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[1] Using a three-dimensional full electromagnetic particle model, we have performed
global simulations of the interaction between the solar wind and the terrestrial
magnetosphere and have investigated its asymptotic stability. The distance between the
dayside magnetopause subsolar point and the Earth center, Rmp, is measured, as the
intensity of southward interplanetary magnetic field (IMF) jBzj is slowly varying.
Based on the field topology theory, one analyzes the variation of Rmp as a reference
index of the dynamics of this interaction, when IMF jBzj successively increases and
decreases to its original value. Two striking results are observed. First, as the
IMF jBzj increases above a critical value, the variation of Rmp suddenly changes
(the so-called bifurcation process in field topology). Above this critical value, the overall
magnetic field topology changes drastically and is identified as being the signature of
magnetic reconnection at the dayside magnetopause region. Second, this subsolar
point recovers its original location Rmp by following different paths as the IMF jBzj value
successively increases from zero to a maximum fixed value and decreases from this
maximum to zero while passing through some critical values. These different paths
are the signature of a hysteresis effect and are characteristic of the so-called
subcritical-type bifurcation. This hysteresis signature indicates that dissipation processes
take place via an energy transfer from the solar wind to the magnetosphere by some
irreversible way, which leads to a drastic change in the magnetospheric field topology.
This hysteresis is interpreted herein as a consequence of the change of the magnetospheric
field topology, or magnetic reconnection taking place at the dayside magnetopause.
Sometimes, this is also called bifurcation in the nonlinear theory. The field topology
reveals itself to be a very powerful tool to analyze (1) the signatures of three-dimensional
magnetic reconnection without the obligation for determining the responsible
mechanisms and (2) the consequences of reconnection on the overall
magnetospheric dynamics.

Citation: Cai, D., W. Tao, X. Yan, B. Lembege, and K.-I. Nishikawa (2009), Bifurcation and hysteresis of the magnetospheric

structure with a varying southward IMF: Field topology and global three-dimensional full particle simulations, J. Geophys. Res., 114,

A12210, doi:10.1029/2007JA012863.

1. Introduction

[2] The energy transfers from the solar wind to the Earth
magnetosphere, and the causes of magnetic substorms have
been analyzed for decades. Axford proposed that the recon-
nection of magnetic fields at the dayside magnetopause is one
of the candidates to explain this huge energy transfer [Axford,
2002; Priest and Forbes, 2000]. However, despite many

important efforts, the mechanisms of three-dimensional mag-
netic reconnection and the resulting energy partition during
the transfer have not been well understood within a global
approach of magnetospheric dynamics. In the present paper,
we investigate both the impacts and dynamics of a slowly
varying southward interplanetary magnetic field (IMF) jBzj
on the dayside magnetosphere in terms of bifurcation and
evidence of dissipative processes [Guckenheim and Holmes,
1983; Nicolis and Prigogine, 1977, 1989; Prigogine, 1980;
Strogatz, 1994; Tobak and Peake, 1982;Wiggins et al., 2003]
by using a global three-dimensional full-particle electromag-
netic particle model (EMPM) in the framework of field
topology theory [Cai et al., 2001, 2006a]. Based on the field
topology and nonlinear theory [Guckenheim and Holmes,
1983; Nicolis and Prigogine, 1977, 1989; Prigogine, 1980;
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Strogatz, 1994; Tobak and Peake, 1982; Wiggins et al.,
2003], the magnetospheric magnetic field system is consid-
ered as an open system and the amplitude of the IMF jBzj is
considered as the control parameter that leads the open
system from the stable to unstable state. Increasing jBzj from
zero to a certain value, which we call a critical value, very
slowly, the open system will try to stay in the same field
topology absorbing the excess energy from the solar wind at
first. Exceeding this value, the system will no longer be able
to absorb the excess energy, will be unstable, and will transit
into a new state. Such a transition will always be accompa-
nied by the global change of magnetospheric field topologies
and thus is referred as the bifurcation in the nonlinear theory.
The stability discussed here is also denoted by the term
structural stability in nonlinear sciences.
[3] At the present time, our understanding of the three-

dimensional magnetospheric dynamics relies principally on
local observations drawn from satellites, laboratory plasma
experiments, MHD and kinetic theories, and MHD, hybrid,
and particle simulations. The three-dimensional magnetic
field topologies in the dayside magnetosphere are visualized
and observed as the index of the dynamical response of the
magnetosphere to the variations of IMF jBzj. The field
topologies are determined and visualized mathematically
using the techniques of Cai et al. [2001, 2006a] by searching
and analyzing the magnetic null points and their eigenvalues.
In fact, the change of the field topologies or the bifurcations
is the signature of magnetic reconnection. The change of
topologies can be identified by observing the topological
properties, i.e., the number of magnetic null points, their
eigenvalues, their connections etc. without determining the
responsible magnetic reconnection mechanisms. The general
research and the history of magnetic reconnections in
magnetosphere are well summarized by Dorelli et al.
[2007]. Herein, we follow their scenario to introduce shortly
its recent developments although in the present paper we
only focus and discuss on the bifurcation and the associated
field topology theory:
[4] 1. ‘‘Magnetic field line merging or reconnection’’ is

defined as ‘‘the process whereby plasma flows across a
surface that separates regions containing topologically dif-
ferent magnetic field lines’’ (Vasyliunas [1975, p. 304], as
cited by Dorelli et al. [2007]). Two separatrix can intersect
at a line which is usually named the ‘‘separator.’’ In field
topology theory, the topological properties can be uniquely
determined by the numbers and the identified types of
magnetic null points. The separator is defined as the line
joining two or more than one magnetic null point.
[5] 2. On the other hand, ‘‘the localized breakdown of the

‘frozen-in field’ condition’’ and ‘‘the resulting changes of
‘connection’’’ are considered to be the basics of magnetic
reconnection byAxford [1984], as cited byDorelli et al. [2007].
[6] 3. The topological properties such as magnetic null

points, separatrix surfaces, separator lines, etc., in three
dimensions are known to be structurally unstable in the
framework we discuss above and in section 2, reaching and
exceeding the critical value [Nicolis and Prigogine, 1977,
1989; Sattinger, 1973; Strogatz, 1994;Wiggins et al., 2003].
The ‘‘structural stability’’ of the ‘‘plasmoid formation’’
process is discussed by Hesse and Schindler [1988] and
Schindler et al. [1988] in different framework and concepts
without introducing the bifurcation theory. They consider

that the ‘‘structural stability’’ is ‘‘too expensive,’’ in other
words, should not play an important role in causing the
magnetic reconnection and introduce a more general defi-
nition of the magnetic reconnection based on Axford [1984]
although the term ‘‘structural stability’’ they used is con-
ceptually different from the term we use in section 2. They
introduced a magnetic reconnection theory in nonvanishing
magnetic fields and called it the finite-B reconnection.
Please note that the finite-B reconnection does not neces-
sarily imply a change of local magnetic field topology that
will be discussed in section 2.
[7] 4. The analysis of multiple 3-D magnetic null points

in the magnetosphere and a global MHD simulation for
magnetosphere for the northward IMF are performed by
Dorelli et al. [2007]. They discussed the geometry of
dayside ‘‘separator reconnection’’ with a zero dipole tilt
case where the y and z components of IMF have equal
magnitude. They investigated the magnetic null points in
the simulation without discussing both the field topology
and the bifurcation in detail. The magnetic reconnection
theories with vanishing or nonvanishing magnetic field or
with separators are out of the scope of the present paper
because the simulation concepts, configurations, and mod-
els, and the targeted physical problems are very different
from ours. In addition to these definitions, please note that
the three-dimensional reconnection has been discussed in a
wide range of different scenarios. For other reconnection
scenarios, please see Boozer [2002], Dorelli et al. [2007],
Hesse and Schindler [1988], Hornig and Priest [2003],
Linton and Antiochos [2005], Pontin et al. [2007a, 2007b],
and Schindler et al. [1988].
[8] In the present paper, only the global topology of an

open systemwith control parameters and their infinitesimally
slow variations are considered. In many open systems, the
slow variations of the control parameter may lead the
systems to exhibit highly nonlinear behaviors as we discuss
in section 2. In addition, when the control parameter hits a
certain value and is tuned to go back to its initial value, one
question arises: does the system retrieve the same topological
structures or not? This can only be clarified by tracking the
field topologies [Tricoche et al., 2002]. Among the numerous
attempts to understand the magnetospheric dynamics and its
response to the solar wind parameters, not many contending
arguments lend themselves to the field topology theory,
topological structure, structural stability [Priest and Forbes,
2000], and asymptotic stability [Guckenheim and Holmes,
1983; Nicolis and Prigogine, 1977, 1989; Prigogine, 1980;
Strogatz, 1994; Tobak and Peake, 1982;Wiggins et al., 2003]
of the three-dimensional magnetospheric dynamics. Both
structural stability and asymptotic stability will be detailed
in section 2. In the present paper, we investigate the impact of
a slowly varying southward interplanetary magnetic field
(IMF) jBzj on the dayside magnetosphere in terms of bifur-
cation and evidence of dissipative processes [Guckenheim
and Holmes, 1983; Nicolis and Prigogine, 1977, 1989;
Prigogine, 1980; Strogatz, 1994; Tobak and Peake, 1982;
Wiggins et al., 2003] by using a global three-dimensional
full-particle electromagnetic particle simulation. The use of a
3-D PIC simulation over a global scale is discussed and is
justified by an extension of the present analysis on particle
injection/acceleration mechanisms before and after magnetic
reconnection takes place [Cai et al., 2006b] The latter is a

A12210 CAI ET AL.: BRIEF REPORT

2 of 12

A12210



topic which is under active investigation. In order to discuss
the dynamical problems (based on Hamiltonian), it is essen-
tial to use a numerical method like the symplectic method
[Cary and Doxas, 1993]. However, in the present paper, we
use 3-D global PIC simulation only for convenience, but we
will leave the extension to the symplectic method for future
work.

2. Field Topology, Structural Stability, and
Bifurcation in Magnetospheric Dynamics

[9] The three-dimensional magnetospheric field topology
and its bifurcation can be clarified when one studies how
these evolve as the relevant parameters, i.e., solar wind
velocity/pressure, IMF pitch angle, IMF roll angle, etc., are
varying. Some of the satisfactory answers to this magneto-
spheric field topology question that may emerge out of the
framework will be presented in this section. We will attempt
to understand physical phenomena although our definitions
should be treated with more purely mathematical formalism.
Especially, the theory of vector field topology, topological
structure, and structural stability are directly applied to
investigate the properties of the magnetospheric surface
magnetic field that is on the magnetopause as shown in
Figure 1. Herein, we will mainly focus on the dayside. In
the present section, the basic concepts of nonlinear dynam-
ics will be introduced and reviewed.
[10] In the field topology approaches [e.g., see Abraham

and Shaw, 1992; Cai et al., 2001; Guckenheim and Holmes,
1983; Tobak and Peake, 1982; Tricoche et al., 2002;Wiggins
et al., 2003], a pattern of magnetic field lines generates the
‘‘phase portrait’’ of a three-dimensional vector field. Here,
we briefly introduce these field topology approaches in this
section. Two ‘‘phase portraits’’ of the magnetic field have the

same topology if a one-to-one mapping from one phase
portrait to the other phase portrait preserves the paths that are
magnetic field lines in the phase portrait [Abraham and
Shaw, 1992]. We can also say in this case that two ‘‘phase
portraits’’ are homeomorphic. Here, we consider the mag-
netic field as a vector field, and the paths as the magnetic
field lines in the phase portrait. Let us consider a two-
dimensional case and imprint a two-dimensional phase
portrait on a ‘‘sheet of a rubber’’ that may be deformed in
any way without folding or tearing. Any deformation of this
sheet rubber with its associated phase portrait is a path-
preserving mapping, where a magnetic field line is pre-
served. It is known that all characteristics of the phase
portrait that remains invariant under homeomorphic map-
pings are represented as topological properties. They are
namely (1) the number and types of magnetic null points,
i.e., where the amplitude of the magnetic field is exactly
zero, and are also called magnetic nulls or neutral points, (2)
the existence of a path called a separator line connecting the
magnetic null points, and (3) the existence of closed mag-
netic field lines. The types of the magnetic null points can be
classified by their eigenvalues, and they are always saddles.
The topological structure of the magnetic field can be
characterized by the set of topological properties of the
phase portrait [Abraham and Shaw, 1992; Arnold, 1973;
Cai et al., 2001; Guckenheim and Holmes, 1983; Tobak and
Peake, 1982; Tricoche et al., 2002; Wiggins et al., 2003].
[11] The structural stability of a phase portrait with

respect to a control parameter l can be defined as follows.
We define a phase portrait as structurally stable for a given
control parameter l if the phase portrait has the same
topological structure as the initial one, when changing the
control parameter l infinitesimally [Priest and Forbes,
2000; Strogatz, 1994; Wiggins et al., 2003].
[12] The magnetic reconnection of the Earth’s dipole

magnetic field with the southward IMF has been examined
by Dungey [1961]. In this case, the neutral line (magnetic
null line) is located in the equatorial plane. For any nonzero
jBxj and jByj IMF cases that we are considering, two neutral
points arise instead of the neutral line. In a global PIC
simulation, finite weak, instead of zero, values of Bx and By

naturally arise because of thermal fluctuations or numerical
noise. As the IMF is southward, the ideal steady state
magnetospheric surface magnetic field, which commonly
called the magnetopause, connects to the external magnetic
field via 3-D magnetic null point ‘‘A’’ and ‘‘B’’ as indicated
in Figure 1 [Lau and Finn, 1990]. We call them 3-D
negative and positive null points, respectively. By the
external magnetic field, we mean the entire magnetic field
including the IMF exterior to the magnetospheric surface. In
a magnetic field, all magnetic null points are saddle points
due to the solenoidal condition r . B = 0 [Cai et al., 2001].
If one can find a path from one magnetic null point to the
other, we say that the magnetic null points are connected,
and we call this the null-null connections or the two 3-D
null points joined by a separator [Lau and Finn, 1990].
Herein, the separator is the generic field line joining more
than two 3-D null points [Abraham and Shaw, 1992;
Arnold, 1973; Guckenheim and Holmes, 1983; Tobak and
Peake, 1982; Wiggins et al., 2003].
[13] In order to understand the stability of the external

magnetic field that is herein the interplanetary magnetic field

Figure 1. Schematic diagram of steady state mean
magnetospheric field topology with highest symmetry and
simplicity with a southward IMF (no perturbation is
applied). This topology is an ideal one.
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(IMF), it is necessary to properly understand the difference
between structural stability and asymptotic stability of this
magnetic field [Abraham and Shaw, 1992; Arnold, 1973;
Guckenheim and Holmes, 1983; Tobak and Peake, 1982;
Wiggins et al., 2003]. First, an external magnetic field is
considered structurally stable relative to a control parameter
l if a very small change in the parameter does not alter the
topological structure of the three-dimensional magnetic
vector field, e. g. the number of the three-dimensional
magnetic null points and the number of the positive eigen-
values of the magnetic null points. Here, the control param-
eter can be any parameter related to IMF or the solar wind.
Second, a mean magnetic field is called asymptotically
stable if small perturbations added in a given steady state,
i.e., for a fixed l, decay to zero as time t !1.
[14] Here, we introduce the basic concepts of bifurcation

and symmetry breaking [Nicolis and Prigogine, 1977,
1989] in conjunction with the asymptotic instability in the
external magnetic field (i.e., IMF jBzj). We will see these
concepts may be interpreted as a signature of dissipative
processes. Assume the magnetic field Bt evolves according
to the time-dependent equation of the general form

Bt ¼ GðB;lÞ; ð1Þ

where l is a control parameter. The magnetic field evolves
in time after some perturbation, i.e., change in l, has been
applied. More than one control parameters l can exists.
However, we consider only one, for simplicity, in the
present analysis. We know that solutions of G(B, l) = 0
represent a steady state mean magnetic field that is of our
interest with a given l. Herein, we always start from this
steady state mean magnetic field. The simplest mean field
topology of the magnetosphere is sketched in Figure 1. As
mentioned above, a mean field B is asymptotically stable, if
small perturbations from it decay to zero as t ! 1. When
the control parameter l is varying, the topological structure
of the mean magnetic field may be preserved or it stays as a
valid solution of G(B, l) = 0, but becomes unstable to small
perturbations as l exceeds a critical value. At this critical
point, we usually say that the known mean magnetic field is

bifurcated to a new mean magnetic field. The concept just
explained can be schematically sketched on a famous
bifurcation diagram. Two typical examples are illustrated in
Figure 2. The ordinate y represents the known mean
magnetic field that bifurcates to a new mean magnetic field,
and can be any quantity characterizing the magnetic field
topology. The known magnetic field becomes unstable for
all values of l larger than lc, which are represented by a
dashed line along the abscissa. Then, new mean magnetic
fields may be bifurcated or reached from l = lc by two
ways: the bifurcation is named supercritical or subtle
(Figure 2a), and subcritical or catastrophic (Figure 2b)
[Guckenheim and Holmes, 1983; Nicolis and Prigogine,
1977, 1989; Prigogine, 1980; Strogatz, 1994; Tobak and
Peake, 1982]. Let us consider each case as follows.
[15] A supercritical bifurcation (subtle bifurcation) is

shown in Figure 2a. As the control parameter l increases
from the origin and reaches the critical value lc, the
bifurcation occurs if the new magnetic field that takes the
place of the unstable known magnetic field is changed only
infinitesimally from it. Through this bifurcation, sometimes
the symmetry of the known magnetic field is claimed to be
broken, i.e., the magnetic field will differ as l increases and
decreases through the critical value lc. Then, the magnetic
field adopts a form of so-called reduced symmetry, where
dissipative effects arise to absorb just the amount of excess
available energy that the more symmetrical known B field
was no longer able to absorb. For clarity, let us remind that
theoretically, we start from the ‘‘Earth’’ magnetosphere
under the IMF Bz field in steady state. Without any
perturbation, this magnetic field structure always has higher
symmetry in some degree [Nicolis and Prigogine, 1977,
1989]. Symmetry breaking takes place where infinitesimally
small perturbation acting on a system crossing a critical
value lc, decide a system’s fate, i.e., by choosing which
branch of a bifurcation is taken in Figure 2 [e.g., see Nicolis
and Prigogine, 1977, 1989].
[16] Since the bifurcation magnetic field initially evolves

only infinitesimally from the unstable known magnetic field,
herein the ordered magnetic field shown in Figure 1, the
initial magnetospheric surface field is still kept structurally

Figure 2. Examples of (a) supercritical or subtle bifurcation and (b) subcritical or catastrophic
bifurcation. In Figure 2b the different paths followed by the arrows illustrate the hysteresis signature as
l increases and decreases successively.
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stable as l increases. Herein, the initial surface magnetic
fields are indicated as SA and SB in the Southern and
Northern Hemisphere, respectively. When l continues to
increase crossing lc (Figure 2), the new stable magnetic field
varies significantly from the unstable known magnetic field,
and the structural stability of the surface magnetic field
begins to change. Finally, the parameter l reaches lc, at
which the surface magnetic field becomes structurally unsta-
ble. This can be shown either by one of the elementary
magnetic null points of its phase portrait becoming a mag-
netic null point that has zeros in (odd) multiple orders in
Taylor expansion, or by the emergence of a new magnetic
null point that has zeros in (even) multiple orders [Sattinger,
1973]. For clarity, let us remind the reader that the structure of
the field including the spine curves and fan surface in the
vicinity of the magnetic null point, where it is sufficiently
close so that B is linear, can be investigated or analyzed by
performing a Taylor expansion around the magnetic null
points [Buneman et al., 1966; Cai et al., 2001; Lau and Finn,
1990; Priest and Forbes, 2000]. In either case, the magnetic
null point of multiple order can be considered as being a
coalescence of some elementary magnetic null points, with
the equal number of positive and negative magnetic null
points to satisfy the topological rule [Priest and Forbes,
2000; Sattinger, 1973].
[17] When the control parameter l increases just beyond

the critical value lc, a subcritical or catastrophic bifurcation
shown in Figure 2b emerges if adjacent bifurcation magnetic
fields that differ only infinitesimally from the unstable
known magnetic fields do not exist. Thus, a finite or
catastrophic jump to a new bifurcation branch of magnetic
fields occurs. This finite jump to the new branch in Figure 2b
may indicate a radical change in the topological structure of
the external magnetic field and in the phase portrait of the
surface magnetic field as well. Sometimes this is referred to
as a catastrophe. When l is decreased further just below lc,
the bifurcation magnetic field does not recover the original
stable magnetic field. Indeed, the stable known magnetic
field appears again only when l is decreased far enough
below lc to pass through another critical value l0 as
illustrated in Figure 2b. The difference between the two

states followed by the magnetic field, as the parameter l
increases and decreases, is the signature of the hysteresis
effect. In subcritical bifurcation, the bifurcation magnetic
fields will always display the hysteresis effect. However, the
hysteresis effect does not always imply that the subcritical
bifurcation occurs. In Figure 2b, the dashed line between l0
and lc represents one of possible solutions of the magnetic
field (unstable) in this system as l decreases. This part will
be not discussed herein. Here, we also have to refer to the
work by Schroer et al. [1994], where they investigated the
subcritical bifurcation of a nonlinear two-dimensional cur-
rent sheet using the stationary resistive-viscous MHD equa-
tions. They also investigated the secondary bifurcation in
their model.

3. Simulation Model

[18] In our simulation, we use the same initial con-
ditions to form the magnetosphere [Buneman et al.,
1980, 1992; Buneman, 1993], the same radiating boundary
conditions [Lindman, 1975] and the charge-conserving for-
mulas [Villasenor and Buneman, 1992] as in our previous
works [Nishikawa, 1997, 1998; Nishikawa and Ohtani,
2000a, 2000b]. The simulation model is a three-dimensional
electromagnetic full particle global simulation model
with a reference set shown in Figure 3, where D � 0.5 Re,
and Dt = 1 is the time step (wpeDt = 0.12). Here, D =
Dx = Dy = Dz. Initially, we use about 36 � 106

electron-ion pairs, which corresponds to a uniform par-
ticle density of ~n = 8 pairs per cell across the simulation
domain (215D � 145D � 145D). The normalized
physical quantities are, for electrons and ions, respec-
tively, defined as follows: thermal velocity: ~vthe,i = vthe,i /
(D/Dt); Debye length: lDe,i = ~vthe,i/~wpe,i; Larmor gyro-
radius: ~rce,i = ~vthe,i /~wce, i; inertia length: ~lce,i = ~c/~wpe,i;
gyrofrequency: ~wce,i = wce,iDt = (~BDme/Dtme,i); and
plasma beta: ~be,i = ~Te,i~wpe,i

2 /~B2. Values of normalized
ambient plasma parameters used in our simulation are,
for electrons and ions, respectively: ~vthe,i = (0.09, 0.045);
lDe,i = (0.75, 1.5); ~wpe,i = (0.125, 0.031); ~wce,i = (0.20,
0.013): ~rce,i = (0.45, 3.5); ~lce,i = (4.2,16.1); ~be,i = (0.2,
0.8); and ~Te,i = (0.008, 0.032). Here, ~c = 0.5 is the
speed of light. The center of the current loop that
generates the dipolar terrestrial magnetic field is located
at (80D, 72.5D, 73D). Within the time range 0 < ~t <
1000D~t a drift velocity ~vsol = �0.5~c representing the
solar wind, is applied along the x direction without an IMF.
The injected solar wind density has also ~n = 8 electron-
ion pairs per cell, the mass ratio is mi/me = 16, and the

electron and ion thermal velocities are ~vthe =

ffiffiffiffiffiffiffiffiffiffiffiffi
~Te=me

q
=

0.18~c and ~vthi =
ffiffiffiffiffiffiffiffiffiffiffi
~Ti=mi

q
= 0.09~c respectively.

[19] The main purpose of our global simulation is to
observe the dynamic response of the magnetosphere due to
the variations of IMF jBzj as a control parameter. Moreover,
we expect the irreversible kinetic effects or related micro-
scopic phenomena will not play an important role in the
determination of the topological structure of the magneto-
sphere. Therefore, only the interaction between macroscopic
electric and magnetic field and electrons and ions, and
possibly their related accelerations within a self-consistent
approach are considered in the present model. Indeed, the

Figure 3. Reference set used in our 3-D PIC simulation
code.
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minimum distance from the Earth center to the dayside
magnetopause Rmp is about 20D and the resolution is too
coarse to simulate any kinetic instability in the present
model. In this sense, our simulation model is similar to early
works of particle simulations, for example [Buneman et al.,
1966; Cai and Buneman, 1992], where the stability of cross-
field beams is discussed and the kinetic instabilities are not
discussed. All the physical values are scaled using the
minimum distance to the magnetopause (Rmp) and the solar
wind velocity Vsw. If we assume Rmp = 70,000 km and the
solar wind velocity Vsw = 200–400 km/s, one grid sizeD is
about 3,500 km and 1000 simulation time step corresponds
to about 73–36.5 min. The thermal electron gyroradius is
0.45D and the electron gyro-motion may not be correctly
solved. The electron plasma parameter, i.e., the number of
particles within the Debye sphere, is about 14 and some
particle collisional effects are expected. Thus, a smoothing
techniques is applied in order to reduce the noise generated
from the collisions [Buneman et al., 1980, 1992; Buneman,
1993]. In the present model, the ionosphere model is not
implemented and the particles entering into the region
corresponding to the expected ionosphere are automatically
taken out from the simulations. The electron and ion inertia
lengths are, 4D and 16D, respectively, in our simulation;
thus, it is too coarse to simulate the bow shock in our
simulation size. Due to the severe limitation of the computer
resources, the simulation box in x, y, and z are limited and
the far magnetotail region is not analyzed.

4. Results

[20] In the present paper, with the help of 3-D electro-
magnetic full particle simulation code and using the analogy
with the bifurcation theory summarized in section 2, we
have investigated the asymptotic stability of the interplan-
etary magnetic field (IMF) and the structural stability of the
magnetospheric surface magnetic field at the dayside mag-
netopause: herein, the time-varying southward IMF is
considered as an external disturbances.

[21] We will focus on the magnetic field in the dayside
magnetosphere and the magnetopause region in which
subcritical bifurcation is interpreted herein as a signature
of large-scale dissipative processes. Let us first consider
how magnetic reconnection on the magnetopause may
originate on a magnetospheric surface of revolution when
one of the main parameters–herein the strength of the
southward IMF jBzj, which plays the role of the control
parameter l in Figure 2, is slowly varying. Let us remind
that the parameter l in Figure 2 is supposed to designate
any quantity that characterizes the magnetic field. Indeed,
we focus on the changes of this magnetic field, i.e.,
bifurcation, during the interaction of the magnetized solar
wind with the magnetosphere. Then one finds it is conve-
nient to let the ordinate y designate the maximum distance
Rmp of the magnetopause, since Rmp changes significantly if
the bifurcation occurs. Here, Rmp is measured from the
dayside subsolar point to the geomagnetic center, and will
decrease as the control parameter, i.e., the amplitude of IMF
jBzj, increases. Our three-dimensional global simulation is
performed as the southward IMF jBzj is varying as shown in
Figure 4. The southward IMF jBzj is increased step by step
from 0.0 to 0.15 within increment of 0.01. For each
increment, we start from the last time of previous simulation
and continuously extend the simulation for 1000 additional
time steps so that the solar wind with new IMF prevails over
the whole simulation domain and the overall solar wind–
magnetosphere interaction reaches a ‘‘near steady state.’’
The process is repeated until the southward IMF jBzj
increases up to 0.15. Afterward, we begin to decrease
IMF jBzj to zero with a decrement of 0.01 identical to the
increment value. The simulation is started again and per-
formed continuously for 1000 additional time steps for each
decrement so that the solar wind with new IMF jBzj prevails
in the whole simulation domain. Varying the southward
IMF jBzj, the complete Rmp � IMF jBzj diagram can be

Figure 4. Time history of the southward IMF jBzj applied
in this simulation.

Figure 5. Variation of Rmp versus the southward IMF jBzj.
The hysteresis signature is evidenced by the difference
between the black curve (increasing southward IMF jBzj)
and the red curve (decreasing southward IMF jBzj).
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drawn and evidences hysteresis signature as displayed in
Figure 5. As the strength of the southward IMF jBzj
increases, Rmp decreases (black curve), and increases as
the strength of IMF jBzj decreases (red curve). The gap
between the black and red curves, i.e., hysteresis, demon-
strates that the magnetopause with the decreasing IMF jBzj
does not recover to its initial location Rmp in the same way
with the increasing path. Indeed, within the range 0.04 <
jBzj < 0.08, where the slope of the curve changes noticeably
as IMF jBzj increases and decreases, Rmp is smaller, i.e.,
pressure of the magnetospheric field is smaller, as the IMF
jBzj decreases, while Rmp is larger, i.e., the pressure of the
magnetospheric field is larger, as the IMF jBzj increases.
This indicates that some irreversible energy transfer from
the solar wind to the magnetosphere takes place via some
dissipative processes over the successive increase and
decrease of IMF jBzj.
[22] More exactly, as the strength of the southward IMF

increases, the magnetosphere is strongly compressed on the
dayside and shrinks linearly at the initial stage, where jBzj =
0.01 to 0.04 and Rmp strongly decreases. Then its location
gradually stabilizes, where jBzj = 0.04 to 0.08 andRmpweakly
decreases only: the shrinking almost saturates while absorb-
ing the excess energy from the solar wind and keeping the
same topological structure. Thewhole stage where jBzj = 0.01
to 0.08 corresponds to the stage 0 to lc in the bifurcation
diagram of Figure 2b, although the curve in Figure 5 is not
flat due to the nature of Rmp. At that stage, one can consider
that the magnetosphere can be slightly deformed without
bifurcation absorbing the excess energy from the solar wind.
In the final stage, the control parameter l, i.e., IMF jBzj,
passes through the critical value lc = jBzj = 0.08, a cata-
strophic-like finite up-jump of Rmp suddenly occurs because
the magnetospheric system can no longer absorb the excess
energy and no adjacent magnetic field exists.
[23] After the southward IMF jBzj reached 0.15, the

southward IMF decreases gradually and the magnetic field
is still on the new branch of a stable field. At the first stage,
as IMF jBzj varies from 0.15 to 0.08, the dayside magne-
tosphere progressively recovers and Rmp decreases linearly.
However, as l is just below lc, the magnetic field does not
return to the original stable known magnetic field. The
recovery almost saturates, when l is decreased far enough
below lc to pass through another critical value l0 = 0.04. A
second finite down-jump of Rmp suddenly occurs and allows
to access to the stable known magnetic field which is fully
recovered.
[24] In Figure 5, the finite jump is not as drastic as in

Figure 2b. The reason is that for each southward IMF value
the magnetic field should reach the asymptotically stable
and steady state before the critical bifurcation point lc.
However, due to the constraints of computer power and
CPU time, we have to change the southward IMF value
(increment/decrement) after a reasonable number of time
steps (1000). Then, the perturbations or noises caused by
varying l may still partially remain and the magnetic field
dynamics is not in perfect steady state.
[25] The important point is that no artificial form of

dissipation, i.e., resistivity as used in hybrid simulation, is
included in our PIC simulation. However, the hysteresis
signature that is clearly evidenced indicates that some
dissipation processes take place in some irreversible way.

The main invoked reason for this dissipation is the energy
transfer from the solar wind to the magnetosphere and the
emergence of the dissipative structures to be able to absorb
the transferred energy or symmetry breaking at the bifurca-
tion point.
[26] Using the analogy of the bifurcation theory intro-

duced in section 2, as the control parameter l, i.e., the IMF
jBzj, increases and passes the critical value lc, both the
external (IMF) and the magnetospheric surface magnetic
field may bifurcate into a new mean magnetic field. The
subcritical bifurcation may lead to a radical change in the
topological structure of the magnetic field in such a way that
the symmetry of the known magnetic field is broken. This
symmetry breaking in subcritical bifurcation with hysteresis
is interpreted as being due to irreversible dissipation pro-
cesses which absorb just the amount of excess available
energy that symmetrical known magnetic field could no
longer absorb. For a more comprehensive approach, our
present results show that the subcritical-type bifurcation is
an irreversible process while the supercritical bifurcation is
a reversible process. The subcritical-type bifurcation indi-
cates a dissipation process.
[27] The consequences on the magnetospheric field to-

pology may be analyzed by reminding that the pressure
balance between the solar wind ram pressure and the
magnetospheric field pressure determines the distance Rmp

of the dayside magnetopause or subsolar point from the
‘‘Earth.’’ As the strength of the southward IMF jBzj
increases and exceeds lc, the magnetic reconnection,
expressed herein in terms of bifurcation, takes place at the
dayside magnetopause. The magnetic field and the magne-
tospheric surface phase portrait transit to a new stable state.
Large-scale dissipative processes reach the new state and
the excess energy contained in this new state can be
absorbed.
[28] A more comprehensive approach may be performed

with the help of field topology. Figure 1 is the schematic
diagram of ideal magnetic field topology, i.e., highest
symmetry with only two magnetic null points ‘‘A’’ and
‘‘B.’’ In a 3-D analysis, a magnetic null point is character-
ized by three eigenvectors and three eigenvalues. Positive
and negative magnetic null points are defined by two
positive and two negative real parts of eigenvalue, respec-
tively [Priest and Forbes, 2000]. The magnetospheric
surface or magnetopause is covered by negative and posi-
tive fan surfaces SA and SB, respectively [Lau and Finn,
1990; Priest and Forbes, 2000]. Bifurcation occurs by
splitting the magnetic null points ‘‘A’’ and ‘‘B’’ following
the topological rule summarized in section 2. In our
simulation, due to the insufficient grid resolution, the
magnetosphere has no sufficient symmetry as shown in
the ideal situation of Figure 1. We have searched for a
magnetic null point only in the rectangle region around the
subsolar point as shown in Figure 1.
[29] Figures 6a and 6b show 2-D curves of the magnetic

field that is cross section of the meridian plane Z-X for IMF
jBzj = 0.1, respectively, defined in the increasing and
decreasing phase of the IMF (black and red curves,
respectively, in Figure 5). Figures 7a–7i show three
magnetic field topologies by simply visualizing the fan
surfaces (S surfaces) and the spine curves (g lines) of the
magnetic null points found around the dayside region and
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they are projected in the planes X-Z (Figures 7a, 7d, and 7g),
X-Y (Figures 7b, 7e, and 7h), and Y-Z (Figures 7c, 7f, and
7i). Figures 7a, 7b, and 7c are defined for IMF jBzj = 0.08 in
the increasing phase (black curve of Figure 5), i.e., just
before the catastrophic like jump, while Figures 7d, 7e, and
7f are defined for IMF jBzj = 0.1 in the increasing phase
(black curve of Figure 5), i.e., just after the catastrophic-like
jump. Similarly, Figures 7g, 7h, and 7i are shown for IMF
jBzj = 0.1 in the decreasing phase (red curve of Figure 5), i.e.,
when IMF jBzj does not recover yet its original value. In
Figures 7a–7i, all magnetic null points are saddle points.
Fan surfaces (S surfaces) associated to a positive and
negative magnetic null point are visualized with blue and
red, respectively. Spine curves (g lines) associated to a
positive and negative magnetic null point are visualized with
yellow and dark red, respectively [Cai et al., 2001, 2006a].
The fan surfaces drawn in Figure 7 cover only limited
regions. Due to insufficient numerical accuracy, it is difficult
to extend these surfaces to larger region at present time. In
addition, the fan surfaces extended from other regions,
especially from the magnetotail region where magnetic
reconnection is also expected, are not drawn here. Thus,
the magnetospheric surfaces are only analyzed in the visu-
alized region that is corresponding to the subsolar region.
[30] As shown in Figures 7a, 7b, and 7c defined for IMF
jBzj = 0.08 on the increasing black curve in Figure 5 before
the bifurcation, a magnetic null point is now split into five
magnetic null points including three positive and two
negative magnetic null points. However, the five magnetic
null points are still tightly connected and clustered around a
small area near the magnetopause subsolar region illustrated
by the white rectangle. These are the 3-D magnetic null

points joined by separators. Comparing with Figure 1, these
3-D magnetic null points joined by separators appear by
introducing two new positive-negative null pairs following
the topological rule in section 2. As shown in Figures 7a,
7b, and 7c, three fan surfaces are connected to the ‘‘Earth’’
including two negative fan surfaces (red) and one positive
(blue). Two positive fan surfaces (blue) span out to outside
magnetosphere. These are the typical topological properties
discussed in section 2. In order to avoid any overwhelming
in Figures 7a–7c, the connecting line joining each magnetic
null point is not shown.
[31] As shown in Figures 7d, 7e, and 7f, l = 0.1, after the

bifurcation, the magnetic null points are no longer tightly
connected in one small region located around the subsolar
point but begin to separate both duskward (�y) and dawn-
ward (+y), and form two separated clusters illustrated now
by two separate rectangles. In Figures 7d–7f, one negative-
positive null pair is focused on the dawnside (+y), and two
negative and one positive magnetic null points are focused
on the duskside (�y). The magnetic null points illustrated
by white dots may not visible in Figures 7e and 7f due to
3-D perspective representation. Instead, the white rectangles
are located in the regions where the magnetic null points are
clustered. In total, we have two positive and three negative
magnetic null points. At the same time, they significantly
move earthward (+x), the dayside magnetosphere signifi-
cantly shrinks, and this causes the jump in Figure 5. In this
case, the topological rule is observed by matching the
magnetic null points in the tail globally. One negative
(red) and positive (blue) fan surface pair in the dawnside
(+y) connects to the ‘‘Earth’’ South and North Pole, respec-
tively. One negative fan surface (red) in the duskside (�y)
connects to the ‘‘Earth’’ South Pole, and one positive (blue)
and negative (red) fan surface pair span out to outside
magnetosphere.
[32] After l = 0.1, we still increase l up to 0.15. During

the increase of l, the number of magnetic null points
increases and they are divided into two groups, i.e., one
in the dawnside and another in the duskside, and both move
toward the flanks of magnetosphere, i.e., to ±y, respectively.
At the same time, each group moves backward (�x), i.e.,
toward the ‘‘Earth.’’ The dayside magnetosphere continues
to shrink. The two clusters are separated each other and
move duskward (�y) and dawnward (+y) in opposite
directions and the global separator joining them largely
extends. This phenomenon is the ‘‘extension of global
separator’’ and is the analog of the so-called ‘‘X line
extension’’ in 2-D simulation. After l reaches the value
0.15, we gradually decrease l back to 0.1 (red). While
decreasing l = 0.1 (red curve in Figure 5), the magnetic null
points are still split into two groups as shown in Figures 7g,
7h, and 7i. One group with three magnetic null points is
located in the dawnside (+y) while another with two
magnetic null points is located in the duskside (�y).
However, these do not return to the same locations, and
remain far from the subsolar point. Thus, the newly created
magnetic null points, which moved outside the region
represented in Figure 7, cannot be shown. A new algorithm
to resolve this problem should be presented in the near
future. After the bifurcation, a new magnetic field topology
emerges and the new magnetic null points appear as
positive-negative pairs or in even numbers, and those pairs

Figure 6. Cross section at the meridian plane Z-X of
the magnetic field for IMF jBzj = 0.1 defined in the
(a) increasing and (b) decreasing phase of the IMF.
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Figure 7. (a–c) One magnetic field topology is shown for IMF jBzj = 0.08 in the increasing phase
before bifurcation. Two magnetic field topologies are shown for southward IMF jBzj = 0.1 after
bifurcation as southward IMF jBzj (d–f) increases from lower values and (g–i) decreases from higher
values. Magnetic field topologies are shown at the X-Z plane in Figures 7a, 7d, and 7g, at the Y-X plane
in Figures 7b, 7e, and 7h, and at the Y-Z plane in Figures 7c, 7f, and 7i. The white dots are the magnetic
null points. The white dots may be difficult to see due to some 3-D perspective representations, especially
for Figures 7c, 7d, and 7f. Instead, white rectangles are used to focus on the regions where the magnetic
null points are clustered. One initial rectangle (one cluster) defined for IMF jBzj = 0.08 is split into two
rectangles (two clusters) for IMF jBzj = 0.1 for l increasing/decreasing phases. Fan surfaces (S surfaces)
associated with a positive and negative null point are visualized with blue and light red, respectively.
Spine curves (g lines) from a positive and negative null point are visualized with yellow and dark red,
respectively.
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matched with the magnetic null points in the tailside that is
outside the investigated region.
[33] In summary, when the increasing l exceeds a certain

value, shown as black curve in Figure 5, a new magnetic
field topology composed of two clusters of magnetic null
points in the dawnside and duskside emerge after the
bifurcation, and the newly bifurcated field in the branch
of a stable magnetic field stays almost unchanged. Even if
we increase the l parameter further and decrease it back to
the same point, the branch of a stable magnetic field stays
unchanged. This means that the magnetic null points remain
split into two clusters located in the dawnside and duskside

regions, respectively. At the same time, this splitting is the
key point for understanding how the bifurcated magneto-
spheric structure absorbs the excess energy from the solar
wind. Of course, some local modifications of the topology
can be found and, strictly speaking, the field topology
differs among all three cases considered in Figure 7. Two
topologies of the magnetic field shown in Figures 7d, 7e,
and 7f and Figures 7g, 7h, and 7i are ‘‘topologically almost
equivalent’’ because for both cases the magnetic null points
are divided into two groups in dawnside and duskside,
respectively. This evidences that the two groups still remain
on the same branch of the magnetic field. However, the

Figure 7. (continued)
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distance between the two groups of magnetic null points in
Figures 7g, 7h, and 7i for l = 0.1 (red) are 1.7 times larger
than that in Figures 7d, 7e, and 7f for l = 0.1 (black). The
two groups of the magnetic null points do not return close
enough to the subsolar point as l is approaching l0. This
difference is the consequence of the decreasing l (red
curves in Figure 5) exceeding the critical value lc. Similar
differences are also found in the nearby magnetotail region
but are not analyzed herein. Please note that instead of
discussing the strict argument of topological equivalence,
here we mainly focus on how the magnetic null points are
split into two clusters of magnetic null points, because these
are searched and analyzed only within the limited area of
the subsolar region.

5. Conclusions

[34] In the present paper, we analyze the dynamics of the
dayside magnetospheric region by using an analogy with
the bifurcation theory based on the field topology. This
analogy allows us to show that the solar wind magnetic field
and the magnetospheric surface magnetic field may bifur-
cate as the southward IMF increases and exceeds a critical
value. This is inferred by the following observations: (1)
one cluster of magnetic null points near the subsolar region
is split into two clusters on the dawnside and duskside,
respectively, as shown in Figure 7, and a different topology
appears when l exceeds this critical value; (2) at the same
time the size of the dayside magnetosphere, or the distance
Rmp, is significantly reduced. Thus, we infer that the
bifurcated magnetic field that replaces the unstable known
magnetic field may break the symmetry of the known field,
adopting a form of reduced symmetry in which dissipative
processes arise to absorb the excess energy from the solar
wind. More precisely, when the parameter l exceeds the
critical valuelc, there may be no adjacent bifurcated mag-

netic field that differs only infinitesimally from the unstable
known magnetic field. Instead, one may evidence a finite
jump to a new branch of the field that may represent a
radical change in the topology of the external magnetic field
and in the phase portrait of the magnetospheric surface field
in dayside as shown in Figure 7.
[35] The rigorous arguments of topological changes or

bifurcation are not discussed here. In particular, the changes
in the external magnetic field require further investigation
which will be reported in future study [Tricoche et al.,
2002]. The physical mechanism of how the magnetosphere
reaches the configuration where large-scale dissipative
processes can take place and where 3-D topological struc-
ture allows the magnetosphere to absorb the excess energy
from the solar wind is the crucial point to understand the
dynamics of overall magnetosphere. However, we would
like to leave this for our future research. According to the
bifurcation theory discussed in section 2, this jump and the
associated bifurcation are difficult to predict precisely. This
subcritical type or jump-like transition is proposed to be the
signature of the magnetic reconnection process at the
dayside region. As the parameter l decreases, the magne-
topause recovers its initial state but not following the same
path used as l increases: hysteresis effect is evidenced
within a certain interval of IMF jBzj values. This hysteresis
is the signature of irreversible dissipation processes during
which the topology of the magnetic field is strongly
changed (Figure 7) and does not recover its initial state
for the same value of the IMF jBzj within this interval. In
other words, the field energy previously stored in the
magnetosphere since IMF jBzj is increasing but is not
spontaneously recovered as l decreases. These properties
represent the indirect signatures of the reconnection process
on the dayside.
[36] These features may have certainly some consequen-

ces for the Space Weather program, concerning the impact
of a long-term southward IMF variation (increase/decrease)
on the magnetosphere dynamics [e.g., Nishikawa and
Ohtani, 2000a]. These may certainly present strong diffi-
culties for the predictions in the global solar wind–Earth
environment interactions. Additional points such as how the
bifurcation magnetic fields break the symmetry of the
known field, and what dissipative processes take place
can only be understood by using the field topology analysis.
However, these points are not yet addressed in the present
work and are left for a future investigation.
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