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Abstract 
The oxidation by water vapour of a zirconium based alloy, a ZrNbO alloy containing 1% of Nb, 
has been studied between 500 and 550°C, the water vapour partial pressure ranging in 13-80 
hPa, using isothermal and isobaric thermogravimetry, and calorimetry. During gravimetry 
experiments, sudden changes (jumps) in temperature or water vapour pressure have also 
been performed. It comes out that the kinetic behaviour is different before and after the 
transition, even though the approximations of steady-state and rate-limiting step are justified 
in both stages : the influence of temperature jumps is greater in pre-transition, whereas the 
effect of water vapour partial pressure is more pronounced in post-transition (nevertheless, 
an accelerating effect is also observed before the transition). No influence of hydrogen partial 
pressure has been observed. Besides, the higher the Nb content in the alloy, the higher the 
oxidation rate (in pre-transition). A mechanism has been proposed to account for the results 
obtained in pre-transition, involving the diffusion of adsorbed species in the porous part of 
the oxide layer as rate-determining step. 
The transition is accompanied by a change in the oxidation mechanism: in the post-transition 
stage, the kinetic curves being linear, the oxidation may be controlled by an interface step, 
which is probably different from the steps proposed for the pre-transition mechanism. 

1. Introduction 

Despite numerous works dedicated to the oxidation kinetics of zirconium alloys by 
pressurized water, water vapour or oxygen, the mechanisms and the rate-limiting steps for 
zirconia growth are not already established. 
It is well-known that after a pseudo-parabolic first period [1], [2] and [3], a kinetic transition 
occurs when the thickness of the oxide layer exceeds a critical value, which corresponds to an 
increase in the oxidation rate, associated with the appearance of cracks and pores in the oxide 
layer [2], [4],[5]. 
In the post-transition stage, the oxidation curves are considered to be either linear [4] or to 
result from cyclic periods of increasing and decreasing rate [6]. 
In a previous work dedicated to the oxidation of Zircaloy-4 by water vapour [7], we have 
shown that great differences exist between the pre- and post-transition stages, from the 
kinetic point of view: before the transition, the oxidation rate is controlled by the diffusion of 
oxygen vacancies in the oxide layer, as usually suggested in the literature data. On the 
contrary, in the post-transition stage, the assumption of the rate-limiting step is no more 
valid, so that the oxidation curves cannot be described by a succession of such diffusion-
controlled periods. 
As far as the oxidation of Nb-containing alloys is concerned, the shape of the kinetic curves 
(which give the weight gain versus time) is qualitatively similar to that obtained with 
Zircaloys. Nevertheless, Nb-containing alloys are oxidised faster than recrystallised Zircaloy 
in oxygen and in water vapour [4], [8], [9], [10], [11] and [12], at the beginning of the 
oxidation, but the kinetic transition in not so sharp in Nb-containing alloys and it occurs after 
a longer time. In autoclave, different results are obtained, these alloys showing in most cases a 
better resistance to corrosion [14] and [15]. 
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Another difference between the two alloys is related to the effect of platinum on the oxidation 
rate: if platinum is deposited on the surface of an oxide layer grown on ZrNbO, in pre-
transition, the oxidation rate increases, in oxygen [10] or in water vapour [11], whereas Pt has 
no effect on the oxidation of Zy4 [11] and [12]. 
In order to account for these results, the pre-transition stage of the oxidation of ZrNbO is 
suggested to be controlled by a mixed diffusion–reaction regime, and therefore in steady 
conditions [10] and [13]. 
Moreover, it has been shown that the oxidation rate depends on the niobium concentration in 
the zirconium alloy [16], which is interpreted by the authors by the assumption that the 
reduction of the proton at the surface of the zirconia layer is the rate-limiting step [16]. On the 
other hand, Bömhert [17] thinks that the growth of zirconia is controlled by the diffusion 
through the pores and grain boundaries in the porous outer layer. In this last work, the pre- 
and post-transition stages are not distinguished. 
Taking into account the numerous points of view, the existence and the nature of a rate-
limiting step is still a matter of interest. 
Concerning the influence of the water vapour pressure on the oxidation rate, no article is 
devoted to this subject, to our knowledge. 
Finally, due to the lack of consistent data on the effect of water vapour on the oxidation rate 
before and after the transition, and in order to confirm (or not) these interpretations, we have 
decided to study the oxidation of a Nb-containing zirconium alloy, ZrNbO alloy, at 530 °C, 
following the same methodology as in the case of Zircaloy-4 [7]. 
This methodology allows to verify experimentally the validity of the kinetic assumptions 
generally used to account for the experimental results: 
 
(i) the steady state assumption (which is necessary to assume the existence of a rate-

limiting step) can be verified by measuring the oxidation rate with two techniques (for 
example, simultaneous thermogravimetry and calorimetry [7, 18-20] : if the system 
proceeds in a steady-state, the rates of weight gain and the heat flow should remain 
proportional during all the reaction), 

(ii) the assumption of the rate-limiting step can be verified using a method based on jumps 
of temperature or pressure [7, 18-21]. Usually, the rate of solid-state reactions is written 
as : 

 

( )expd EA
dt RT
α f α⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (1) 

 where α is the fractional conversion, A is the pre-exponential factor, E is the activation 
energy and f(α) can take various expressions depending on the chosen model. Eq. (1) 
implies that the rate is controlled by a step following the Arrhenius law (which is not 
always verified, for example in the case of an interface rate-limiting step involving a gas 
adsorbed according to the Langmuir isotherm). Eq. (1) also implies that, at a given 
temperature, the rate is fixed by the value of α (due to the function f(α)), which may not 
be the case, particularly when nucleation and growth processes are in competition. 

We prefer a more general expression for the rate, given by Eq. (2) : 
 

( ) (,  . i
d T P E t
dt

)α
= Φ  (2) 

 

in which Φ is a rate per unit area, it depends on the nature of the rate-limiting step (diffusion, 
interface reaction), it is independent on time but may be a function of temperature T and 
partial pressures of the reacting and/or produced gases Pi. E(t) is a function related to the 
extent of the reaction zone where the rate-limiting step is located. The interest of the general 
expression Eq. (2) is that it only assumes the existence of a rate-limiting step for the growth of 
the new phase, but no additional assumption is made concerning the nature and the 
localisation of this step. 
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Once the points (i) and( ii) have been validated experimentally, Eq. (2) can be used. Then the 
jump method also allows to obtain directly from experiments the variation of the Φ function 
with T and Pi, which is very useful to find a growth mechanism and to identify the rate-
limiting step. 
Thus, the main aim of this article is to clearly put in evidence the differences that may exist 
between the pre and post-transition stages in the case of the oxidation of ZrNbO by water 
vapour, and to answer to these questions : 
 

 does the oxidation of ZrNbO proceed in a steady state in both stages? 
 is the assumption of a rate-limiting step justified in one (or both) stages? 
 if there exists a rate-limiting step in one (or both) domains, what is the influence of the 

water pressure on the oxidation rate, and how can it be interpreted? 
 

On the basis of the results of the kinetic study and sample characterisation (hydrogen pick-up 
ratio, scanning electron microscopy), different interpretations will be proposed for the pre 
and post-transition kinetic behaviours. 

2. Experimental 

A 0.4 mm thick sheet of recrystallised ZrNbO alloy was used, and samples were cut to 10 x 10 
mm for thermogravimetric experiments, and 15 x 15 mm for simultaneous thermogravimetry 
and calorimetry experiments. The alloy composition is indicated in Table I. The sample 
surface was cleaned with an equimolar solution of ethanol and acetone in ultrasonic waves, 
then with pure ethanol and dried with compressed air. 
The oxidation curves were obtained in isothermal and isobaric conditions at 500 and 530°C 
with a symmetrical thermoanalyser SETARAM TAG16, under a flowing mixture of water 
vapour and hydrogen in helium. The flowrate of the gases was controlled by mass-flowmeters 
(Brooks 5850S), the total flowrate being 2.3 l.h-1, and the partial pressure of hydrogen being 
usually equal to 10 hPa. The water vapour partial pressure was fixed in the range 13-80 hPa, 
using thermoregulated baths. It was controlled using humidity sensors (Transmicor 241-242 
Coreci), placed at the inlet and outlet of the thermobalance furnace. 
Jumps in hydrogen pressure were carried out by changing the flowmeter setpoint, whereas 
jumps in water vapour pressure were performed by switching the gaseous flow from one 
water bath to another one maintained at a different temperature. 
The simultaneous thermogravimetry and calorimetry experiments were performed using a 
Setaram TG/DSC 111, under flowing mixtures of water vapour and hydrogen in helium. 
The morphology of the oxide layers was observed by scanning electron microscopy (SEM 
DSM 960A Zeiss).  

3. Results 

33..11..  SShhaappee  ooff  tthhee  ooxxiiddaattiioonn  ccuurrvveess  

Fig. 1 represents a kinetic curve giving the mass gain per unit area 
( )
m

S t
 versus time, and its 

derivative 
( )md
S

dt

⎛ ⎞
⎜ ⎟
⎜
⎜ ⎟
⎝ ⎠

⎟ , obtained at 530 °C (after an initial temperature rise of 30 °C/min from 

room temperature to 530 °C), under 10 h Pa in hydrogen and 13 h Pa in water vapour. The 
minimum of the rate corresponds to an oxide thickness (calculated from the weight gain) of 
about 10 μm. The curve appears to be approximately parabolic in the pre-transition stage, 
whereas the rate is constant after the transition. 
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33..22..  SStteeaaddyy--ssttaattee  aapppprrooxxiimmaattiioonn  

In fig. 2, the variations of the rate of weight gain (dm
dt

)  and the heat flow 
dQ
dt

 versus time are 

represented in the pre-transition stage, at 550°C. A scaling factor allowing to superimpose the 
two curves could be found, which shows that the reacting system is in a steady state before the 
transition. 
Several experiments were performed up to the transition, confirming the results of Fig. 2. 
Unfortunately, only the very beginning of the transition was reached in TG/DSC experiments, 
the linear regime characteristic of the post-transition stage could not be reached, even for 
experiments lasting more than one month. Maybe the post-transition stage could have been 
observed in a higher pressure in water vapour, but it was not possible to increase the water 
vapour pressure in this thermogravimetric analyser. 
Consequently, the steady-state approximation could not be verified after the transition. 

33..33..  RRaattee--lliimmiittiinngg  sstteepp  aassssuummppttiioonn  

When a rate-limiting step can be assumed, Eq. (2) gives the variations of the oxidation rate 
with the intensive variables (T, Pi…) and the time. In isobaric and isothermal conditions, the 
variations of the rate with time are given by E(t), Φ (T,Pi) remaining constant. A sudden 
change (jump) in temperature or partial pressure during an experiment will then lead to a 
change in , while E(t) will be approximately constant (provided that the time necessary for 
the T or P change is short enough). 

Φ

Thus the ratio of the rates measured after (at the right side) and before (at the left side) the 

jump is equal to r

l

Φ
Φ

 (E(t) being eliminated in the ratio). 

Performing a series of similar jumps at various reaction times will lead to a series of r

l

Φ
Φ

 

ratios, which must be identical if Eq. (2) can be applied. 
This method, that we have named the “ΦE test”, has been successfully used in previous works 
[7, 18-21]. The results are indicated on fig. 3, for sudden changes in temperature from 500 to 
530°C (PH2O = 13 hPa, PH2

 = 10 hPa) in pre-transition stage (fig. 3a), and from 530 to 500°C in 
post-transition (fig. 3b). 
Since it takes a very long time to reach the post-transition stage, the post-transition samples 
have been preliminarily oxidised simultaneously at 530°C up to an oxide thickness equal to 17 
µm (calculated from the weight gain), then each of them was submitted separately to a 
temperature change at a given time. 
Considering the experimental errors bars, the ratio keeps a constant value (2.17 ± 0.1 for 
temperature jumps from 500 to 530°C (fig. 3a) and 2.13 ± 0.1 for temperature jumps from 
530 to 500°C (fig. 3b)) during the pre-transition stage, up to about 6 µm. Then the ratio 
decreases between 6 µm and 12 µm, during the transition, and becomes again constant after 
17 µm, in the post-transition stage (characterized by a linear regime with a constant rate). 
Consequently, it can be concluded that: 

 the “ΦE test” is validated in the pre-transition domain; as the steady state assumption is 
also verified, there exists a rate-limiting step in this stage. Moreover, it must be noticed 
that a mixed diffusion-reaction controlling rate is not in agreement with the results of 
the “ΦE test”, because in such a case the ratios of the rates would not be constant [11, 
20]; 

 the kinetic transition characterized by the decrease in the ratio of the rates begins at 
about 7 µm, before the minimum in the oxidation rate, observed at about 10 µm in fig. 
3(b); 

 the “ΦE test” is also verified in the post-transition stage, but the value of the ratio is 
clearly lower than its value in the pre transition stage (1.55 ± 0.08 instead of 2.13 ± 0.1). 

http://www.sciencedirect.com.gate6.inist.fr/science?_ob=ArticleURL&_udi=B6TXN-4G7NT9W-Y&_user=4013381&_coverDate=06%2F30%2F2005&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info%28%23toc%235595%232005%23996579998%23599300%23FLA%23display%23Volume%29&_cdi=5595&_sort=d&_docanchor=&_ct=26&_acct=C000061186&_version=1&_urlVersion=0&_userid=4013381&md5=87c0de1d9093ef43d563ebc7777d5edf#fig2
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For the steady state study, the oxidation time was not long enough to conclude on the 
state of the reaction system, but as the “ΦE test” is validated, the assumption of a rate-
limiting step can be made; besides, the linear shape of the kinetic curves in post-
transition suggests that an interface step could be rate-limiting. Obviously, a change in 
the rate-limiting step occurs between the pre and post-transition stages, since the shape 
of the curves and the values of the rate ratios are different. 

33..44..  IInnfflluueennccee  ooff  HH22OO  aanndd  HH22  ppaarrttiiaall  pprreessssuurreess  
Pre-transition stage: 

The variations of Φ with a gas partial pressure P can easily be obtained by performing sudden 

changes, from P0 to P, at a given thickness X, the ratio of the rates being then equal to 
0

( )
( )
P
P

Φ
Φ

 

[7, 19, 21]. The experiments were carried out at 500°C, with 10 hPa in hydrogen and a water 
vapour pressure varying from 13 hPa (P0) to 80 hPa after the jump. For the hydrogen pressure 
jumps, the water pressure was fixed at 13 hPa and the hydrogen pressures changed from 10 
hPa (P0) to 40 hPa. 
The variations of Φ with PH2O are represented on fig. 4: the water vapour pressure has a slight 
accelerating effect. 
On the contrary, the hydrogen pressure has no effect on the oxidation rate, as shown in Table 
II. 

Post-transition stage: 

Jumps in water vapour pressure have been performed at an oxide thickness equal to 25 µm 
(in the linear part of the curves), from 13 hPa to 80 hPa. The variations with PH2O of the ratio 

0

( )

( )

P

P

Φ
Φ

 are given in fig. 5 : the Φ function increases with PH2O, the accelerating effect being 

more pronounced than in the pre-transition stage. 
The ratio of the rates obtained from hydrogen pressure jumps, at a thickness X equal to 23 
µm, are reported in Table III: as in the pre-transition stage, the hydrogen pressure has no 
effect on the oxidation rate. 

33..55..  CCoonnsseeqquueenncceess  ooff  tthhee  rreessuullttss  33..11  ttoo  33..44  
The results obtained in sections 3.1. to 3.4. have been summarized in Table IV. It can be 
concluded that the rate-limiting step approximation is verified in pre and post-transition 
stages, but the rate-controlling steps are not the same before and after the transition. The Φ 
function is different from one domain to another, which is in agreement with the change in 
the shape of the kinetic curves and in the sensitivity to water vapour pressure before and after 
the transition. 

33..66..  EEffffeecctt  ooff  NNbb  ccoonntteenntt  

An alloy containing 0.4%wt in niobium (Zr0.4%NbO) has been used, in order to compare its 
oxidation behaviour to ZrNbO one. Its composition is given in Table V, this alloy does not 
contain β-Nb precipitates but contains Zr(Nb, Fe)2 phases [22]. The oxidation curves giving 
the oxide thickness X versus time, obtained for the two alloys at 520°C under 13 hPa in 
hydrogen and 67 hPa in water vapour are represented on fig. 6. It can be seen that the higher 
the Nb content, the higher the oxidation rate in pre-transition (which is in agreement with the 
literature data) [16, 23-25]. The post-transition stage was not reached, in the experiment, with 
Zr0.4%NbO alloy. 

Figure 7 shows the rate curves 
dX
dt

 versus X for both alloys. A scaling factor allowing to 

superimpose the two curves could be found, which means that the oxidation rates of these two 
alloys remain proportional during all the reaction time, with a ratio equal to 1.5. It is worth 
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noticing that this ratio is lower than the ratio of the Nb concentration in the alloys (equal to 
2.5). 

33..77..  SSEEMM  cchhaarraacctteerriissaattiioonn  ooff  tthhee  ssaammpplleess  

The cross sectional views of the oxide scale grown during the pre-transition stage present a 
continuous and uniform layer adherent to the substrate. Fig. 8a and 8b show micrographs of 
samples oxidised at 530°C in 13 hPa and 10 hPa of water vapour and hydrogen respectively. 
The thickness calculated from the weight gain is 3.5 µm for fig. 8a and 6 µm for fig. 8b. The 
metal/oxide interface is more or less undulated, and short cracks parallel to the interface 
appear regularly inside the layer [9]. A delayed oxidation can also be observed straight above 
some of these cracks. 
Similar cracks are observed in samples oxidised after the kinetic transition, up to an oxide 
thickness of 12 μm and more. Moreover, new large cracks are observed which are 
perpendicular to the metal/oxide interface and connected to the gaseous atmosphere 

4. Discussion 

44..11..  PPrree--ttrraannssiittiioonn  

Since the steady-state and the “ΦE test” have been validated experimentally, the assumption 
of a rate determining step can be made and the oxidation rate is given by (X is the oxide 
thickness): 
 

 ( , ) ( )
2
ox o

i
o

dX V n T P E t
dt S

= Φ  (3) 

where Vox is the molar volume of the oxide (m3.mol-1), n0 is the initial amount of metal (mol), 
S0 is the surface of the samples (m2). 
It has been observed that the Φ function increases with the partial pressure of water vapour. A 
simple mechanism involving oxygen vacancies can be written to describe zirconia growth [7], 
which provides a good interpretation of the oxidation of Zircaloy-4. 
From this mechanism, it is well-known that only a rate-limiting step located at the external 
interface (gas/oxide) can account for an accelerating effect of the partial pressure on the Φ 
function, this rate-limiting step being either the water adsorption step, the interface reaction 
step or the hydrogen desorption step. 
If such an interface step was rate-limiting, the oxidation rate should be constant with time 
and the kinetic curves should be linear, which is not the case. 
Some authors [10, 13] have interpreted the curves with a mixed reaction-diffusion rate, but in 
that case it can be shown that the “ΦE test” would not be validated, since the expression of the 
rate would be [20]: 
 

0

0

int 0

1
1 12

( , ) ( ) ( , ) 

ox

diffusion i diffusion erface i

dX n V
dt S

T P E t T P S

=
+

Φ Φ

  (4) 

 

Thus this assumption is not in agreement with our experimental results. 
Consequently, a new mechanism has to be proposed to describe zirconia growth on ZrNbO 
alloy. What kind of elementary steps should be considered to explain the influence of the 
water vapour partial pressure and the decreasing rate? The dissociation of water vapour at the 
surface of the oxide probably leads to the formation of adsorbed hydroxyl groups (OH) and 
then, the diffusion of such species through the oxide layer may predominate. Considering the 
SEM micrographs of our samples (fig.8a and 8b), the oxide layer appears to be homogeneous 
(excepted a few cracks). Nevertheless, it has been found by impedance spectroscopy [10, 26] 
that the oxide layer grown on ZrNbO could be divided into two sub-layers. For the kinetic 
modelling, two possibilities can be imagined, involving one or two oxide layers: 

 either one oxide layer with micropores and diffusion of adsorbed species via this 
porosity, 
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 or two oxide layers : the microporous layer and a very thin and dense layer near the 
metal/oxide interface (for example, the native oxide layer), in which the diffusion of 
oxygen vacancies is very rapid. The thickness of this dense layer is assumed to remain 
very small during all the pre-transition stage. 

In both cases, the weight gain is considered to be due only to the growth of the microporous 
oxide layer. The oxygen transport through this layer is supposed to occur via adsorbed 
hydroxyl groups (as seen in the mechanism below); thus, a part of the hydrogen produced by 
the oxidation is released near the metal/oxide interface. Adsorbed hydrogen can migrate 
through the micropores towards the external interface. 
The various steps involved in the growth mechanism are detailed below: 

 External interface (gas/oxide) : 
(1) adsorption of water on adsorption sites s: 

 

2 2H O s H O s→
←+ −  

 

(2) dissociation of water into OH groups: 
 

2H O s s OH s H s→
←− + − + −  

 

(3) reduction of hydroxyl groups: 
 

'OH s e OH s→ −
←− + −  

 

(4) desorption of hydrogen: 
 

22 2H s H s→
←− +  

 

 (5) diffusion of adsorbed OH groups and electrons in the porous layer. 
 

 Intermediate interface (porous layer/dense layer) : 
 

 (6) interface step : 
 

'O OOH s V e H s O− •• →
←− + + − +  

 

 (7) hydrogen desorption at the intermediate interface : 
 

22 2H s H s→
←− +  

 

(8) diffusion of oxygen in the dense layer. 
 

 Internal interface : 
 

(9) internal interface step: 
 

( )
2 4

OXalloy Zr OZr Zr V e→ ••
←

+ +  
 

The hydrogen amount in the metal can be neglected in the total weight gain (this is in 
agreement with the very low amount of hydrogen measured by Cezus in the metal in the pre-
transition stage (about 30 ppm)).  
In order to account for the decrease in the rate versus time in pre-transition, we have to 
consider a diffusion step as rate-limiting. The kinetic curves being not strictly parabolic, we 
have successfully fitted them using the following equation (as previously done in our study of 
Zircaloy-4 oxidation [7]): 
 

(1
2expdX k k X

dt X
= − )  (5) 
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in which X represents the thickness of the microporous layer. 
To our knowledge, two distinct models can lead to Eq. (5): first, the existence of barriers for 
the diffusing species in the oxide layer (such as pores or cracks), randomly distributed [28, 
28] ; secondly, the effect of a gradient of compressive stress [29, 30], under some 
approximations. The expression of k2 depends on the physical modelling, but in both cases k1 
is equal to : Vox DC, where D is the coefficient of diffusion of the diffusing species, C is its 
concentration at the interface of departure (neglecting the concentration of the diffusing 
species at the interface of arrival). 

The curves giving the rate 
dX
dt

 versus X were fitted using several laws (parabolic, cubic, 

power…), the comparison of these fits are given in Fig. 9. Eq. (5) always leads to the best 
agreement with all our experiments. 
From Eq. (5), by comparison to Eq. (3), the Φ(T,Pi) and E(t) functions can be easily 
calculated: 
 

( )  . , i
O

D CT P
X

φ =  (6) 

 

( ) ( )20 0

0

exp .  k XD C S XE t
n X

−
=  (7) 

 

X0 is a characteristic length, for example the initial thickness of the sample. The variations 
with temperature and partial pressures of the Φ(T,Pi) function are deduced from the growth 
mechanism detailed above. Assuming that the rate-limiting step is the diffusion of adsorbed 
hydroxyl groups OH--s from the external interface into the porous layer via the surface of the 
pores, and neglecting the concentration of OH--s groups at the interface of arrival, the Φ 
function can be calculated: 
 

( )
( )

2

2 2

2

1 2 3
0

0
1 2 3 1

4 4

  
,

1

H O
i

2

4

H H H
H O

K K K PDT P
X P P P

P K K K K
K K K

β
θ

β

Φ =
⎛ ⎞

+ + + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (8) 

 

in which Ki is the equilibrium constant of the step (i), θ0 is the concentration of adsorption 
sites per unit of surface area, and β is the electrons activity in the oxide layer, which is 
supposed to be fixed by the Nb content in solid solution in the oxide : 
 

[ ]' Zre Nb β•⎡ ⎤= =⎣ ⎦  (9) 

The variations of Φ(T,Pi) with PH2O follow an hyperbolic law, according to : 
 

( ) 2

2

2

,
1  

H O
H O

H O

P
T P

q P
Φ =

+
 (10) 

 
where : 
 

( ) 2

2 2

1 2 3 1
4

4 4

1 H

H H

P
K K K K

K
q

P P
K K

β+ +
=

+

 (11) 
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This law is good agreement with the experimental data, as shown in fig. 10. The fit leads to a 
value of q equal to 0.38. 
 

From Eq. (8), Φ(P) should vary with hydrogen pressure like 
2 2H

1
 P Ha b c P+ +

, but no 

influence of PH2
 was observed experimentally in the range (2.5 - 40hPa). Thus, Eq.(8) is not in 

agreement with our experimental results. However, this law exhibits a constant behaviour 
when PH2 increases, so experiments at lower hydrogen pressure would have been useful to 
validate it. Moreover, Eq.(8) shows that if the value of the equilibrium constant K4 is high 

compared to the values of PH2, the term 2H

4

P
K

 may become very small and may be neglected 

besides the other terms. In that case, no effect of hydrogen pressure would be observed on the 
oxidation rate. Unfortunately, information on the values of the various equilibrium constants 
are not available in order to support one of these suggestions. The Φ(T,Pi) function depends 

on the Nb content in solid solution in the oxide, β, according to an hyperbolic law 
1

A
B
β
β+

. 

Experiments have shown that an increase in the Nb content of the alloy increases the 
oxidation rate, and the oxidation rates of ZrNbO and Zr0.4%Nb are proportional, in a ratio 
equal to 1.5. 
The Nb content in solid solution in the alloys is about 0.37% for ZrNbO [22] and 0.27% in 
Zr0.4%Nb. The Nb content in solution in the oxide layer, β, being unknown, if we use the 

previous values (Nb content of the alloys), we can calculate the value of B in (
1

A )
B
β
β+

 which 

would give a ratio between Φ(ZrNbO) and Φ(Zr0.4%Nb) equal to 1.5. This value is found to be 
negative, but becomes positive if the Nb content in the oxide, β(ZrNbO), is increased from 
0.37% to 0.4%. This small variation is within the error range on the measurements, but it 
could also mean that the amount of Nb dissolved in the oxide is not exactly equal to the 
amount initially dissolved in the alloy. Thus, concerning the influence of Nb content, the 
predictions of the model are in agreement with our experimental results.  
It has also been observed that platinum has an accelerating effect on the oxidation rate of 
ZrNbO [10, 11], in water vapour or oxygen. The electrons supplied by the platinum layer 
would be involved in step (3) of the mechanism described above. Due to the noble metal on 
the oxide surface, the electrochemical potential of the electrons, which corresponds to the 
energy of the Fermi level, is increased at this interface, since the energy of the Fermi level is 
higher for a metal than for a semi-conductor [31]. Besides, the equilibrium constant K3 
depends on the electrochemical potential of the electrons, it increases if the electrons 
potential increases. Consequently, this model allows to propose an interpretation of the effect 
of platinum on the oxidation rate of ZrNbO. 
Finally, we have shown that the pre-transition stage in ZrNbO oxidation cannot be accounted 
for by the mechanism usually proposed for the oxidation of zirconium alloys, which involves 
the diffusion of oxygen vacancies through the dense oxide layer as the rate controlling step. 
Thus, we have proposed another mechanism allowing to account for the accelerating effect of 
water vapour and Nb content. The important feature is to demonstrate that it is possible to 
explain the influence of the gases without assuming necessarily an interface rate-limiting step. 
In the case of ZrNbO, the oxidation is assumed to be controlled by a diffusion step, in which 
the concentration gradient of the diffusing species is fixed by a step located at the external 
interface (and not by a step located at the metal/oxide interface, as in the mechanism 
proposed usually).  

http://www.sciencedirect.com.gate6.inist.fr/science?_ob=ArticleURL&_udi=B6TXN-4G7NT9W-Y&_user=4013381&_coverDate=06%2F30%2F2005&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info%28%23toc%235595%232005%23996579998%23599300%23FLA%23display%23Volume%29&_cdi=5595&_sort=d&_docanchor=&_ct=26&_acct=C000061186&_version=1&_urlVersion=0&_userid=4013381&md5=87c0de1d9093ef43d563ebc7777d5edf#bib31


J. Nuclear Materials, 2005, 342(1-3),108-118, doi:10.1016/j.jnucmat.2005.02.007 
 

10 

44..22..  TTrraannssiittiioonn  aanndd  ppoosstt--ttrraannssiittiioonn  
It is clear from the results of the jumps method (Figs. 3(b) and 5) that the diffusion step 
controlling the beginning of the oxidation is no longer valid, even before the rate reaches its 
lowest value (since the ratios of the rates obtained with the jumps method decreases from 
about 7 μm, whereas the oxidation rate is minimum at about 10 μm, see Fig. 3(b)). Large 
cracks connecting a part of the oxide layer to the gaseous atmosphere appear from this point, 
which could be related to the increase in the rate after the transition. 
Then, when the oxide thickness exceeds 17 μm, the shape of the kinetic curve is linear. 
Moreover, the ratio of the rates remains constant (with a value different from the pre-
transition one, see Fig. 3(b)). Consequently, it can be deduced that the post-transition stage is 
controlled by an interface step, largely influenced by the water vapour pressure. Another 
possibility could be the diffusion through a layer with a constant thickness, but this is less 
probable due to the influence of the water vapour pressure. 
Now, what could be the mechanism and the rate-controlling step in this stage? If the same 
mechanism as in the pre-transition stage can be considered, the expressions of the rate 
calculated assuming that the rate-controlling step is located at the external interface (steps 2, 
3 or 4) are reported in Table 6: these three laws are in agreement with the effect of water 
vapour (cf. Fig. 5). 
However, Fig. 3(b) shows that, when the oxide thickness is lower than 5 μm, the rate in pre-
transition stage (controlled by the diffusion of hydroxyl groups) is higher than the rate 
observed in post-transition. Thus, if the rates of the various steps involved in the growth 
mechanism are nearly the same in pre- and post-transition stages, the interface step 
controlling the post-transition rate cannot be a step belonging to the mechanism proposed for 
the pre-transition stage. 
On the contrary, the pre-transition mechanism could explain the post-transition kinetics if the 
rate of one of the interface steps of this mechanism became far lower in post-transition than it 
was in pre-transition. A possible reason for such a change in the rate of an interface step could 
be a change in the concentrations of the point defects of the oxide involved in the mechanism: 
for example, we may imagine the formation of associated defects such as (OH, Nb) according 
to: 
 

 ( , )ZrOH s Nb OH Nb s− + −i iR  
 

Such defects would lead to a decrease in the concentration of OH-s species, and consequently 
in a decrease in the rate of step (3). Other point defects could probably be considered. 
Another way to explain the post-transition kinetics would be a change in the mechanism, 
involving completely different steps. 
Unfortunately, we have no experimental evidence to support one of these suggestions. More 
investigations would be necessary to give a valuable interpretation of the post-transition 
kinetics. 

5. Conclusions 

The oxidation of a ZrNbO alloy in a mixture of hydrogen and water vapour at 530°C exhibits 
clear differences between the pre- and post-transition stages. 
In pre-transition, the oxidation proceeds in a steady state, and is influenced by water vapour 
and Nb content, whereas hydrogen pressure has no effect in the studied range. The rate 
decreases with time, according to a sub-parabolic law. 
A mechanism has been proposed to account for these results, which involves the diffusion of 
adsorbed OH groups in a microporous part of the oxide layer, as rate-determining step. 
Then, after a transition period beginning at about 7 µm at 530°C, a rate limiting step can 
again be considered when the oxide thickness is higher than 17 µm. As the curves are linear, 
the oxidation is probably controlled by an interface step. This step has not been determined, 
but it is probably different from the steps proposed in the pre-transition mechanism. 

http://www.sciencedirect.com.gate6.inist.fr/science?_ob=ArticleURL&_udi=B6TXN-4G7NT9W-Y&_user=4013381&_coverDate=06%2F30%2F2005&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info%28%23toc%235595%232005%23996579998%23599300%23FLA%23display%23Volume%29&_cdi=5595&_sort=d&_docanchor=&_ct=26&_acct=C000061186&_version=1&_urlVersion=0&_userid=4013381&md5=87c0de1d9093ef43d563ebc7777d5edf#fig3
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Consequently, the transition is accompanied by a change in the oxidation mechanism, that 
could be linked to the change in the morphology of the oxide layer. 
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Tables captions 

TTaabbllee  II::  CCoommppoossiittiioonn  ooff  tthhee  ZZrrNNbbOO  aallllooyy..  

Fe (ppm) Nb (wt%) O (ppm) 
354 1.03 1303 

TTaabbllee  IIII::  RRaattiiooss  ooff  tthhee  rraatteess  ffoorr  jjuummppss  iinn  hhyyddrrooggeenn  pprreessssuurree  ffrroomm  PPOO  ==  1100  hhPPaa  ttoo  PP,,  aatt  aa  ggiivveenn  
tthhiicckknneessss  XX  ==  22..66  µµmm..  

PH2
 (hPa) 2 10 25 40 

( )
( )O

dm Pdt
dm Pdt

 
0.99 1 1.04 0.95 

TTaabbllee  IIIIII::  RRaattiiooss  ooff  tthhee  rraatteess  ffoorr  jjuummppss  iinn  hhyyddrrooggeenn  pprreessssuurree  ffrroomm  PPOO  ==  1100  hhPPaa  ttoo  PP,,  aatt  aa  ggiivveenn  
tthhiicckknneessss  XX  ==  2233  µµmm..  

PH2
 (hPa) 2.5 10 22 40 

( )
( )O

dm Pdt
dm Pdt

 
0.98 1 1.01 1.07 

TTaabbllee  IIVV::  SSuummmmaarryy  ooff  kkiinneettiicc  rreessuullttss  iinn  pprree--  aanndd  ppoosstt--ttrraannssiittiioonn  ssttaaggeess..  

 Pre-transition Post-transition 
Steady State Yes Not determined 

φE test Yes Yes 
(after X = 17 µm) 

Rate-limiting step Yes Yes 
H2O partial pressure Slight accelerating 

effect 
Accelerating effect 
(more pronounced 

than in pre-
transition) 

H2 partial pressure No effect No effect 

TTaabbllee  VV::  CCoommppoossiittiioonn  ooff  tthhee  ZZrr00..44%%NNbbOO  aallllooyy..  

Nb (wt%) Fe (ppm) Cr (ppm) O (ppm) 
0.41 175 25 840 
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TTaabbllee  VVII::  EExxpprreessssiioonnss  ooff  tthhee  rraattee  llaawwss  ccoorrrreessppoonnddiinngg  ttoo  tthhee  rraattee--ccoonnttrroolllliinngg  sstteeppss  ((22)),,  ((33)),,  aanndd  ((44))  

Rate-liming step Growth reactivity Φ 
 

Step (2) 
 

( ) 2

2

2

2 1
2

4 4
1

4 3 6 7 9 6 7 9

   
,

 
1  1

H O
i

H
H O

k K P
T P

P K K
K P

K K K K K K K K
β

Φ =
⎛ ⎞⎛ ⎞
+ + + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
 

Step (3) 
Φ(T, Pi) =  

( )
2

2 2 2 2

3 1 2 4

1 1 2 4
4 6 7 9

     

1  1

H O

H O H H H

k K K K P

P K P K K K P P
K K K K

β

β⎛ ⎞
+ + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
Step (4) 

Φ(T, Pi) = 

( )
2

2

2 2

2

22

4 1 2 3 6 7 9 

2

1 2 3 6 7 9 
1

3 6 7 9

     

 11

PH O

H
H H O

H

k K K K K K K

PK K K K K K
P P K

KP K K K
β

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟+ + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 

((kkii  aanndd  KKii  aarree  rreessppeeccttiivveellyy  tthhee  rraattee  ccoonnssttaanntt  aanndd  tthhee  eeqquuiilliibbrriiuumm  ccoonnssttaanntt  ooff  tthhee  sstteepp  ((ii))))  

Figures 

Fig. 1 : Weight gain (⎯) and its derivative (---) versus time for ZrNbO at 530°C in water 
vapour (13 hPa) and hydrogen (10 hPa), showing the pre- and post-transition stages. 
 

Fig. 2 : Rate of weight gain (--- dm/dt) and heat flow (⎯) versus time for ZrNbO at 550°C in 
water vapour (13 hPa) and hydrogen (10 hPa), for the pre-transition stage. 
 

Fig. 3 : Rate of weight gain (530°C, PH2O = 13 hPa, PH2 = 10 hPa) and ratios of the rate before 
and after the temperature jumps, in the pre- (a) and post-transition (b) stages. 
 

Fig. 4 : Variations of the reactivity of growth Φ with the partial pressure of water vapour, in 
the pre-transition stage (jumps from PH2O = 13 hPa to P, for X = 2.5 μm, T = 500°C, PH2 = 10 
hPa). 
 

Fig. 5 : Variations of the reactivity of growth Φ with the partial pressure of water vapour, in 
the post-transition stage (jumps from PH2O = 13 hPa to P, for X = 25 μm, T = 530°C, PH2 = 10 
hPa). 
 

Fig. 6 : Oxide thickness versus time for ZrNbO and Zr0.4%Nb (T = 520°C, PH2O = 13 hPa, PH2 
= 10 hPa). 
 

Fig. 7 : Oxidation rate (dX/dt) versus time for Zr0.4%Nb (dotted line) and ZrNbO (⎯). 
 

Fig. 8 : Cross-sectional views of oxide layers grown on ZrNbO at 530°C (PH2O = 13 hPa, PH2 = 
10 hPa) : X ≈ 3.5 μm (a) and X ≈ 6 μm (b). 
 

Fig.9 : Rate of oxidation of ZrNbO as a function of the oxide thickness before the kinetic 
transition – comparison with various rate laws. 
 

Fig. 10 : Variations of the reactivity of growth Φ with the partial pressure of water vapour : 
experimental data (♦) and calculated law (continuous line), in the pre-transition stage. 
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