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Abstract

This work provides asymptotic properties of the autocorrelation functions of the wavelet packet

coefficients of a fractional Brownian motion. It also discusses the convergence speed to the limit autocor-

relation function, when the input random process is either afractional Brownian motion or a wide-sense

stationary second-order random process. The analysis concerns some families of wavelet paraunitary

filters that converge almost everywhere to the Shannon paraunitary filters. From this analysis, we derive

wavelet packet based spectrum estimation for fractional Brownian motions and wide-sense stationary

random processes. Experimental tests show good results forestimating the spectrum of1/f processes.

Index Terms

Wavelet packet transforms, Fractional Brownian motion, Gray code, Spectral analysis.

I. I NTRODUCTION

Wavelet and wavelet packet analysis of stochastic processes have gained much interest in the last

two decades, since the earlier works of [1], [2], [3], [4], [5]. Concerning the correlation structure of

the wavelet coefficients, and according to the nature of the input random process, one can distinguish,
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first, some results [6], [7], [8], [9], [10], [11], [12], [13],[14] dedicated to the wavelet transform of

certain non-stationary processes such as processes with stationary increments and fractionally differenced

processes. These references highlight that wavelet coefficients tend to be decorrelated provided that the

decomposition level tends to infinity and the decomposition filters satisfy suitable properties. Second,

results of the same order holds true for stationary random processes as shown in [15], [16], [17].

In [17], one can find an attempt for the generalization of the decorrelation properties to the case of the

wavelet packet transform, when the input random process is stationary. On the basis of the framework

of [17], [18] proposes an extension to the case of the dual-tree wavelet packet transform. The results

stated in [17] and [18] stipulate that for stationary randomprocesses, the limit autocorrelation functions

of the wavelet packet coefficients do not depend on the waveletpacket path and the decomposition filters

considered.

However, by using certain families of wavelet filters, it is shown in [19] that the limit autocorrelation

functions of the wavelet packet coefficients of band-limitedwide-sense stationary random process still

depend on the path followed in the wavelet packet decomposition tree. The decomposition considered in

[19] is performed by using certain paraunitary filters that converge almost everywhere to the Shannon

filters (Daubechies and Battle-Lemarié filters are examples of such families of filters). In fact, the

dependency of the decorrelation process and the wavelet filters has been highlighted earlier by [20]

and this dependency also appears in [14] which discusses thedecorrelation rate for the standard wavelet

packet decomposition, when the Daubechies filters are used.

More precisely, [21] shows that the results presented in [17] and [18] concern only one path of the

wavelet packet decomposition tree, that is the approximation path of the standard wavelet transform.

The analysis of the limit autocorrelation functions cannot be performed independently of the type of the

decomposition filters or, equivalently, on the type of motherwavelet used because for the wavelet packet

decomposition, the shift parameter depends on the decomposition level and cannot be upper-bounded, so

that convergence criterion such as the Lebesgue’s dominatedconvergence theorem cannot easily apply

(see [21]).

This paper first extends the results of [19] when the input random process for the wavelet packet

decomposition is not constrained to be band-limited. The paper also provides, as a main contribution, the

asymptotic autocorrelation functions of the wavelet packet coefficients for fractional Brownian motions.

We use the same formalism as that of [19]. The results obtainedcomplete those of [6], [7], [8], [9], [12]

which are dedicated to the standard wavelet transform of a fractional Brownian motion.

The paper is organized as follows. In Section III the asymptotic properties of the autocorrelation
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functions of the wavelet packet coefficients of stationary random processes and fractional Brownian

motions are discussed. Section IV addresses the convergencespeed of the decorrelation process in order

to evaluate how well we can approach the limit autocorrelation function of the wavelet packet coefficients.

This convergence speed informs us whether we can obtain, in practice, a good convergence rate at finite

decomposition levels. As a consequence of the theoretical results obtained in Sections III and IV, Section

V discusses wavelet packet based spectrum estimation, by using suitable decomposition filters. Finally,

Section VI concludes this work. The next section provides definitions and basic material used in the

paper (see [19], [22], [23] for further details).

II. BASICS ON WAVELET PACKETS

Let Φ ∈ L2(R) andU be closure of the space spanned by the translated versions ofΦ:

U = Closure〈τkΦ : k ∈ Z〉.

The wavelet packet decomposition ofU is obtained by recursively splitting the spaceU into orthogonal

subspaces,U = W1,0 ⊕ W1,1 andWj,n = Wj+1,2n ⊕ Wj+1,2n+1, whereWj,n ⊂ U is defined by

Wj,n = Closure〈Wj,n,k : k ∈ Z〉,

and{Wj,n,k : k ∈ Z} is the orthonormal set of thewavelet packet functions. In this decomposition, any

Wj,n,k is defined by

Wj,n,k(t) = τ2jkWj,n(t)

= τ2jk

(
2−j/2Wn(2−jt)

)

= 2−j/2Wn(2−jt − k), (1)

and the sequence(Wn)n>0 is computed recursively fromΦ and someparaunitary filters(Hǫ)ǫ=0,1 with

impulse responses(hǫ)ǫ=0,1 (see [19], [23] for details).

In this paper, we assume thatΦ is the scaling functionassociated with the low-pass filterH0 so

that W0 = Φ ([22], [23]). The decomposition spaceU is then the space generated by the translated

versions of the scaling function. The recursive splitting ofU yields awavelet packet treecomposed of

the subspacesWj,n, where j is the decomposition (or resolution) level andn is the shift parameter.

For a given pathP = (U, {Wj,n}j∈N) in the wavelet packet decomposition tree, the shift parameter

n = nP(j) ∈ {0, . . . , 2j − 1} is such thatnP(0) = 0 and

nP(j) = 2nP(j − 1) + ǫj =

j∑

ℓ=1

ǫℓ2
j−ℓ, (2)
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whereǫℓ ∈ {0, 1}, ǫℓ indicates that filterHǫℓ
is used at the decomposition levelℓ, with ℓ > 1 (see [19]

for details on paths and shift parameter characterization).

Consider a real-valued centered second-order random processX assumed to be continuous in quadratic

mean. The projection ofX on a wavelet packet spaceWj,n yields coefficients that define a discrete

random processcj,n = (cj,n[k])k∈Z. We have, with convergence in the quadratic mean sense :

cj,n[k] =

∫

R

X(t)Wj,n,k(t)dt. (3)

In what follows, we are concerned by a family of scaling functions (Φ[r])r that satisfy almost every-

where (a.e.) the following property

lim
r→∞

FΦ[r] = FΦS (a.e.), (4)

whereΦS(t) = sin(πt)/πt is the Shannon scaling function. The Fourier transform ofΦS is

FΦS = 1l[−π,π], (5)

where 1l∆ denotes the indicator function of a given set∆ (1l∆(x) = 1 if x ∈ ∆ and 1l∆(x) = 0, otherwise).

The Daubechies and spline Battle-Lemarié scaling functions satisfy Eq. (4). The parameterr, hereafter

calledorder, is the number of vanishing moments of the wavelet function for the Daubechies functions

[24] and this parameter is the order of the spline scaling function for the Battle-Lemarié functions [25],

[26]. The decomposition filters(H [r]
ǫ )ǫ∈{0,1} associated with these functions satisfy (see [24], [25], [26]):

lim
r→∞

H [r]
ǫ = HS

ǫ (a.e.). (6)

where (HS
ǫ )ǫ∈{0,1} are the ideal low-pass and high-pass Shannon filters. In the rest of the paper, we

assume thatH [r]
ǫ for ǫ ∈ {0, 1} are with finite impulse responses. This holds true for the Daubechies and

Battle-Lemaríe paraunitary filters. It the follows that:

Remark 1:The wavelet packet functionW [r]
j,n,k is obtained by a recursive decomposition involving

the wavelet functionW [r]
1 : W

[r]
j,n,k(t) = 2−j/2W

[r]
n (2−jt − k) where W

[r]
n is defined forǫ = 0, 1 by

W
[r]
2n+ǫ(t) =

√
2
∑

ℓ∈I

h[r]
ǫ [ℓ]W [r]

n (2t − ℓ) for every n > 1, I being a set of finite cardinality(because we

assume that the wavelet paraunitary filters with finite impulseresponses).

The remark above will prove useful in the sequel. When the Shannon paraunitary ideal filtersHS
0 (low-

pass) andHS
1 (high-pass) are used, then the Fourier transform of a wavelet packet functionW S

j,n is (see

[23], among others)

FW S
j,n = 2j/21l∆j,G(n)

. (7)
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The set∆j,G(n) is such that∆j,G(n) = ∆−
j,G(n) ∪ ∆+

j,G(n), where∆−
j,G(n) and ∆+

j,G(n) are symmetrical

with respect to the origin, and (see [19], [23], [27])

∆+
j,G(n) =

[
G(n)π

2j
,
(G(n) + 1)π

2j

]
, (8)

with

G(2ℓ + ǫ) =





2G(ℓ) + ǫ if G(ℓ) is even,

2G(ℓ) − ǫ + 1 if G(ℓ) is odd.
(9)

The decomposition spaceU = U
S is then theπ-band-limitedPaley-Wiener space, that is the space

generated by the translated versions of the Shannon scaling function ΦS. The Shannon wavelet packet

tree and the frequency re-ordering induced by the permutation G are represented in figure 1.
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Fig. 1. Shannon wavelet packet decomposition tree. The positive partof the support ofFW S
j,n is indicated below each node

W
S
j,n. The wavelet packets associated with the sequence(ǫ1, ǫ2, ǫ3) = (0, 1, 1) define a path(US,WS

j,n)j=1,2,3. We have

ǫj = 0 (resp.ǫj = 1) if the low-pass (resp. high-pass) filter is used for computing the wavelet packets of decomposition level

j. The wavelet packetWS

3,n(3) of this path is such thatn(3) = ǫ32
0 + ǫ22

1 + ǫ12
2 = 3 and the positive part of the support of

W
S

3,n(3) is ∆+
j,G(n(3)) with G(n(3)) = 4.

From now on, an upper indexS (resp. [r]) will be used, when necessary, to emphasize that the

decomposition is achieved by using filters(HS
ǫ )ǫ∈{0,1} (resp.(H [r]

ǫ )ǫ∈{0,1}).

III. A SYMPTOTIC ANALYSIS

A. Asymptotic analysis of the autocorrelation functions

Let P be a path of the wavelet packet decomposition tree. From the description given in Section II,

P is characterized by a sequence of nodes(j, n)j>1, wheren = nP(j) is given by Eq. (2) at every

decomposition levelj. Let ωP , 0 6 ωP 6 π, be the value such that (see [19] for the existence of this

limit)

ωP = lim
j→+∞

G(nP(j))π

2j
. (10)
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Assume that the input second-order random processX is a wide-sense stationary with spectrum (power

spectral density)γ ∈ L∞(R). Then, the discrete random processcj,n defined by Eq. (3) is wide-sense

stationary and its autocorrelation function is (see [17], [19])

Rj,n[m] =
1

2π

∫

R

γ(ω)|FWj,n(ω)|2ei2jmωdω. (11)

Whenj increases, the behavior of the autocorrelation functionRj,n depends on the wavelet packet path

and the paraunitary filters used to decomposeX. More precisely, we have:

Theorem 1:Consider a real-valued centered second-order random processX assumed to be continuous

in quadratic mean. Assume thatX is wide-sense stationary with spectrumγ ∈ L∞(R). We have

(i) The autocorrelation functionRS
j,n is

RS
j,n[m] =

2j

π

∫

∆+
j,G(n)

γ(ω) cos (2jmω)dω. (12)

(ii) If γ is continuous atωP given by Eq. (10), then we have, uniformly inm ∈ Z

lim
j→+∞

RS
j,n[m] = γ(ωP)δ[m], (13)

whereδ[·] is the Kronecker symbol defined for every integerk ∈ Z by

δ[k] =





1 if k = 0,

0 if k 6= 0.

(iii) The autocorrelation functionR[r]
j,n satisfies

lim
r→+∞

R
[r]
j,n[m] = RS

j,n[m]. (14)

Proof: Easy extension of [19, Theorem 1]. In this reference, the decomposition space is theπ-

band-limitedPaley-Wiener spaceand the spectrumγ of X is assumed to be supported in[−π, π]. These

assumptions are relaxed here by considering the projectionof X on the space generated by the translated

versions of the scaling function associated with the decomposition filters used.

Now, assume thatX is a centered fractional Brownian motion with Hurst parameter α. We assume

that 0 < α < 1, and that the path considered in the wavelet packet tree isP 6= P0, whereP0 is the path

located at the far left hand side of the wavelet packet tree. PathP0 corresponds to the standard wavelet

approximation path since the low-pass filter is used at every resolution level. For pathP0, there is no

convergence for the limit integrals involved in the computation of the wavelet packet coefficients, with

respect to the wavelet packet functions considered in this work. In addition, the casesα = 0 andα = 1
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are irrelevant here becauseα = 0 corresponds to a white Gaussian process and the spectral densities of

the wavelet packet coefficients are notL1(R) for α = 1.

Let R(t, s) stands for the autocorrelation function ofX. We have

R(t, s) = E[X(t)X(s)]

=
σ2

2

(
|t|2α + |s|2α − |t − s|2α

)
. (15)

Theorem 2 below requires assumptions (A1-A3) used in [12] to prove the existence of the spectral

density of the wavelet transform of a fractional Brownian motion.

Theorem 2:Assume that the wavelet paraunitary filters(H
[r]
0 , H

[r]
1 ) are with finite impulse responses

and that there exists some finite orderr0 such that for everyr > r0, the wavelet functionW [r]
1 satisfy

the following assumptions:

(A1) (1 + t2)W
[r]
1 (t) ∈ L1(R),

(A2)
∫

R

W
[r]
1 (t) = 0,

(A3) sup|ω|6η

∣∣∣FW
[r]
1 (ω)/ω

∣∣∣ < ∞ for someη > 0.

Then, the discrete random processc
[r]
j,n, n > 1, obtained from the projection of the fractional Brownian

motion X on the wavelet packetW[r]
j,n is wide-sense stationary and its autocorrelation functionis

R
[r]
j,n[m] =

1

2π

∫

R

γα(ω)|FW
[r]
j,n(ω)|2ei2jmωdω, (16)

with

γα(ω) =
σ2Γ(2α + 1) sin(πα)

|ω|2α+1
, (17)

where∆+
j,G(n) is given by Eq. (8) andΓ is the standard Gamma function.

Proof: Theorem 2 is a consequence of [12, Theorem 1]. In order to apply [12, Theorem 1] for the

wavelet packet functions, we need to show that everyW
[r]
j,n,k, j > 1 andn ∈ {1, 2, . . . , 2j − 1}, satisfy

assumptions (A1), (A2) and (A3); which simply follows from remark 1. Appendix A summarizesthe

steps involved in the proof.

Remark 2:Under assumption (A3), the integral in Eq. (16) is absolutely convergent for everypair (j, n)

with n 6= 0. Thus, from the Bochner’s theorem, we derive that, for a givenj > 1 andn ∈ {1, 2, . . . , 2j−1},

the spectral density of the wavelet packet coefficientsc
[r]
j,n of the fractional Brownian motionX is:

γ
[r]
j,n(ω) =

1

2π
γα(ω)|FW

[r]
j,n(ω)|2.
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By taking the Fourier transform of Eq. (1), we haveFW
[r]
j,n(ω) = 2j/2FW

[r]
n (2jω). Thus, we have

γ
[r]
j,n(ω) =

2j−1

π
γα(ω)|FW [r]

n (2jω)|2, (18)

where (see [19, Lemma 1])

FW [r]
n (ω) =

[
j∏

ℓ=1

H [r]
ǫℓ

(
ω

2j+1−ℓ
)

]
FΦ[r](

ω

2j
), (19)

the sequence(ǫ1, ǫ2, . . . , ǫj) being the binary sequence associated with the shift parameter n, with n of

the form Eq. (2).

Remark 3:Note that assumption (A1) is not satisfied for the Shannon waveletW S
1 (t) defined by

W S
1 (t) = 2W S

0 (2t) − W S
0 (t), (20)

whereW S
0 (t) = ΦS(t) = sin(πt)/πt. Thus, Theorem 2 does apply in order to obtain the analytic form

of the spectral density of the Shannon wavelet packet coefficients of X.

Theorem 3:With the same assumptions as in Theorem 2 above, and under assumption:

(A4) there exists some positive functiong ∈ L1(R) that dominates the sequence(|FW
[r]
1 |2)r and satisfy:

sup|ω|6η g(ω)/|ω|2 < ∞ for someη > 0.

The autocorrelation functions of the wavelet packet coefficients of the fractional Brownian motionX

satisfy

(i)

lim
r→+∞

R
[r]
j,n[m] =

2j

π

∫

∆+
j,G(n)

γα(ω) cos (2jmω)dω

, RS
j,n[m] (21)

where∆+
j,G(n) is given by Eq. (8).

(ii)

lim
j→+∞

RS
j,n[m] = γα(ωP)δ[m], (22)

whereRS
j,n is defined by Eq. (21) withγα given by Eq. (17).

Remark 4:As highlighted by remark 3, Theorem 2 does not apply in order toobtain the analytic form

of the autocorrelation functionRS
j,n, n 6= 0, for the wavelet packet coefficients of a fractional Brownian

motion. The above definition ofRS
j,n (second equality in Eq. (21)) shows that results similar to those of
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Theorem 2 still hold for the Shannon wavelet packets so that, from Eq. (21), we can define the spectral

density of the Shannon wavelet packet coefficients of a fractional Brownian motion as

γS
j,n(ω) =

2j−1

π
γα(ω)1l∆j,G(n)

(2jω),

=
1

2π
γα(ω)|FW S

j,n(ω)|2, (23)

whereFW S
j,n(ω) is given by Eq. (7); withγS

j,n(0) = 0 since0 does not belong to∆j,G(n) whenn 6= 0.

Proof: (of Theorem 3).

Proof of statement (i):

By taking into account [19, Lemma 1], and if(ǫ1, ǫ2, . . . , ǫj) is the binary sequence associated with

the shift parametern; that is: if n is of the form Eq. (2), then we haveFW
[r]
j,n(ω) = 2j/2FW

[r]
n (2jω),

with FW
[r]
n given by Eq. (19). Thus, by taking into account Eqs. (4) and (6), we have that|FW

[r]
j,n|2

converges almost everywhere to|FWS
j,n|2 whenr tends to infinity.

Since|H [r]
ǫℓ

(ω)| 6 1 for all ℓ = 1, 2, . . . , j, and because we assumen 6= 0, we have also from Eq. (19)

that |FW
[r]
j,n(ω)| 6 2j/2|FW

[r]
1 (2ω)|. Thus, we have

γα(ω)|FW
[r]
j,n(ω)|2 6 2jγα(ω)|FW

[r]
1 (2ω)|2,

and by taking into account assumption (A4), we have thatγα(ω)|FW
[r]
j,n(ω)|2 is dominated by the function

f(ω) = 2jγα(ω)g(2ω) which does not depends onr. Moreover, the functionf is integrable: indeed, by

settingK1 = 2jσ2Γ(2α + 1) sin(πα), we have
∫

R

f(ω)

K1
dω =

∫

R

g(2ω)

|ω|2α+1
dω

6

∫

|ω|6η

K2

|ω|2α−1
dω +

1

η2α+1

∫

|ω|>η
g(2ω)dω

< ∞ (24)

for everyα, 0 < α < 1, and whereK2 is a constant such thatsup|ω|6η

(
g(2ω)/|ω|2

)
< K2; the existence

of K2 andη being guaranteed by the assumption (A4).

It follows from Lebesgue’s dominated convergence theorem that

lim
r→+∞

R
[r]
j,n[m]

= lim
r→+∞

(
1

2π

∫

R

γα(ω)|FW
[r]
j,n(ω)|2ei2j(k−ℓ)ωdω

)

=
1

2π

∫

R

γα(ω)|FWS
j,n(ω)|2ei2j(k−ℓ)ωdω. (25)
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Statement (i) derives from Eq. (25), after some straightforward calculations by taking into account that

FWS
j,n is given by Eq. (7). One can easily check that integral in Eq. (25) is absolutely convergent for

every pair(j, n) with n 6= 0, because|FW S
j,n(ω)| is compactly supported and 0 does not belong to its

support (see Eq. (7)).

Proof of (ii): Statement (ii) simply derives from Lemma 2 given in appendix B:if P 6= P0, thenωP 6= 0,

0 /∈ ∆+
j,G(n) (which moreover is a closed set), and the function1/|ω|2α+1 is integrable on∆+

j,G(n) and

is continuous atωP .

From Theorems 2 and 3, we have thatc
[r]
j,n is wide-sense stationary and tend to be decorrelated when

both r andj tend to infinity, with varianceγα(ωP) in pathP 6= P0 of the wavelet packet decomposition

tree. The following highlights that the Daubechies and the spline Battle-Lemaríe wavelet families satisfy

assumptions of Theorems 2 and 3.

The Fourier transform of a Daubechies or a Battle-Lemarié waveletW [r]
1 of orderr has the following

form.

FW
[r]
1 (ω) = H

[r]
1 (ω/2)FΦ[r](ω/2), (26)

whereΦ[r] denotes a scaling function andH [r]
1 the associated wavelet filter.

B. Properties of the Daubechies and the spline Battle-Lemarié functions

The following proves that the Daubechies and spline Battle-Lemaríe functions satisfy assumptions

(A1-A4) of Theorems 2 and 3. Note that all the Daubechies and Battle-Lemaríe wavelet functions

satisfy assumption (A2) by construction (null moments condition, see [22], [23]).In addition, since the

Daubechies wavelet functions are bounded with compact support [22], they satisfy assumption (A1). The

Battle-Lemaríe wavelet functions satisfy assumption (A1) as well because these functions are bounded

and have exponential decays [22, Corollary 5.4.2]. Since assumption (A4) implies (A3), it suffices now

to check that assumption (A4) holds true for the sequences of Daubechies and Battle-Lemarié wavelet

functions.

1) The family of Daubechies wavelet functions satisfies assumption (A4): More precisely, we have

Proposition 1: The Daubechies wavelet functions(W
[r]
1 )r are such that

|FW
[r]
1 (2ω)|2 6 K

(∣∣∣sin ω

4

∣∣∣
2

1l{|ω|6η} +
1

|ω|2 1l{|ω|>η}

)
(27)

for any η such0 < η 6 2π/3, whereK > 0 is a constant independent ofr.
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Proof: The Fourier transform of Daubechies wavelet functionW
[r]
1 of order r is of the form Eq.

(26).

We have from [22, Lemmas 7.1.7 and 7.1.8] that:

|FΦ[r](ω)| 6
C

(1 + |ω|)r−r log(3)

log(2)
+ log(3)

log(2)

, (28)

for everyr = 1, 2, . . ., and thus, we derive

|FΦ[r](ω)|2 6
C2

(1 + |ω|)2 . (29)

On the other hand, the Daubechies wavelet filterH
[r]
1 is defined by

H
[r]
1 (ω) = e−iω/2

(
1 − eiω/2

2

)r

Pr(ω), (30)

wherePr is a trigonometric polynomial (see [22], [23] for more details). From [22, Lemmas 7.1.3 and

7.1.4], we have thatsupω |Pr(ω)| 6 2r−1. Thus, we get

|H [r]
1 (ω)| 6

∣∣1 − eiω/2
∣∣r

2
6 2r−1

∣∣∣sin ω

4

∣∣∣
r
. (31)

It follows that |H [r]
1 (ω)| 6 | sin(ω/4)| for |ω| 6 2π/3 and the result derives by taking into account Eqs.

(26) and (29), withK = C2.

2) The family of Battle-Lemarié wavelet functions satisfies assumption (A4): The Battle-Lemaríe

scaling and wavelet functions are computed from the normalized central B-spline of orderr. The Fourier

transform of its associated wavelet function is of the form Eq. (26) with (see [23], [28], [29])

H
[r]
1 (ω) = e−iω/2| sin(ω/2)|r

√
Θr(ω + π)

Θr(2ω)
(32)

and

|FΦ[r](ω)| =
1

|ω|r
1√∑

k∈Z

1
(ω+2kπ)2r

, (33)

or, equivalently,

|FΦ[r](ω)| =

∣∣∣∣
sin(ω/2)

ω/2

∣∣∣∣
r/√

Θr(ω), (34)

where

Θr(ω) =
∑

k∈Z

∣∣∣∣
sin(ω/2 + kπ)

ω/2 + kπ

∣∣∣∣
2r

(35)

=
(
cos

ω

4

)2r
Θr(

ω

2
) +

(
sin

ω

4

)2r
Θr(

ω

2
+ π). (36)
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Lemma 1:For everyr = 1, 2, . . . , the functionH
[r]
1 defined by (32) satisfy

sup
|ω|6π/2

|H [r]
1 (ω)/ω| 6 1/

√
2. (37)

Proof: If |ω| 6 π/2, then (see [25]) we haveΘr(ω + π) 6 Θr(ω), and thus

Θr(ω + π)

Θr(2ω)
=

1

(sin(ω/2))2r + (cos(ω/2))2r Θr(ω)
Θr(ω+π)

6
1

(sin(ω/2))2r + (cos(ω/2))2r , (38)

and since we assume|ω/2| 6 π/4, then we obtain

Θr(ω + π)

Θr(2ω)
6 2r,

and the result follows: ∣∣∣∣∣
H

[r]
1 (ω)

ω

∣∣∣∣∣ 6 2r/2 | sin(ω/2)|r
|ω|

= 2r/2−1| sin(ω/2)|r−1 | sin(ω/2)|
|ω/2| (39)

and for |ω/2| 6 π/4, we have| sin(ω/2)|r−1 6 2−(r+1)/2 and | sin(ω/2)|
/
|ω/2| 6 1.

Proposition 2: The Battle-Lemaríe scaling functions satisfy

|Φ[r](ω)|2 6 1l{|ω|62π} +
2π

ω2
× 1l{|ω|>2π}, (40)

for everyr = 1, 2, . . ..

Proof: For everyr = 1, 2, . . . , we have from Eq. (33) that|FΦ[r](ω)| 6 1 for every ω ∈ R. This

result follows from that

∑

k∈Z

1

(ω + 2kπ)2r
=

1

ω2r
+
∑

k∈Z

k 6=0

1

(ω + 2kπ)2r
>

1

ω2r
.

On the other hand, for everyω ∈ R, there exists somek0 ∈ Z such that0 6 ω + 2k0π < 2π. Thus,

∑

k∈Z

1

(ω + 2kπ)2r
=

1

(ω + k0π)2r
+
∑

k∈Z

k 6=k0

1

(ω + 2kπ)2r

>
1

(2π)2r
, (41)

so that|FΦ[r](ω)|2 6 (2π/ω)2r = (2π/ω)2 × (2π/ω)2r−2. When |ω| > 2π, we have(2π/ω)2r−2 6 1

for everyr = 1, 2, . . .. It follows that |FΦ[r](ω)|2 6 (2π/ω)2 for |ω| > 2π.
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Finally, we have that the family of Battle-Lemarié wavelet functions satisfies assumption (A4) since

from Eqs. (26), (37) and (40), we obtain

|FW
[r]
1 (2ω)|2 6

ω2

2
× 1l{|ω|6π

2
} + 1l{π

2
<|ω|62π} +

2π

ω2
× 1l{|ω|>2π} (42)

Theorems 1 and 3 specify the asymptotic behavior of the wavelet packet coefficients when using some

families of paraunitary filters that converge almost everywhere to the Shannon filters. The following

discusses consequences of Theorems 1 and 3. Due to the complexity of the convergence involved, the

key point is the convergence speed to the limit autocorrelation and distributions. In fact, if the convergence

speed is fast, we can expect reasonable decorrelation of thewavelet packet coefficients for finitej and

r.

IV. ON THE CONVERGENCE SPEED OF THE DECORRELATION PROCESS

Consider a family of paraunitary filters satisfying Eqs. (6) and a second order centered random process

X being either fractional Brownian motion or wide-sense stationary with spectrumγ. The convergence

speed to the limit autocorrelation for the wavelet packet coefficients ofX depends on two factors:

A. The convergence speed involved in Eq. (6), that is, the speed ofthe convergence to the Shannon

filters.

B. The convergence speed to the limit autocorrelation in the case where the decomposition used is

achieved by the Shannon filters.

A. Convergence of paraunitary filters to the Shannon filters

Theorems 1 and 3 concern some paraunitary filters that approximate the Shannon filters in the sense

given by Eq. (6). According to these theorems, we can expect that using paraunitary wavelet filters that

are close to the Shannon filters will approximately lead to the same behavior as that obtained by using

the Shannon filters. In this respect, the following illustrates how close standard Daubechies, Symlets

and Coiflets paraunitary filters can be to the Shannon filters. Thesestandard filters are derived from the

Daubechies polynomial

H
[r]
0 (ω) =

(
1 + e−iω

2

)r

Q(e−iω),

so thatr describes the flatness ofH
[r]
0 at ω = 0 and ω = π [30]. Figure 2 illustrates the convergence

speed for the scaling filters depending on their orders.
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Fig. 2. Graphs of|H [r]
0 | for the Daubechies, Symlets and Coiflets scaling filters. “FilterName[r]” denotes the filter type and

its order,r.

The Meyer paraunitary filters are also close to the Shannon filtersin the sense that these filters match

the Shannon filters in the interval[−π,−2π/3] ∪ [−π/3, π/3] ∪ [2π/3, π]. The magnitude response of

the Meyer scaling filter (normalized by1/
√

2) is given in figure 3.

H0(ω) =





√
2 if ω ∈ [−π

3 , π
3 ],

0 if ω ∈ [−π,−2π
3 ] ∪ [2π

3 , π].
(43)

It follows from figures 2 and 3 that we can approach the flatness ofthe Shannon filters with finite

impulse response paraunitary filters. The following now addresses the convergence speed when the wavelet

decomposition filters are the Shannon filters.
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Fig. 3. Magnitude response of Meyer scaling filter normalized by the factor 1/
√

2.

B. Convergence speed for the Shannon paraunitary filters

Consider a pathP associated with nodes (subbands)(j, n)j∈N. The speed of the decorrelation process

in pathP depends on the shape of spectrumγ of X in the sequence of nested intervals(∆j,G(n))j∈N.

First, if γ is constant in∆j0,G(n(j0)) for some j0 > 0, that is, if γ(ω) = γ(πG(n(j0))/2j0) in

∆j0,G(n(j0)), then it follows from Eq. (12) that for anyj > j0

RS
j,n[m] = γ(

πG(n(j0))

2j0
)δ[m], (44)

and the wavelet packet coefficients are decorrelated in any subband(j, n) of pathP, for everyj > j0.

Now, assume thatγ is approximately linear,γ(ω) = aω + b in ∆j0,G(n(j0)), then it follows from Eq.

(12) that, in pathP and for everyj > j0,

RS
j,n[m] = γ(

πG(n)

2j
)δ[m]

+





πa
2j+1 if m = 0,

(−1)mG(n)((−1)m−1)a
πm22j if m 6= 0.

(45)

Note that∆j,G(n) is a tight interval whenj is large. Forj = 6, the diameter of∆j,G(n) is π/26 ≈ 0.05. It

follows that the assumption “γ is constant or linear in∆j,G(n)” is reasonable for approximating (piecewise

linear approximation of a function) the shape of the spectrum γ for large values of the decomposition

level, for fractional Brownian motions and for wide-sense stationary processes with regular or piecewise

regular spectra.
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Eq. (45) has two consequences. First, the convergence speed isvery high since the sequence1/2j

decay very fast whenj increases. Second, letX1, X2 be two processes having spectra with linear shapes

a1 anda2 in ∆j,G(n). If 0 < a1 ≪ a2, then we can expect that decorrelating processX1 will be sensibly

easier in the paths associated with∆j,G(n) than decorrelating processX2.

C. Decorrelation speed, in practice

We first consider a random process with spectrumγ(ω) = 1/ωβ , 0 < β < 2. The spectrum of such a

process is very sharp nearω = 0 and becomes less and less sharp whenω increases. Section IV-B thus

tells us that the decorrelation speed will be very slow in anypath characterized by a sequence of nested

intervals(∆j,G(n))j∈N for which the limit valueωP close to zero.

More precisely, figure 4 illustrates the decorrelation speedfor path Pπ/4 (denotedPπ/4 because

n(j) = 2j−3 so that the limit autocorrelation function isγ(π/4)δ[m]), in comparison with the auto-

correlation function obtained in pathP0 (for which, there is no convergence of the integrals involved for

computing the autocorrelation functions). It follows thatdecorrelation can be considered to be attained

with reasonable values for decomposition levelj > 6 and filter orderr > 7 for path Pπ/4 whereas

coefficients of pathP0 remain strongly correlated. Note that for a spectrumγ with the form 1/ωβ ,

γ(0) = ∞ and Theorem 3 does not apply for pathP0.

Now, we consider a stationary random process (generated by filtering white noise with an autoregressive

filter) with spectrumγ defined for0 < µ < 1, by

γ(ω) = (1 − µ)2/|1 − µe−iω|2.

For such a process, Theorem 1 applies even for pathP0 and the decorrelation speed thus depends on the

shape of the spectrum in this path. Figure 6 shows that the decorrelation inP0 is faster when the spectrum

shape is parameterized byµ1 than when it is parameterized byµ2 with µ1 < µ2: that is when the shape

of the spectrum is less sharp. This confirms the role played by the spectrum shape in the decorrelation

speed, as highlighted by Eq. (45). Spectra are plotted in figure 5for µ1 = 0.5 andµ2 = 0.9.

V. WAVELET PACKET BASED SPECTRUM ESTIMATION

We now address wavelet packet based spectrum estimation, onthe basis of Theorems 1 and 3. These

theorems provide a general non-parametric method for estimating the spectrum ofX assumed to be

fractional Brownian motion or wide-sense stationary with spectrumγ. The principle of the method is

detailed below. Its advantages and limitations are discussed in the Section V-C.
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Fig. 4. Normalized autocorrelation functions of the wavelet packet coefficients (j = 3, 6, r = 1, 7 andβ = 1.5) of a process

with spectrum1/ωβ . The approximation pathP0 and the pathPπ/4 (n(1) = n(2) = 0 andn(j) = 2j−3 for every j > 3) are

considered. Daubechies filters with orderr = 1, 7 are used.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

γ(ω)

 

 
µ = 0.50
µ = 0.90

Fig. 5. Spectrumγ for processX1 (resp.X2) with parameterµ1 = 0.5 (resp.µ2 = 0.9).
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Fig. 6. Normalized autocorrelation functions of the wavelet packet coefficients (j = 3, 6, r = 1, 7) of processesX1 andX2

with parametersµ1 = 0.5, µ2 = 0.9, the spectra of these processes are given by figure 5. The approximation path is considered.

For every set of parametersj, n, r considered, the correlation is stronger for processc
[r]
j,n(X2) than for processc[r]

j,n(X1). The

decorrelation process is fast: ProcessX2 spectrum is very sharp around the null frequency, however, the coefficients of this

process in the approximation path are sensibly decorrelated by using standard paraunitary filters (Daubechies filters with order

r = 7 are used).

A. Wavelet packet based spectrum estimation

From Theorems 1 and 3, we have thatR
[r]
j,n[0] is close toγ(πG(n)/2j) with a good precision whenj

andr are large enough since the absolute value of the difference between the two quantities can be made

arbitrary small: for every fixedη > 0, there exist somej0 = j0(ǫ) and r0 = r(j0, ǫ) so that for every

j > j0 and everyr > r0, |R[r]
j,n[0] − γ(πG(n)/2j)| < η. Thus the set of the variances of the wavelet

packet coefficients at decomposition levelj0, {R[r0]
j0,n

[0], n = 0, 1, 2, . . . , 2j0 − 1}, can be described as a

set of2j0 estimates for the spectrum values{γ(πG(n)/2j0), n = 0, 1, 2, . . . , 2j0 − 1}.

Now, if the spectrumγ is not very singular and if we choosej0 sufficiently large, then we can assume

that γ is approximately constant in∆j0,G(n) (this is reasonable because the diameter1/2j0 of ∆j0,G(n)

decay very fast to zero whenj0 increases). It follows that for any frequencyω0 ∈ [0, π], the valueγ(ω0)

can be estimated by the varianceR
[r0]
j0,n

[0] of the wavelet packet coefficients located at node(j0, n), where
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n is such thatπG(n)/2j0 6 ω0 < π (G(n) + 1) /2j0 .

Summarizing, assume that we identify sufficiently large values for j and r. We can thus sample

uniformly or non-uniformly the spectrum ofX with respect to the values(ωℓ)ℓ chosen in[0, π]. For an

arbitraryωℓ ∈ [0, π], the estimation is performed along the following steps.

1) Compute the largest integerp so thatωℓ > pπ/2j , that is

p =

⌊
2jωℓ

π

⌋
.

2) Compute the shift parametern by using the inverse of the permutationG:

n = G−1(p),

G−1 being obtained from the Gray code (see [23]) ofp : if p =
∑j

ℓ=1 ǫℓ2
j−ℓ, with ǫℓ ∈ {0, 1},

then

G−1(p) =

j∑

ℓ=1

(ǫℓ ⊕ ǫℓ−1) 2j−ℓ (46)

with the conventionǫ0 = 0 and where⊕ denotes the bitwise exclusive-or.

3) Set γ̂(ωℓ) = Rr
j,n[0], whereRr

j,n[0] is the variance of the wavelet packet coefficients located at

node(j, n) (projection ofX on W
r
j,n).

B. Experimental results

The experimental tests concern220 samples of a (simulated) discrete random processX with spectrum

γ(ω) ∝ 1/ωβ . We consider the following wavelet filters for the decomposition of the input process:

Daubechies filters with order 7 and 45, Symlet filters with order 8and 30, Coiflet filters of order 5 and

Meyer filters (see figures 2 and 3). The results presented are obtained at decomposition levels 7 and

9. The Welch’s averaged modified periodogram method [31] with window size2J+1 − 1, J = 7, 9 is

also used. The Welch averaged modified periodogram is one of themost efficient methods for estimating

spectrum of long data [32]. We choose the window size equal to2J+1 − 1 in order to get the same

number of samples of the estimated spectrum as for the wavelet packet method (at levelJ , we have

2J subbands and thus,2J − 1 spectrum samples because the approximation path is not concerned by

Theorem 3). The reader can find in [19, Table 1], some complementary tests for the estimates of the

valuesγ̂(0), γ̂(π/4), γ̂(π/2), γ̂(π) as well as their95% confidence intervals for 100 realizations of the

process with spectrum parameterized byµ = µ2 = 0.9 (see figure 5).

For a single test, a simple estimateβ̂ of β is obtained by averaging over all the possible combinations

of the formβ̂(ω1, ω2) = − log(γ(ω2)
γ(ω1)

)/ log(ω2

ω1
), with ω2 > ω1 > 0. This (non-parametric) approach takes
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Fig. 7. Spectrum estimatedvia the Wavelet and Fourier-Welch method.

into account the errors made at every sample estimate and thus, reflects more precisely, the estimation

errors than extractingβ by a parametric method. The empirical mean of the estimateβ̂, the estimation

error and the empirical variance of̂β are given in table I. These values are those obtained over 25

tests based on different realizations of the random processX. This table shows good performance of

the wavelet packet based spectrum estimation, in comparison of the Fourier-Welch method. Note that,

surprisingly, the best results for the wavelet packet methods are not those achieved by filters with long

impulse responses (filters that are much closer to the Shannon filters): this is due to the fact that the

computation of filters with very very long impulse responses1 and thus, the computation of the wavelet

packet coefficients by using such filters, are subject to numerical instabilities [23].

Figure 7 gives an estimate of the spectrum computed from one realization ofX, in comparison with

the spectrum obtained with the Fourier-Welch method. This figure highlights the good behavior of the

wavelet packet method whenω is close to the null frequency, in contrast to the Fourier-Welch method.

C. Discussion

The main limitation of the method seems to be the number of samples required to decompose the

input random process up to 6, 7 levels (or more). However, note that if the spectrum shape is not very

sharp around certain frequency points, it is not necessary to decompose up to 6 decomposition levels.

As an example, if we consider a random process whose spectrumis that of figure 5 forµ = 0.9 , then

by using the Daubechies filters with order 7, we get (see [19, Figure 5]) a good approximation of

1We have 102 (resp. 90) coefficients for the Meyer (resp. Daub[45]) low-pass filter.
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TABLE I
EMPIRICAL MEANS, ERRORS, AND VARIANCES, OF THE ESTIMATION OFα OVER 25 NOISE REALIZATIONS, BY USING A

FOURIER-WELCH AND WAVELET PACKET BASED METHOD. THE BEST PERFORMANCE OF THE WAVELET PACKET METHOD
ARE IN BOLD, IN THE TABLE . THE WELCH’ S AVERAGED MODIFIED PERIODOGRAM METHOD WITH WINDOW SIZE2J+1 − 1,

J = 7, 9 IS USED AT DECOMPOSITION LEVELJ .

Method Fourier Wavelet

‘Welch’ ‘Daub[7]’ ‘Daub[45]’ ‘Symlet[8]’ ‘Symlet[30]’ ‘Coiflet[5]’ ‘Mey er’

J = 7.

α=0.25 Mean(α̂) 0.2563 0.2520 0.2534 0.2531 0.2546 0.2531 0.2548
|α − Mean(α̂)| 0.0063 0.0020 0.0034 0.0031 0.0046 0.0031 0.0048
104 × Var(α̂) 0.0526 0.0080 0.0271 0.0048 0.0710 0.0084 0.2290

α=0.50 Mean(α̂) 0.5126 0.5049 0.5062 0.5061 0.5075 0.5060 0.5060
|α − Mean(α̂)| 0.0126 0.0049 0.0062 0.0061 0.0075 0.0060 0.0060
105 × Var(α̂) 0.6865 0.1967 0.3849 0.0474 0.3276 0.0894 0.3280

α=0.75 Mean(α̂) 0.7712 0.7590 0.7612 0.7607 0.7612 0.7602 0.7624
|α − Mean(α̂)| 0.0212 0.0090 0.0112 0.0107 0.0112 0.0102 0.0124
105 × Var(α̂) 0.7520 0.2357 0.6134 0.0298 0.6650 0.1980 0.3396

α=1.00 Mean(α̂) 1.0297 1.0135 1.0138 1.0142 1.0147 1.0146 1.0142
|α − Mean(α̂)| 0.0297 0.0135 0.0138 0.0142 0.0147 0.0146 0.0142
104 × Var(α̂) 0.0603 0.0085 0.0773 0.0104 0.0587 0.0168 0.1643

J = 9.

α=0.25 Mean(α̂) 0.2520 0.2476 0.2490 0.2492 0.2504 0.2484 0.2520
|α − Mean(α̂)| 0.0020 0.0024 0.0010 0.0008 0.0004 0.0016 0.0020
103 × Var(α̂) 0.0032 0.0085 0.0214 0.0211 0.1027 0.0237 0.1392

α=0.50 Mean(α̂) 0.5033 0.4976 0.4992 0.5003 0.5040 0.4995 0.5027
|α − Mean(α̂)| 0.0033 0.0024 0.0008 0.0003 0.0040 0.0005 0.0027
103 × Var(α̂) 0.0100 0.0130 0.0210 0.0068 0.0308 0.0155 0.1185

α=0.75 Mean(α̂) 0.7569 0.7486 0.7518 0.7505 0.7525 0.7511 0.7531
|α − Mean(α̂)| 0.0069 0.0014 0.0018 0.0005 0.0025 0.0011 0.0031
104 × Var(α̂) 0.1496 0.0806 0.1958 0.1564 0.4050 0.0845 0.3587

α=1.00 Mean(α̂) 1.0089 0.9993 1.0009 1.0031 1.0099 1.0036 1.0122
|α − Mean(α̂)| 0.0089 0.0007 0.0009 0.0031 0.0099 0.0036 0.0122
104 × Var(α̂) 0.0931 0.1154 0.3161 0.1976 0.6106 0.1117 0.2733

• γ(0) at decomposition levels> 7,

• γ(π/4) at decomposition levels> 5,

• γ(π/2) at decomposition levels> 3,

• γ(π) at decomposition levels> 2.

Around the null frequency,γ is very sharp and 7 decompositions are necessary; otherwise, less decom-

position levels are sufficient because the spectrum is ratherflat.

The first advantage of the wavelet packet based method is the simplicity of the spectrum estimationvia

the technique described in Section V-A. Statistical properties of the autocorrelation and the convergence

speed to the limit autocorrelation functions ensure that wecan expect good performance of the method by
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using standard Daubechies or Symlets filters with order largerthan or equal to 7. The second advantage

of the method is that it is non-parametric: in practice, it can be used in many applications with noa

priori on the spectrum shape. Whena priori information is available, the method could also be improved

with existing techniques. As a matter of fact, if the spectrum of interest hasa priori exactly the form

1/ωβ , then we can estimateβ by maximum-likelihood estimate as done for the wavelet based method

in [33], [34] or by techniques such as [35] if the observationis corrupted by additive white noise.

VI. CONCLUSION

The asymptotic autocorrelation functions of wavelet packetcoefficients of fractional Brownian motions

have been computed for some paraunitary filters that approximate the Shannon paraunitary filters.

The paper also characterizes the convergence speed to the limit autocorrelation and show that approx-

imate decorrelation can be achieved at finite decomposition levels even by using non-ideal paraunitary

filters.

The ideal subband coding yielded by the Shannon wavelet packetdecomposition, the convergence of

some standard wavelet filters to the Shannon filters, and the asymptotic properties of the wavelet packet

autocorrelation allow for defining wavelet packet based spectrum estimation. This spectrum estimation

has been tested in the framework of fractional Brownian motion, but also applies to wide-sense stationary

random processes.

The new wavelet packet based spectrum estimation presented in the paper derives from theoretical

results (those stated in Theorems 1 and 3), has very low complexity and outperforms the standard

non-parametric Fourier-Welch based spectrum estimation.The discussion of Section V-C highlights the

limitations and the advantages of the new method. It also presents some perspectives on how to improve

the wavelet packet based spectrum estimation.

In future work, we plan to investigate the contributions of some of the proposed techniques, among

others, the exploitation of redundancy in the signal domain(Hilbert transform) or in the wavelet domain

(averaging severalǫ-decimate orthogonal wavelets, using complex wavelets or multiwavelets).
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APPENDIX A

PROOF OFTHEOREM 2

By taking into account remark 1 and under assumption (A1), the discrete random processc
[r]
j,n repre-

senting the wavelet packet coefficients of the fractional Brownian motionX is defined by

c
[r]
j,n[k]=

∫

R

X(t)Wj,n,k[r](t)dt, (47)

with convergence in quadratic mean sense and its autocorrelation function is

R
[r]
j,n[k, ℓ] =

∫∫

R2

R(t, s)W
[r]
j,n,k(t)W

[r]
j,n,ℓ(s)dtds. (48)

with R(t, s) given by Eq. (15).

By considering again remark 1 and under assumption (A2), we have that
∫∫

R

|t|2αW
[r]
j,n,k(t)dt = 0, (49)

and thus ∫∫

R2

|t|2αW
[r]
j,n,k(t)W

[r]
j,n,ℓ(s)dtds = 0. (50)
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By mimicking the proof of [12, Theorem 1] we get
∫∫

R2

|t − s|2αW
[r]
j,n,k(t)W

[r]
j,n,ℓ(s)dtds

2
=

∫∫

R2

dtds|t|2αW
[r]
j,n,k(t + s)W

[r]
j,n,ℓ(s),

3
=

Γ(2α + 1) sin(πα)

π
×

∫∫

R2

(∫

R

1 − cos(tω)

|ω|2α+1
dω

)
W

[r]
j,n,k(t + s)W

[r]
j,n,ℓ(s)dtds,

4
=

1

πσ2

∫

R

dωγα(ω)×
∫∫

R2

dtds (1 − cos(tω)) W
[r]
j,n,k(t + s)W

[r]
j,n,ℓ(s),

5
= − 1

πσ2

∫

R

dωγα(ω)×
∫∫

R2

dtds cos(tω)W
[r]
j,n,k(t + s)W

[r]
j,n,ℓ(s),

6
= − 1

πσ2

∫

R

γα(ω)|FW
[r]
j,n(ω)|2ei2j(k−ℓ)ωdω. (51)

Thus, from Eqs. (48), (50) and (51), we obtain

R
[r]
j,n[k, ℓ] =

1

2π

∫

R

γα(ω)|FW
[r]
j,n(ω)|2ei2j(k−ℓ)ωdω. (52)

One can check that under assumption (A3), the integral in Eq. (52) is absolutely convergent for every

pair (j, n) with n 6= 0. From Eq. (52) we have thatc[r]
j,n is a wide-sense stationary random process for

every(j, n) ∈ N×N. With the standard abuse of language, we denoteR
[r]
j,n[k, ℓ] ≡ R

[r]
j,n[k−ℓ] = R

[r]
j,n[m],

with m = k − ℓ and Eq. (16) follows.

APPENDIX B

Lemma 2:Let f be a real valued function. Consider the sequence of nested intervals
(
∆+

j,G(nP(j))

)
j>1

defined by Eq. (8) and associated with a wavelet packet pathP. Assume thatf is locally integrable on

R. If f is continuous atωP given by Eq. (10), then we have uniformly ink ∈ Z

lim
j→+∞

2j

π

∫

∆+
j,G(nP (j))

f(ω) cos (2jkω)dω = f(ωP)δ[k]. (53)

2Change of variables.

3 Bahr and Essen representation of|t|2α, see [36].

4 Fubini’s theorem, the integrand is absolutely integrable.

5Taking into account Eq. (49).

6Write cos(tω) = (e−itω + e−itω)/2 to obtain Fourier integrals ofW [r]
j,n,k andW

[r]
j,n,ℓ.
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Proof:

Sincef is continuous atωP , then for every real numberη > 0, there exists a real numberν > 0 such

that, for everyω ∈ [ωP − ν, ωP + ν], we have|f(ω) − f(ωP)| < η. In addition, since

lim
j→+∞

G(nP(j))π

2j
= lim

j→+∞

(G(nP(j)) + 1)π

2j
= ωP ,

there exists an integerj0 = j0(ν), such that, for every natural numberj > j0, the valuesG(nP(j))π/2j

and(G(nP(j))+1)π/2j are within the interval[ωP−ν, ωP +ν]. It follows that, for every natural number

j > j0 and everyω ∈ ∆+
j,G(nP(j)),

|f(ω) − f(ωP)| < η.

Therefore, for any natural numberj > j0

2j

π

∫

∆+
j,G(nP (j))

|f(ω) − f(ωP)| dω

< η
M j

π

∫

∆+
j,G(nP (j))

dω = η. (54)

On the other hand, for any natural numberj > j0 and every integerk,
∣∣∣
∫

∆+
j,G(nP (j))

f(ω) cos (2jkω)dω

−
∫

∆+
j,G(nP (j))

f(ωP) cos (2jkω)dω
∣∣∣

=
∣∣∣
∫

∆+
j,G(nP (j))

(f(ω) − f(ωP)) cos (2jkω)dω
∣∣∣

6

∫

∆+
j,G(nP (j))

|f(ω) − f(ωP)| dω. (55)

Hence, we derive from Eqs. (54) and (55) that, for every natural numberj > j0,

2j

π

∣∣∣
∫

∆+
j,G(nP (j))

f(ω) cos (2jkω)dω

−
∫

∆+
j,G(nP (j))

f(ωP) cos (2jkω)dω
∣∣∣ < η

uniformly in k ∈ Z. Since

2j

π

∫

∆+
j,G(nP (j))

f(ωP) cos (2jkω)dω = f(ωP)δ[k],

we conclude that, for every natural numberj > j0,∣∣∣∣∣
2j

π

∫

∆+
j,G(n)

f(ω) cos (2jkω)dω − f(ωP)δ[k]

∣∣∣∣∣ < η

uniformly in k ∈ Z.
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