
HAL Id: hal-00409486
https://hal.science/hal-00409486v1

Submitted on 14 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Natural Deduction and Normalisation for Partially
Commutative Linear Logic and Lambek Calculus with

Product
Maxime Amblard, Christian Retoré

To cite this version:
Maxime Amblard, Christian Retoré. Natural Deduction and Normalisation for Partially Commuta-
tive Linear Logic and Lambek Calculus with Product. Computation and Logic in the Real World
(Computing in Europe 2007), Jun 2007, Siena, Italy. pp.28–44. �hal-00409486�

https://hal.science/hal-00409486v1
https://hal.archives-ouvertes.fr

Natural Deduction and Normalisation for
Partially Commutative Linear Logic and

Lambek Calculus with Product

Maxime Amblard and Christian Retoré

LaBRI & INRIA-futurs, Université de Bordeaux, France

{amblard,retore}@labri.fr

Abstract. This paper provides a natural deduction system for Partially
Commutative Intuitionistic Multiplicative Linear Logic (PCIMLL) and
establishes its normalisation and subformula property. Such a system in-
volves both commutative and non commutative connectives and deals
with context that are series-parallel multisets of formulæ. This calcu-
lus is the extension of the one introduced by de Groote presented by
the second order for modelling Petri net execution, with a full entropy
which allow order to be relaxed into any suborder — as opposed to the
Non Commutative Logic of Abrusci and Ruet. Our result also includes,
as a special case, the normalisation of natural deduction the Lambek
calculus with product, which is unsurprising but yet unproved. Up to
now PCIMLL with full entropy had no natural deduction. In particular
for linguistic applications, such a syntax is much welcome to construct
semantic representations from syntactic analyses.

1 Presentation

Non commutative logics arise naturally both in the mathematical perspective
and in the modelling of some real world phenomena. Mathematically non com-
mutativity is a natural both from the truth valued semantics viewpoint (phase
semantics, based on monoids which can be non commutative) and from a syn-
tactical one (sequent calculus with sequences rather than sets of formulae, proof
nets which can have well bracketed axiom links). Non commutativity also ap-
pears from real world applications such as concurrency theory, like concurrent
execution of Petri net, and in our favourite application, computational linguistic,
and this goes back to the fifties and the apparition of the Lambek calculus. We
first give a brief presentation of non commutative logics and then stress their
interest for concurrency and computational linguistics.

Non commutative linear logics Linear logic [6] offered a logical view of the Lam-
bek calculus [9] and non commutative calculi. During many years, the difficulty
was to integrate commutative connective and non commutative connectives. A
first solution, without a term calculus, was Pomset Logic, now studied with
extended sequent calculi callled Calculus of Structures [7].

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

Author manuscript, published in "Computation and Logic in the Real World (Computing in Europe 2007), Siena : Italy (2007)"

http://hal.archives-ouvertes.fr/hal-00409486/fr/
http://hal.archives-ouvertes.fr

Another kind of calculus was introduced as a sequent calculus by de Groote
in [5], which has to be intuitionistic to work neatly. It consists in a superpo-
sition of the Lambek calculus (non commutative) and of Intuitionnistic Linear
Logic (commutative). For making a distinction bewteen the two connectives it
is necessary that the context includes two different commas mimicking the con-
junctions, one being commutative and the other being non commutative. Hence
we deal with series-parallel partial orders over multisets of formulae as sequent
right hand side. Let us write (..., ...) for the parallel composition and 〈...; ...〉
for the non commutative: hence 〈{a, b}; {c, d}〉 stands for the finite partial order
a<c, b<c, a<d, b<d. Of course we would like the two conjunctions to be related.
Either the commutative product is stronger than the non commutative one, or
the other way round. Surprisingly, the two options work as well, provided one
direction is fixed once and for all. This relationship between the two products
results from a structural rule modifying the order.

Now a difference should be underlined between the Abrusci-Ruet classical
calculus [3] and the intuitionistic one of de Groote’s and concern precisely the
order rule. The Abrusci-Ruet definitely has an intuitionistic version by limiting
it to sequents with a single formula on the right and intuitionistic connectives,
namely implications and conjunctions. But there is an important difference with
de Groote’s calculus: what can be the order rule stigmatising the relation between
the two conjunctions? As expected by its inventro an shown in [?] the calculus
introduced by de Groote can use a general forgetful rule, which replace an order
with a smaller one with respect to the inclusion of relations:

Γ ordered by I ` C
entropy

Γ ordered by J ` C

In de Groote’s calculus J can be any order such that J ⊂ I (as set of ordered
pairs of formulae in Γ) while in Ruet J can only be obtained by turning some non
commutative commas into commutative ones. This not equivalent to allowing as
result any suborder as J . Indeed Bechet de Groote and the second author in
[4] showed that four rewriting rules are needed to obtained all possible series-
parallel partial suborders from some series parallel partial order. Here is a typical
derivation that can be performed in de Groote’s calculus and not in Ruet’s.

({a, b}; {c, d}) ` (a⊗ b)� (c⊗ d)

{({a, b}; {c), d} ` (a⊗ b)� (c⊗ d)

Abrusci-Ruet calculus admit a proof net syntax, which can be restricted to
the intuitionistic case. Regarding the more flexible de Groote calculus, there
neither exists proof nets, nor natural deduction: it only exists a sequent calculus
which has been prove to enjoy cut-elimination in [13] (the semantic method
of [5] for a simpler entropy can surely be adpated). This is what we propose
in this paper, with normalisation. Firstly we thus obtain a calculus which is
more convenient, in particular for computational linguistics applciations, because
of the Curry-Howard isomorphism. Secondly normal deduction and the needed
operations on orders might be a first step towards proof net syntax.

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

Motivation for such calculi in concurrency and computational linguistics Non
commutativity in logic is rather natural in a resource consumption perspective.
An hypothesis is viewed as a resource that can be use but then it is natural to
think of how hypotheses are organised and accessible. As argued by Abrusci [2]
and others, linearity is a mandatory condition for non commutativity. Observe
that the first non commutative calculus, Lambek calculus [9] which was invented
long before linear logic, is a linear calculus, whose relation to oher logical system,
in particular intuitionistic has only been understood after the invention of linear
logic by Girard [6].

Concurrency, in which the order of the computations or of the resources mat-
ters, is of course a natural application. In the framework of proofs as programs,
with normalisation as the computational process; it is rather the pomset logic
and the calculus of structure which are of some use, because the order applies
to cuts that are the computations to be performed [12, 7] But in the framework
of proof search as computation, in the logic programming style of Miller, see
e.g. [8] or in planning, the calculus studied in this paper with an order on hy-
potheses is of course important. Indeed process calculi can be encoded in non
commutative calculi and this was the main motivation for Ruet’s work. The sec-
ond author also provided a description of the parallel execution of a Petri net in
the calculus we are studying – with the reverse entropy increasing order, but it
does not change the properties of the calculus. It is a true concurrency approach,
where a||b is not reduced to a; b⊕ b; a (where ⊕ is the non deterministic choice).
An execution according to a series parallel partial order corresponds to a proof
in the partially commutative calculus that we study in this paper; in this order
based approach of parallel computations any set of minimal transitions can be
fired simultaneously. [13]

Our main motivation for such calculi is computational linguistics and gram-
mar formalisms. We are especially fond of logical description of grammar classes
as introduced by Lambek because from a parse structure one is able to auto-
matically compute the logical structure of the sentence. This especially true if
the Lambek calculus or the partially commutative extensions, like the one we
are studying, are given in a natural deduction format. Indeed, the syntactic cat-
egories can be turned into semantic categories on two types, individuals (e) and
truth values (t), in such a way that the proof in the Lambek calculus (the syn-
tactic analysis) can be turned into a proof intuitionistic logic, that is a lambda
term describing a logical formula in Church’s style.

Lambek calculus is definitely too restrictive as a syntactic formalism, in par-
ticular it only describes context free languages, and many common syntactic
constructs are difficult to model: one would prefer the class of mildly context
sensitive formalisms which are assumed to be large enough for natural language
constructs, go beyond context-free languages, but admit polynomial parsing al-
gorithms.

This is the reason to use partially commutative calculi. In particular Lecomte
and the second author managed to give a logical presentation [10] of Stabler’s
minimalist grammars [14] in this the de Groote calculus, presented in natural

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

deduction to obtain semantic representation of the parsed sentences. In parsing
as deduction paradigm and for other applications as well it is quite important
to have normalisation, unicity of the normal form: indeed the normal form is
the structure of the analysed sentence, and normalisation ensures the coherence
of the calculus. The algorithm of normalisation, easily extracted from the proof
is important as well: one define correct sentences as the ones such that some
sequent can be proved, and both the parse structure and the semantic reading
are obtained from the normal form.

2 Partially Commutative Linear Logic

The sequent calculus for Partially Commutative Linear Logic (PCIMLL) intro-
duced by de Groote in [5] is a super imposition of commutative intuitionistic
multiplicative linear logic and the Lambek calculus with product, that is non
commutative intuitionistic multiplicative linear logic. Formulae are defined from
a set of propositional variables p, by the commutative conjunction (⊗) , the non
commutative conjunction (�), the commutative implication ((), the two non
commutative implications (/ and \):

l ::= p | l� l | l⊗ l | l/l | l\l | l (l

Right hand side, contexts are partially ordered multisets of formulae whose
underlying order is series-parallel (sp). Such orders can be depicted by terms
over formulae:

ctx ::= l|〈ctx;ctx〉 | {ctx,ctx}

For instance the context 〈〈B; {A((B \ (D/C), A}〉;C〉 denotes the sp order
Succ(B) = {A,A((B \ (D /C)}, Succ(A) = Succ(A((B \ (D /C)) = {C} —
Succ(X) stands for the immediate successors of X and this fucntion from the
domain to the parts of of the domain compeltely determines a finite order.

The term denoting a given sp order is unique up to the associativity of series
and parallel composition and to the commutativity of parallel composition and
to avoid rewriting associated with associativity or commutativity we consider
equal two contexts that are associated with the same sp orpder on the same
multiset of formulae. Capital greek letters stand for contexts. An expression like
Γ [] means a context with one distinguished element [∗, while an expression like
Γ [∆] means that the special element [∗] has been replaced with the context ∆.
More details can be found in [4, 13].

– Γ ′ @ Γ means that the domains of the two sp orders, the set of occurrences
of formulae, are the same and that A < B in Γ ′ if and only if A < B in Γ
as well — A and B being /emphoccurrences of formulae. The inclusion @ of
series parallel partial orders can be simulated by term rewriting as shown in
[4].

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

Γ ` A ∆ ` A\C
[\e]

〈Γ ; ∆〉 ` C

∆ ` A/C Γ ` A
[/e]

〈Γ ; ∆〉 ` C

Γ ` A ∆ ` A (C
[(e]

{Γ, ∆} ` C

〈A; Γ 〉 ` C
[\i]

Γ ` A\C

〈Γ ; A〉 ` C
[/i]

Γ ` C/A

{A, Γ} ` C
[(i]

Γ ` A (C

∆ ` A�B Γ [〈A; B〉] ` C
[�e]

Γ [∆] ` C

∆ ` A⊗B Γ [{A, B}] ` C
[⊗e]

Γ [∆] ` C

∆ ` A Γ ` B
[�i]

〈∆; Γ 〉 ` A�B

∆ ` A Γ ` B
[⊗i]

{∆, Γ} ` A⊗B

[axiom]
A ` A

Γ ` C
[entropy — whenever Γ ′ @ Γ]

Γ ′ ` C

Fig. 1. The natural deduction rules for PCIMLL

– Notice that for applying ⊗e and �e rules, A and B must be equivalent:

∀X 6= A,B

{
X < A ⇔ x < B
X > A ⇔ x > B

In the ⊗e rule has A 6≤ B and A 6≥ B, while in the ⊗e rule one has A < B.
– Our formulation in a lambda calculus style of the elimination of the multi-

plicative linear logic conjunction is due Abramsky in [1] — the corresponding
term would be let x = (u, v)in t(u, v).

– Although we do have normalisation and sub-formula property (next sections)
we do not have complicated rules of the kind introduced in [11] for MLL.
We assume her rules are motivated by the exponential connectives and other
properties.

3 Normalisation of PCMLL

Proposition 1 (Product eliminations can move upwards) Let R be an ⊗e

rule (resp. an �e rule) of Γ [∆] ` C between a proof δ0 of ∆ ` A⊗B and a proof
of Γ [{A,B}] ` C (resp. Γ [〈A;B〉] ` C) obtained by a rule R′ from a proof δ1 of
some sequent Θ[{A,B}] ` X (resp. Θ[〈A;B〉] ` X) and possibly, if R′ is binary,
of another proof δ2 of some sequent Ψ ` U .

Then one can obtain a proof of the same sequent Γ [∆] ` C by first applying
an ⊗e rule (resp. an �e rule) between the proof δ0 of ∆ ` A⊗ B and the proof
δ1 of Θ[{A,B}] ` X (resp. Θ[〈A;B〉] ` X) yielding a proof of Θ[∆] ` X and
then applying R′ to this proof and possibly the proof δ2 of the sequent Ψ ` U .

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

Proof. This is a case study, according to the rules above the product elimina-
tion. Observe that the product elimination rule only move upwards when both
cancelled hypotheses are in the same premise and when their respective places
in the order match the product elimination requirements. Here is one case.

∆ ` A⊗B

Γ [{A, B}] ` D Φ ` D\C
[\e]

〈Γ [{A, B}]; Φ〉 ` C
[⊗e]

〈Γ [∆]; Φ〉 ` C

⇒

∆ ` A⊗B Γ [{A, B}] ` D
[⊗e]

Γ [∆] ` D Φ ` D\C
[\e]

〈Γ [∆]; Φ〉 ` C

We write Sj for the occurrence of sequent inside a proof, |Sj | for the corre-
sponding sequent, and |Sj |r for the formula on its right hand side.

In a proof δ , B(S0) the principal branch issued from an occurrence S0 of
a sequent |S0| is the smallest upwards path containing S0 and closed under the
following operations:

1. if S ∈ B(S0) is obtained by a unary rule R from an occurrence S′ of a
sequent, then S′ ∈ B(S0) as well;

2. if S ∈ B(S0) is obtained by a product elimination rule �e (resp. ⊗e) as
depicted in figure 1 then the connective-marked premise which is S′

with |S′| = Γ [〈A,B〉] ` C (resp. |S′| = Γ [{A,B}] ` C) is in B(S0) as well.
3. if S ∈ B(S0) is obtained by an implication elimination rule \e (resp. /e,

(e) as depicted in figure 1 then the connective-marked premise S′ with
|S′| = ∆ ` A \C (resp. |S′| = ∆ ` A / C, |S′| = ∆ ` A (C) is in B(S0) as
well.

Any initial subpath of a principal branch B(S0) of length n from S0 to
Sn with |S0|r = |Sn|r, such that |S0| is the connective-marked premise of some
elimination rule Re and Sn is the conclusion of some introduction rule Ri is called
an n-extended redex. Observe that the rules Ri and Re necessarly introduce
and eliminate the same connective and are said to be conjoined. A 0-extended
redex is called a redex, and there are seven redexes in PCIMLL see figure 3.
A normal proof is defined as a proof without any k-extended-redex, for every
k. Observe that there is at most one k-extented redex in a principal branch,
because it’s an initial path of S(B0) and the rule above Sn is an introduction.

Given an implication elimination rule R (resp. a product elimination rule
R′), with connective-marked premise S0, the integer e(R) (resp. g(R′)) is k
if there is some (hence one) k-extended redex in B(S0) called the k-extended
redex above R (resp. above R′) and 0 otherwise. Given a proof δ let PER(δ)
and IER(δ) be respectively the of occurrences of product elimination rule in δ
and of implication elimination rule in δ. We define e(δ) as minR∈PER(δ) e(R) and
g(δ) as minR∈IER(δ) g(R) and r(δ) as the number of rules in δ. The measure of
δ denoted by |δ| is the triple (r(δ), e(δ), g(δ). A proof is normal if and only if its
measure is r(δ, 0, 0).

Proposition 2 A k-extended-redex S0 · · ·Sk containing an implication elimina-
tion contains another k′-extended-redex with k′ < k.

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

·
·
·
·
·

d1

∆ ` D

·
·
·

〈D; Γ 〉 ` C
[\i]

Γ ` D\C
[\e]

〈D; Γ 〉 ` C

·
·
·
·
·

d1

∆ ` D
·
·
·

〈∆; Γ 〉 ` C

·
·
·
·
·

d1

∆ ` D

·
·
·

(D, Γ) ` C
[(i]

Γ ` D (C
[(e]

(∆, Γ) ` C

·
·
·
·
·

d1

∆ ` D
·
·
·

(∆, Γ) ` C

·
·
·
·
·

d1

∆1 ` A

·
·
·
·
·

d2

∆2 ` B
[�i]

〈∆1; ∆2〉 ` A � B Γ [〈

A ` A
·
·
·
A ;

B ` B
·
·
·
B 〉] ` D

[�e]
Γ [〈∆1; ∆2〉] ` D

Γ [〈

·
·
·

d1

∆1 ` A
·
·
·

∆1 ;

·
·
·

d2

∆2 ` B
·
·
·

∆2 〉] ` D

·
·
·
·
·

d1

∆1 ` A

·
·
·
·
·

d2

∆2 ` B
[⊗i]

{∆1, ∆2} ` A � B Γ [{

A ` A
·
·
·
A ,

B ` B
·
·
·
B }] ` D

[⊗e]
Γ [{∆1, ∆2}] ` D

Γ [{

·
·
·

d1

∆1 ` A
·
·
·

∆1 ,

·
·
·

d2

∆2 ` B
·
·
·

∆2 }] ` D

·
·
·
·
·

d1

Γ ` A ⊗ B

A ` A B ` B
[⊗i]

(A, B) ` A ⊗ B
[⊗e]

Γ ` A ⊗ B

·
·
·
·
·

d1

Γ ` A ⊗ B

·
·
·
·
·

d1

Γ ` A � B

A ` A B ` B
[�i]

〈A; B〉 ` A � B
[�e]

Γ ` A � B

·
·
·
·
·

d1

Γ ` A � B

Fig. 2. The seven redexes of PCIMLL

Hence, a k-extended-redex which does not contain any k′-extended-redex with
k′ < k and in particular the extended redex associated with R such that e(R) =
e(π) or g(R) = g(π), only contains entropy rules and product elimination rules.

Proposition 3 Product elimination and entropy can move below implication
elimination rules.

Theorem 4 (Normalisation) Every proof π in PCMLL has a normal form.

Proof. We proceed by induction on the measure of the proof. We assume that
for all proof π′ of size |π′| < 〈n, e, g〉 has a normal form and let us show that any
proof π with |π| = 〈n, e, g〉 can be turned into a normal proof. As every redex
turns a proof into a proof with less rules, we can assume that π has no redex.

If e(π) 6= 0, then there exists an implication-elimination rule S with a e(π)-
extended redex. Since it’s a minimal redex, this extended redex only contain
product elimination rules and entropy rules by proposition 2. Consequently, by
proposition 3 we can exchange S and the rule immediately above S because it’s
an entropy rule or a product elimination rule. The proof that we thus obtain

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

π′ satifies n(π′) = n(π) and e(π′) < e(π) — in π′ e(S′) = e(S) − 1. Hence, by
induction π′ as a normal form and π as well.

If e(π) = 0 and g(π) 6= 0 then there exists a product-elimination rule S with a
g(π)-extended redex. Since it’s a minimal redex, this extended redex only contain
product elimination rules and entropy rules by proposition 2. Consequently, we
can exchange S and the rule immediately above S because it’s an entropy rule or
a product elimination rule. The proof that we thus obtain π′ satifies n(π′) = n(π)
and still does not have any implication extended redex by checking that the
modification does not create new principal branch — in n(π′) = n(π) g(π′) =
g(π) = 0. Hence, by induction π′ as a normal form and π as well.

If e(π) = g(π) = 0, π is already normal.

Theorem 5 (Subformulae property) The sub-formula property holds for PCMLL:
in a normal proof π of a sequent Γ ` C, every formulæ of every sequent of π is
a sub-formula of a formula of Γ or of the formula C.

Proof. We proceed by induction on the height of a normal proof showing the
result and that whenever the last rule is some implication elimination, then C
is a subformula of some formula of Γ . The entropy rule is ignored, both as a
last rule and for measuring the height of a proof. Axioms enjoy this property.
Assuming the property holds for smaller proofs, and that our normal proofs ends
with an introduction rule the result is clear.

Assume the last rule is \e — the other implication rules are handled mutatis
mutandis. We successively inspect all possible rules above the connective-marked
premise Γ ` A \B:

– axiom in this case the formula also appear in Γ as wished.
– \i impossible there would exist a redex while the proof is in normal form.
– all other introductions can not lead to Γ ` A \B because of the \ in A \B.
– \e, /e and (e: using the induction hypothesis.
– ⊗e and �e which preserve the target of the sequent, namely A\B we consider

the principal branch B(Γ ` A \ B). After a sequence of ⊗e and �e rules,
yielding to a sequent ∆ ` A \ B we either find an axiom A \ B ` A \ B or
any of the afore mentioned rules. In the first case A \B is itself a formula of
Γ and in the second one the induction hypothesis justifies the result.

Assume the last rule is ⊗e with the connective marked sequent being Γ `
A ⊗ B, the other begin Θ[{A,B}] ` C and the conclusion Θ[Γ] ` C. The only
point to be checked is that A ⊗ B, which does not appear in the conclusion
sequent, is a subformula of a formula of Γ . After a sequence of ⊗e and �e rules,
yielding to a sequent ∆ ` A ⊗ B we either find an axiom A ⊗ B ` A ⊗ B or
a proper rule R. In the first case A ⊗ B is itself a formula of Γ . In the second
case R cannot be any implication introduction but it can neither be a product
introduction since this initial part of the principal branch would be an extented
redex. Hence it has to be an arrow elimination rule and thus A⊗B is a subformula
of ∆, hence of Γ .

Observe that we have such results for a calculus with standard rules, as
opposed to [11].

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

4 Normalisation for Lambek calculus with product

Lambek caculus with product is PCIMLL restricted to \, / and �. Context only
use 〈; 〉; as they are defined up to associativity, context are sequences of formulæ
and the entropy rule can safely be left out.

Theorem 4 implies that proofs in the L� have a normal form enjoying the
subformula property. In this particular case proofs have a unique normal proof
which is reached when the algorithm underlying the normalisation proof is con-
cluded by moving as high as possible the �e as explained in proposition 1. The
uniqueness of the normal proof is easily established from local confluence of the
redex.

5 Conclusion and future work

Motivated by concurrency and computational linguistics we have been defining
PCIMLL in natural deduction and proved normalisation. For Lambek calculus
with product, a subcalculus of PCIMLL, we also characterized the unique normal
proof. Regarding the full calculus, we characterized the normal proofs up to the
permutation of commutative product elimination rules among them.

Next we’ll look forward a proof net syntax for PCIMLL, which also allows
to easily compute lambda terms. Despite the existence of proof nets for MLL
andfor the Lambek calculus (of which PCMLL is the superimposition), and for
intuitionistic NL of Abrusci and Ruet, because of the more flexible entropy rule
that we are using, there is not yet any proof net calculus for PCNLL. This work
in aprticular on normal proofs which split the entropy rules into canonical steps
according to the rules used above and below can be viewed as a first step in this
direction.

With respect to computational linguistic application, our results tighten the
already explored connection between minimalist grammars and linear calculi in
a natural deduction format, which is responsible for the automatic computing
of semantic recipes. It also opens the possibility to have concurrent abstract
machines for minimalist grammars, since their coding uses the same formulæ as
Petri nets coding. The linear deduction also enables a use of other semantics like
ludics.
Acknowledgement We would like to apologize to the reviewers for the mistakes
and the poor style of the version that was sent to them.

References

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical
Computer Science, 111:3–57, 1993.

[2] V. Michele Abrusci. Phase semantics and sequent calculus for pure noncommuta-
tive classical linear propositional logic. The Journal of Symbolic Logic, 56(4):1403–
1451, December 1991.

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

[3] V. Michele Abrusci and Paul Ruet. Non-commutative logic I: The multiplicative
fragment. Annals of pure and applied logic, 101(1):29–64, 1999.

[4] Denis Bechet, Philippe de Groote, and Christian Retoré. A complete axioma-
tisation of the inclusion of series-parallel partial orders. In H. Comon, editor,
Rewriting Techniques and Applications, RTA‘97, volume 1232 of LNCS, pages
230–240. Springer Verlag, 1997.

[5] Philippe de Groote. Partially commutative linear logic: sequent calculus and phase
semantics. In Vito Michele Abrusci and Claudia Casadio, editors, Third Roma
Workshop: Proofs and Linguistics Categories – Applications of Logic to the anal-
ysis and implementation of Natural Language, pages 199–208. Bologna:CLUEB,
1996.

[6] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
[7] Alession Guglielmi. A system of interaction and structure. ACM Transaction on

Computational Logic, 8(1):1–64, January 2007.
[8] J.. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic

linear logic. Information and computation, pages 327–365, 1994.
[9] Joachim Lambek. The mathematics of sentence structure. American mathematical

monthly, pages 154–170, 1958.
[10] Alain Lecomte and Christian Retoré. Extending Lambek grammars: a logical

account of minimalist grammars. In Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, ACL 2001, pages 354–361, Toulouse,
July 2001. ACL.

[11] Sara Negri. A normalizing system of natural deduction for intuitionistic linear
logic. Archive for Mathematical Logic, 2002.

[12] Christian Retoré. Pomset logic: a non-commutative extension of classical linear
logic. In Philippe de Groote and James Roger Hindley, editors, Typed Lambda
Calculus and Applications, TLCA’97, volume 1210 of LNCS, pages 300–318, 1997.

[13] Christian Retoré. A description of the non-sequential execution of petri nets
in partially commutative linear logic. In Jan van Eijck, Vincent van Oostrom,
and Albert Visser, editors, Logic Colloquium 99, Lecture Notes in Logic, pages
152–181. ASL and A. K. Peters, 2004.

[14] Edward Stabler. Derivational minimalism. Logical Aspect of Computational Lin-
guistic, 1328, 1997.

ha
l-0

04
09

48
6,

 v
er

si
on

 1
 -

14
 S

ep
 2

00
9

