

n

(

3n + 1

2

)

,

3m∇2
+ 6m∆3

= m∆0
=

1

n

(

3n

2

)

.

We conclude that the triangles ∇2, ∆3 and the multisets ∇1

⋃

∇3 and ∆1

⋃

∆2 are balanced.

We are now ready to prove Theorem 1.3, the main theorem of this paper.

Theorem 6.4. Let n be an odd number and let d be an invertible element in Z/nZ. Then,
the following Steinhaus figures, contained in the orbit associated with the universal sequence
S = IAP ((0,−d, d), (d,−2d, d)) in Z/nZ, are balanced :

• the Steinhaus triangles ∇S[m, 2m− 1], for every positive integer m ≡ 0 (mod n), and
∇∂S[0, m − 1], for every positive integer m ≡ −1 (mod 3n),

• the Steinhaus trapezoids ST (S[m, 2m−1], h), for every positive integers m ≡ 0 (mod n)
and h ≡ 0 (mod n) or h ≡ m+1 (mod 3n), and ST (∂S[0, m−1], h), for every positive
integers m ≡ −1 (mod 3n) and h ≡ −1 (mod n) or h ≡ 0 (mod 3n),

• the Pascal triangle ∆∂S[−m, m − 2], for every positive integer m ≡ −1 (mod n) or
m ≡ 0 (mod 3n),

• the Pascal trapezoid PT (∂S[−m, m−2], h), for every positive integers m ≡ −1 (mod n)
or m ≡ 0 (mod 3n) and h ≡ m (mod n) or h ≡ m + 1 (mod 3n),

• the lozenge ♦∂S[−m, m − 2], for every positive integer m ≡ 0 (mod n).

Proof. These Steinhaus figures are unions of the multisets ±∇2, ±(∇1

⋃

∇3), ±∆3 and
±(∆1

⋃

∆2), which are balanced in Z/nZ by Proposition 6.2. More precisely, let λ be a
positive integer. We know, from Theorem 5.6, that the Steinhaus triangles ∇S[3λn, 6λn−1],
of order 3λn, and ∇∂S[0, 3λn− 2], of order 3λn− 1, are balanced. As depicted in Figure 7,
the Steinhaus triangle ∇S[(3λ+1)n, (6λ+2)n−1], of order (3λ+1)n, is constituted by λ+1
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triangles ∇2, λ multisets ∇1

⋃

∇3, λ triangles ∆3, λ multisets ∆1

⋃

∆2 and the Steinhaus
triangle ∇∂nS[(3λ + 1)n, (6λ + 2)n − 1] = −∇S[3λn, 6λn − 1]. This leads to the equality

m∇S[(3λ+1)n,(6λ+2)n−1] = (3λ + 1)m∇2
+ 3λm∆3

+ m∇S[3λn,6λn−1].

Similarly, the Steinhaus triangle ∇S[(3λ+2)n, (6λ+4)n−1], of order (3λ+2)n, is constituted
by λ triangles ∇2, λ + 1 multisets ∇1

⋃

∇3, λ + 1 triangles ∆3, λ multisets ∆1

⋃

∆2 and
the Steinhaus triangle ∇∂nS[(3λ + 2)n, (6λ + 4)n − 1] = −∇S[(3λ + 1)n, (6λ + 2)n − 1].
Therefore, we obtain

m∇S[(3λ+2)n,(6λ+4)n−1] = (3λ + 2)m∇2
+ (3λ + 1)m∆3

+ m∇S[(3λ+1)n,(6λ+2)n−1].

This completes the proof that the Steinhaus triangle ∇S[m, 2m − 1] is balanced, for all
positive integers m ≡ 0 (mod n). A similar decomposition permits to prove that the Pascal
triangle ∆∂S[−m, m − 2] is balanced, for all positive integers m ≡ −1 (mod n). First, we
know, from Theorem 5.6, that the Pascal triangles ∆∂S[−3λn, 3λn − 2], of order 6λn − 1,
and ∆∂S[−3λn+1, 3λn− 3], of order 6λn− 3, are balanced in Z/nZ. The other cases come
from the decomposition into elementary triangles, as depicted in Figure 8, which implies the
following equalities :

m∆∂S[−(3λ+1)n+1,(3λ+1)n−3] = 3λm∇2
+ (3λ + 1)m∆3

+ m∆∂S[−3λn+1,3λn−3],

m∆∂S[−(3λ+2)n+1,(3λ+2)n−3] = (3λ + 1)m∇2
+ (3λ + 2)m∆3

+ m∆∂S[−(3λ+1)n+1,(3λ+1)n−3].

For the trapezoids, the Steinhaus trapezoids (resp. Pascal trapezoids) announced in this
theorem are multiset differences of the balanced Steinhaus triangles (resp. balanced Pascal
triangles), that appeared above. Finally, the lozenge ♦∂S[−m+1, m−2] is the multiset union
of the Pascal triangle ∆∂S[−m+1, m−3] and of the Steinhaus triangle (−1)m∇S[m, 2m−1],
which are balanced in Z/nZ, for all positive integers m ≡ 0 (mod n).

7 Conclusions and open problems

In this section, the results about the generalized Molluzzo’s Problem, obtained in the prece-
dent sections, are recalled and two possible extensions of this work are proposed.

7.1 Conclusions on generalized Molluzzo’s Problem

If we summarize the results obtained, from Theorem 6.4, about Problem 1.2, then there
exist, for every odd number n, infinitely many balanced Steinhaus figures in Z/nZ, for each
kind of figures. More precisely, as announced in Theorem 1.3, there exist :

• balanced Steinhaus triangles of order m, for every positive integer m ≡ 0 (mod n) or
m ≡ −1 (mod 3n),
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∇2 ∇2 ∇2 ∇2∇3 ∇3 ∇3∇1 ∇1 ∇1
∆2 ∆2 ∆2∆3 ∆3 ∆3∆1 ∆1 ∆1

-∇1 -∇1 -∇1-∇2 -∇2 -∇2-∇3 -∇3 -∇3
-∆1 -∆1 -∆1-∆2 -∆2 -∆2-∆3 -∆3

∇3 ∇3 ∇3∇1 ∇1 ∇1∇2 ∇2
∆3 ∆3 ∆3∆1 ∆1∆2 ∆2

-∇2 -∇2 -∇2-∇3 -∇3-∇1 -∇1
-∆2 -∆2-∆3 -∆3-∆1 -∆1

∇S[3λn, 6λn − 1]

Figure 7: The Steinhaus triangle ∇S[m, 2m − 1] for m ≡ 0 (mod n).

∇1 ∇1∇2 ∇2∇3 ∇3
∆3 ∆3 ∆3∆1 ∆1∆2 ∆2

-∇2 -∇2 -∇2-∇3 -∇3-∇1 -∇1
-∆1 -∆1 -∆1-∆2 -∆2 -∆2-∆3 -∆3

∇3 ∇3 ∇3∇1 ∇1 ∇1∇2 ∇2
∆2 ∆2 ∆2∆3 ∆3 ∆3∆1 ∆1 ∆1

-∇1 -∇1 -∇1-∇2 -∇2 -∇2-∇3 -∇3 -∇3
-∆3 -∆3 -∆3 -∆3-∆1 -∆1 -∆1-∆2 -∆2 -∆2

∆∂S[−3λn + 1, 3λn − 3]

Figure 8: The Pascal triangle ∆∂S[−m, m − 2] for m ≡ −1 (mod n).
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• balanced Steinhaus trapezoids of order m and of height h, for every positive integers
m ≡ 0 (mod n) or m ≡ −1 (mod 3n) and h ≡ m (mod n) or h ≡ m + 1 (mod 3n),

• balanced Pascal triangles of order 2m− 1, for every positive integer m ≡ −1 (mod n)
or m ≡ 0 (mod 3n),

• balanced Pascal trapezoids of order 2m− 1 and of height h, for every positive integers
m ≡ −1 (mod n) or m ≡ 0 (mod 3n) and h ≡ m + 1 (mod n) or h ≡ m (mod 3n),

• balanced lozenges of order 2m − 1, for every positive integer m ≡ 0 (mod n).

For the Steinhaus triangles, since a Steinhaus triangle, of order m > 1, has a cardinality of
(

m+1
2

)

and since the set of all the positive integers m, such that the binomial coefficient
(

m+1
2

)

is divisible by n, is an union of 2ω(n) classes of integers modulo n, where ω(n) is the number
of distinct prime factors of n, including the classes of 0 and −1, we have proved, in this pa-
per, that there exist balanced Steinhaus triangles, for at least 2/(3.2ω(n)−1) of the admissible
orders. Particularly, in the case where n is an odd prime power, this proportion becomes
2/3. In [5], the author has proved that the arithmetic progressions, with invertible common
difference, generate balanced Steinhaus triangles, for 1/(2ω(n)−1β(n)) of the admissible or-
ders, where β(n) is the order of 2n in the multiplicative quotient group (Z/nZ)∗ /{−1, 1}.
This permitted him to prove that the Molluzzo’s Problem is positively and completely solved
in Z/3k

Z, for all positive integers k. A new proof of this result, shorter and based on the
doubly arithmetic triangles, will appear in a forthcoming paper. For the Pascal triangles, the
proportion of balanced Pascal triangles that we have highlighted is the same : 2/(3.2ω(n)−1)
for every odd number n and, thus, 2/3 if n is an odd prime power. Finally, for the lozenges,
since a lozenge, of order 2m− 1, has a cardinality of m2, the orbit of the universal sequence
contains balanced lozenges, for all the admissible orders in Z/nZ, in the case where n is a
square-free odd number. This completely and positively solves Problem 1.2, for the lozenges,
in this case.

7.2 Additive cellular automata

Other derivation maps can be considered. For every positive integers n and k and for every
k-tuple of integers α = (α0, . . . , αk−1), we define the α−derivation map ∂α by

∂α : (Z/nZ)Z −→ (Z/nZ)Z

(aj)j∈Z
7−→

(

k−1
∑

l=0

αlaj+l

)

j∈Z

.

Then, the derivation map ∂, of precedent sections, corresponds with ∂(1,1). Now, we naturally
wonder, for every k-tuple of integers α, if there exist balanced Steinhaus figures, in the
additive cellular automaton associated with the derivation map ∂α in Z/nZ.
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Problem 7.1. Let n and k be two positive integers and let α be a k-tuple of integers. Does
there exist balanced Steinhaus figures, in the additive cellular automaton associated with the
derivation map ∂α in Z/nZ?

Consider the simpler case α = (α0, α1) in the sequel and denote by ∇αS the α−Steinhaus
triangle and by ∆αS the α−Pascal triangle, associated with a finite sequence S in Z/nZ.
Then, for every odd number n and for every invertible element d in Z/nZ, the universal
sequence S = IAP ((0,−d, d), (d,−2d, d)), in Z/nZ, has a (1, 1)−orbit, which contains in-
finitely many balanced (1,−1)−Steinhaus and Pascal triangles and infinitely many balanced
(−1, 1)−Steinhaus and Pascal triangles. Indeed, as illustrated in Figure 9, the rotation of
120 degrees defined, on the finite sequences of length m > 1 in Z/nZ, by

rot120 ((aj)06j6m−1) =

(

j
∑

k=0

(

j

k

)

am−1−k

)

06j6m−1

,

induces an isomorphism between the (1, 1)−Steinhaus triangles (resp. (1, 1)−Pascal tri-
angles) and the (−1, 1)−Steinhaus triangles (resp. (−1, 1)−Pascal triangles), which con-
serves the multiplicity. Similarly, the rotation of 240 degrees, which assigns to a sequence
(aj)06j6m−1, of length m in Z/nZ, the sequence

rot240 ((aj)06j6m−1) =

(

m−1−j
∑

k=0

(

m − 1 − j

k

)

ak

)

06j6m−1

,

induces an isomorphism between the (1, 1)−Steinhaus triangles (resp. (1, 1)−Pascal trian-
gles) and the (1,−1)−Steinhaus triangles (resp. (1,−1)−Pascal triangles), which conserves
the multiplicity. These sequences can be seen as the right side, for rot120(S), and the left
side, for rot240(S), of the (1, 1)−Steinhaus triangle ∇(1,1)S, associated with S.

∇(1,1)S =

2 2 0 3 3
4 2 3 1
1 0 4
1 4
0

∇(−1,1)rot120S =

3 1 4 4 0
3 3 0 1
0 2 1
2 4
2

∇(1,−1)rot240S =

0 1 1 4 2
4 0 2 2
4 3 0
1 3
3

Figure 9: The Steinhaus triangles of S = (2, 2, 0, 3, 3), rot120S and rot240S in Z/5Z.

Finally, since there exist balanced (1, 1)−Steinhaus triangles, of order m, for every positive
integer m ≡ 0 (mod n) or m ≡ −1 (mod 3n), in Z/nZ with n odd, then there exist balanced
(−1, 1) and (1,−1)−Steinhaus triangles of the same orders in Z/nZ. For an odd prime power
n, this corresponds to 2/3 of the admissible orders. Similarly, there exist balanced (−1, 1)
and (1,−1)−Pascal triangles, of order 2m − 1, for every positive integer m ≡ −1 (mod n)
or m ≡ 0 (mod 3n), in Z/nZ with n odd. This also corresponds to 2/3 of the admissible
orders, in the case where n is an odd prime power.
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7.3 Steinhaus and Pascal tetrahedra

In this paper, we have studied balanced Steinhaus figures appearing in the cellular automa-
ton, of dimension 1, that generates the standard Pascal triangle. We may also consider
similar figures in higher dimension, in the cellular automaton, of dimension 2, generating the
standard Pascal tetrahedron, for instance. Let n be a positive integer and let S = (ai,j)i,j∈Z

be a doubly infinite double sequence of terms in Z/nZ. The derived sequence ∂S of S is the
sequence defined by ∂S = (ai,j + ai,j+1 + ai+1,j)i,j∈Z

and the orbit of S is the sequence of the

iterated derived sequences OS =
(

∂kS
)

k∈N
. This orbit can also be seen as the multiset in

Z/nZ, defined by

OS =

{

k
∑

i′=0

k−i′
∑

j′=0

(

k

i′, j′

)

ai+i′,j+j′

∣

∣

∣

∣

∣

i ∈ Z, j ∈ Z, k ∈ N

}

,

where
(

k
i′,j′

)

is the trinomial coefficient
(

k
i′,j′

)

= k!
i′!j′!(k−i′−j′)!

. The finite orbit of a triangular

submultiset T = {ai′,j′|0 6 i′ 6 m − 1, 0 6 j′ 6 m − 1 − i′}, of size
(

m+1
2

)

in S, is called the

Steinhaus tetrahedron associated with T and of order
(

m+1
2

)

. A Steinhaus tetrahedron of

order
(

m+1
2

)

has a cardinality of
(

m+2
3

)

. The Molluzzo’s Problem on Steinhaus triangles can
then be generalized as follows :

Problem 7.2. Let n be a positive integer. For every positive integer m, such that
(

m+2
3

)

is

divisible by n, does there exist a balanced Steinhaus tetrahedron, of order
(

m+1
2

)

, in Z/nZ?

As for the Pascal triangles of order 2m − 1, defined from the Steinhaus triangles of order
2m−1, the Pascal tetrahedron, of order

(

3m−1
2

)

, is the tetrahedron of height m, built from the

top to the base, that appears in the Steinhaus tetrahedron of order
(

3m−1
2

)

. A tetrahedron of

order
(

3m−1
2

)

has a cardinality of
(

m+2
3

)

. The Pascal tetrahedron, of order
(

3m−1
2

)

, associated
with the triangle only composed of zeros, except its central term equal to 1, corresponds with
the m first floors of the standard Pascal tetrahedron modulo n. The problem of determining
the existence of balanced Pascal tetrahedra in Z/nZ can be posed.

Problem 7.3. Let n be a positive integer. For every positive integer m, such that
(

m+2
3

)

is

divisible by n, does there exist a balanced Pascal tetrahedron, of order
(

3m−1
2

)

, in Z/nZ?

0 4 4 3 1 0 0
2 1 2 0 1 3
4 3 2 0 1
4 3 0 2
2 3 3
0 4
4

1 4 4 4 2 3
2 1 4 1 0
1 3 2 3
4 1 0
0 0
3

2 4 2 2 0
4 3 2 4
3 1 0
0 1
3

0 4 1 1
0 1 1
4 2
4

4 1 3
0 4
0

0 3
4 2

Figure 10: An example of Steinhaus tetrahedron in Z/5Z, with a Pascal tetrahedron in gray.
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