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come    

first, some results [START_REF] Flandrin | Wavelet analysis and synthesis of fractional brownian motion[END_REF], [START_REF] Tewfik | Correlation structure of the discrete wavelet coefficients of fractional brownian motion[END_REF], [START_REF] Masry | The wavelet transform of stochastic processes with stationary increments and its application to fractional brownian motion[END_REF], [START_REF] Dijkerman | On the correlation structure of the wavelet coefficients of fractional brownian motion[END_REF], [START_REF] Mccoy | Wavelet analysis and synthesis of stationary long-memory processes[END_REF], [START_REF] Vannucci | A review of wavelet in biomedical applications[END_REF], [START_REF] Kato | On the spectral density of the wavelet transform of fractional brownian motion[END_REF], [START_REF] Jensen | An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets[END_REF], [START_REF] Craigmile | Asymptotic decorrelation of between-scale wavelet coefficients[END_REF] dedicated to the wavelet transform of certain non-stationary processes such as processes with stationary increments and fractionally differenced processes. These references highlight that wavelet coefficients tend to be decorrelated provided that the decomposition level tends to infinity and the decomposition filters satisfy suitable properties. Second, results of the same order holds true for stationary random processes as shown in [START_REF] Benedetto | Wavelets : Mathematics and applications[END_REF], [START_REF] Zhang | A wavelet-based KL-like expansion for wide-sense stationary random processes[END_REF], [START_REF] Leporini | High-order wavelet packets and cumulant field analysis[END_REF].

In [START_REF] Leporini | High-order wavelet packets and cumulant field analysis[END_REF], one can find an attempt for the generalization of the decorrelation properties to the case of the wavelet packet transform, when the input random process is stationary. On the basis of the framework of [START_REF] Leporini | High-order wavelet packets and cumulant field analysis[END_REF], [START_REF] Chaux | Noise covariance properties in dual-tree wavelet decompositions[END_REF] proposes an extension to the case of the dual-tree wavelet packet transform. The results stated in [START_REF] Leporini | High-order wavelet packets and cumulant field analysis[END_REF] and [START_REF] Chaux | Noise covariance properties in dual-tree wavelet decompositions[END_REF] stipulate that for stationary random processes, the limit autocorrelation functions of the wavelet packet coefficients do not depend on the wavelet packet path and the decomposition filters considered.

However, by using certain families of wavelet filters, it is shown in [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF] that the limit autocorrelation functions of the wavelet packet coefficients of band-limited wide-sense stationary random process still depend on the path followed in the wavelet packet decomposition tree. The decomposition considered in [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF] is performed by using certain paraunitary filters that converge almost everywhere to the Shannon filters (Daubechies and Battle-Lemarié filters are examples of such families of filters). In fact, the dependency of the decorrelation process and the wavelet filters has been highlighted earlier by [START_REF] Pastor | Décomposition d'un processus stationnaire du second ordre : Propriétés statistiques d'ordre 2 des coefficients d'ondelettes et localisation frequentielle des paquets d'ondelettes[END_REF] and this dependency also appears in [START_REF] Craigmile | Asymptotic decorrelation of between-scale wavelet coefficients[END_REF] which discusses the decorrelation rate for the standard wavelet packet decomposition, when the Daubechies filters are used. More precisely, [START_REF] Atto | Central limit theorems for wavelet packet decompositions of stationary random processes[END_REF] shows that the results presented in [START_REF] Leporini | High-order wavelet packets and cumulant field analysis[END_REF] and [START_REF] Chaux | Noise covariance properties in dual-tree wavelet decompositions[END_REF] concern only one path of the wavelet packet decomposition tree, that is the approximation path of the standard wavelet transform.

The analysis of the limit autocorrelation functions cannot be performed independently of the type of the decomposition filters or, equivalently, on the type of mother wavelet used because for the wavelet packet decomposition, the shift parameter depends on the decomposition level and cannot be upper-bounded, so that convergence criterion such as the Lebesgue's dominated convergence theorem cannot easily apply (see [START_REF] Atto | Central limit theorems for wavelet packet decompositions of stationary random processes[END_REF]). This paper first extends the results of [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF] when the input random process for the wavelet packet decomposition is not constrained to be band-limited. The paper also provides, as a main contribution, the asymptotic autocorrelation functions of the wavelet packet coefficients for fractional Brownian motions.

We use the same formalism as that of [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF]. The results obtained complete those of [START_REF] Flandrin | Wavelet analysis and synthesis of fractional brownian motion[END_REF], [START_REF] Tewfik | Correlation structure of the discrete wavelet coefficients of fractional brownian motion[END_REF], [START_REF] Masry | The wavelet transform of stochastic processes with stationary increments and its application to fractional brownian motion[END_REF], [START_REF] Dijkerman | On the correlation structure of the wavelet coefficients of fractional brownian motion[END_REF], [START_REF] Kato | On the spectral density of the wavelet transform of fractional brownian motion[END_REF] which are dedicated to the standard wavelet transform of a fractional Brownian motion.

The paper is organized as follows. In Section III the asymptotic properties of the autocorrelation DRAFT functions of the wavelet packet coefficients of stationary random processes and fractional Brownian motions are discussed. Section IV addresses the convergence speed of the decorrelation process in order to evaluate how well we can approach the limit autocorrelation function of the wavelet packet coefficients. This convergence speed informs us whether we can obtain, in practice, a good convergence rate at finite decomposition levels. As a consequence of the theoretical results obtained in Sections III and IV, Section V discusses wavelet packet based spectrum estimation, by using suitable decomposition filters. Finally, Section VI concludes this work. The next section provides definitions and basic material used in the paper (see [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF], [START_REF] Daubechies | Ten lectures on wavelets[END_REF], [START_REF] Mallat | A wavelet tour of signal processing[END_REF] for further details).

II. BASICS ON WAVELET PACKETS

Let Φ ∈ L 2 (R) and U be closure of the space spanned by the translated versions of Φ:

U = Closure τ k Φ : k ∈ Z .
The wavelet packet decomposition of U is obtained by recursively splitting the space U into orthogonal subspaces, U = W 1,0 ⊕ W 1,1 and W j,n = W j+1,2n ⊕ W j+1,2n+1 , where W j,n ⊂ U is defined by

W j,n = Closure W j,n,k : k ∈ Z ,
and {W j,n,k : k ∈ Z} is the orthonormal set of the wavelet packet functions. In this decomposition, any W j,n,k is defined by

W j,n,k (t) = τ 2 j k W j,n (t) = τ 2 j k 2 -j/2 W n (2 -j t) = 2 -j/2 W n (2 -j t -k), (1) 
and the sequence (W n ) n 0 is computed recursively from Φ and some paraunitary filters (H ǫ ) ǫ=0,1 with impulse responses (h ǫ ) ǫ=0,1 (see [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF], [START_REF] Mallat | A wavelet tour of signal processing[END_REF] for details).

In this paper, we assume that Φ is the scaling function associated with the low-pass filter H 0 so that W 0 = Φ ( [START_REF] Daubechies | Ten lectures on wavelets[END_REF], [START_REF] Mallat | A wavelet tour of signal processing[END_REF]). The decomposition space U is then the space generated by the translated versions of the scaling function. The recursive splitting of U yields a wavelet packet tree composed of the subspaces W j,n , where j is the decomposition (or resolution) level and n is the shift parameter.

For a given path P = (U, {W j,n } j∈N ) in the wavelet packet decomposition tree, the shift parameter n = n P (j) ∈ {0, . . . , 2 j -1} is such that n P (0) = 0 and

n P (j) = 2n P (j -1) + ǫ j = j ℓ=1 ǫ ℓ 2 j-ℓ , (2) 
DRAFT where ǫ ℓ ∈ {0, 1}, ǫ ℓ indicates that filter H ǫℓ is used at the decomposition level ℓ, with ℓ 1 (see [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF] for details on paths and shift parameter characterization).

Consider a real-valued centered second-order random process X assumed to be continuous in quadratic mean. The projection of X on a wavelet packet space W j,n yields coefficients that define a discrete random process c j,n = (c j,n [k]) k∈Z . We have, with convergence in the quadratic mean sense :

c j,n [k] = R X(t)W j,n,k (t)dt. (3) 
In what follows, we are concerned by a family of scaling functions (Φ [r] ) r that satisfy almost everywhere (a.e.) the following property

lim r→∞ FΦ [r] = FΦ S (a.e.), (4) 
where Φ S (t) = sin(πt)/πt is the Shannon scaling function. The Fourier transform of Φ S is

FΦ S = 1l [-π,π] , (5) 
where 1l ∆ denotes the indicator function of a given set ∆ (1l

∆ (x) = 1 if x ∈ ∆ and 1l ∆ (x) = 0, otherwise).
The Daubechies and spline Battle-Lemarié scaling functions satisfy Eq. ( 4). The parameter r, hereafter called order, is the number of vanishing moments of the wavelet function for the Daubechies functions [START_REF] Shen | Asymptotics of daubechies filters, scaling functions, and wavelets[END_REF] and this parameter is the order of the spline scaling function for the Battle-Lemarié functions [START_REF] Kim | On asymptotic behavior of battlelemarié scaling functions and wavelets[END_REF], [START_REF] Aldroubi | Cardinal spline filters: Stability and convergence to the ideal sinc interpolator[END_REF]. The decomposition filters (H

[r]

ǫ ) ǫ∈{0,1} associated with these functions satisfy (see [START_REF] Shen | Asymptotics of daubechies filters, scaling functions, and wavelets[END_REF], [START_REF] Kim | On asymptotic behavior of battlelemarié scaling functions and wavelets[END_REF], [START_REF] Aldroubi | Cardinal spline filters: Stability and convergence to the ideal sinc interpolator[END_REF]):

lim r→∞ H [r] ǫ = H S ǫ (a.e.). (6) 
where (H S ǫ ) ǫ∈{0,1} are the ideal low-pass and high-pass Shannon filters. In the rest of the paper, we assume that H 

[r] 1 : W [r] j,n,k (t) = 2 -j/2 W [r] n (2 -j t -k) where W [r] n is defined for ǫ = 0, 1 by W [r] 2n+ǫ (t) = √ 2 ℓ∈I h [r] ǫ [ℓ]W [r]
n (2t -ℓ) for every n 1, I being a set of finite cardinality (because we assume that the wavelet paraunitary filters with finite impulse responses).

The remark above will prove useful in the sequel. When the Shannon paraunitary ideal filters H S 0 (lowpass) and H S 1 (high-pass) are used, then the Fourier transform of a wavelet packet function W S j,n is (see [START_REF] Mallat | A wavelet tour of signal processing[END_REF], among others)

FW S j,n = 2 j/2 1l ∆j,G(n) . ( 7 
) DRAFT The set ∆ j,G(n) is such that ∆ j,G(n) = ∆ - j,G(n) ∪ ∆ + j,G(n)
, where ∆ - j,G(n) and ∆ + j,G(n) are symmetrical with respect to the origin, and (see [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF], [START_REF] Mallat | A wavelet tour of signal processing[END_REF], [START_REF] Wickerhauser | Adapted Wavelet Analysis from Theory to Software[END_REF])

∆ + j,G(n) = G(n)π 2 j , (G(n) + 1)π 2 j , (8) 
with

G(2ℓ + ǫ) =    2G(ℓ) + ǫ if G(ℓ) is even, 2G(ℓ) -ǫ + 1 if G(ℓ) is odd. (9) 
The decomposition space U = U S is then the π-band-limited Paley-Wiener space, that is the space generated by the translated versions of the Shannon scaling function Φ S . The Shannon wavelet packet tree and the frequency re-ordering induced by the permutation G are represented in figure 1.
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Fig. 1. Shannon wavelet packet decomposition tree. The positive part of the support of F W S j,n is indicated below each node W S j,n . The wavelet packets associated with the sequence (ǫ1, ǫ2, ǫ3) = (0, 1, 1) define a path (U S , W S j,n )j=1,2,3. We have ǫj = 0 (resp. ǫj = 1) if the low-pass (resp. high-pass) filter is used for computing the wavelet packets of decomposition level j. The wavelet packet W S 3,n(3) of this path is such that n(3) = ǫ32 0 + ǫ22 1 + ǫ12 2 = 3 and the positive part of the support of

W S 3,n(3) is ∆ + j,G(n(3)) with G(n(3)) = 4.
From now on, an upper index S (resp. [r]) will be used, when necessary, to emphasize that the decomposition is achieved by using filters (H S ǫ ) ǫ∈{0,1} (resp. (H

[r] ǫ ) ǫ∈{0,1} ).

III. ASYMPTOTIC ANALYSIS

A. Asymptotic analysis of the autocorrelation functions

Let P be a path of the wavelet packet decomposition tree. From the description given in Section II, P is characterized by a sequence of nodes (j, n) j 1 , where n = n P (j) is given by Eq. ( 2) at every decomposition level j. Let ω P , 0 ω P π, be the value such that (see [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF] for the existence of this limit)

ω P = lim j→+∞ G(n P (j))π 2 j . ( 10 
)
Assume that the input second-order random process X is a wide-sense stationary with spectrum (power spectral density) γ ∈ L ∞ (R). Then, the discrete random process c j,n defined by Eq. ( 3) is wide-sense stationary and its autocorrelation function is (see [START_REF] Leporini | High-order wavelet packets and cumulant field analysis[END_REF], [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF])

R j,n [m] = 1 2π R γ(ω)|FW j,n (ω)| 2 e i2 j mω dω. (11) 
When j increases, the behavior of the autocorrelation function R j,n depends on the wavelet packet path and the paraunitary filters used to decompose X. More precisely, we have:

Theorem 1: Consider a real-valued centered second-order random process X assumed to be continuous in quadratic mean. Assume that X is wide-sense stationary with spectrum γ ∈ L ∞ (R). We have

(i) The autocorrelation function R S j,n is R S j,n [m] = 2 j π ∆ + j,G(n) γ(ω) cos (2 j mω)dω. (12) 
(ii) If γ is continuous at ω P given by Eq. ( 10), then we have, uniformly in m ∈ Z

lim j→+∞ R S j,n [m] = γ(ω P )δ[m], (13) 
where δ[•] is the Kronecker symbol defined for every integer k ∈ Z by

δ[k] =    1 if k = 0, 0 if k = 0.
(iii) The autocorrelation function R

[r] j,n satisfies

lim r→+∞ R [r] j,n [m] = R S j,n [m]. (14) 
Proof: Easy extension of [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF]Theorem 1]. In this reference, the decomposition space is the πband-limited Paley-Wiener space and the spectrum γ of X is assumed to be supported in [-π, π]. These assumptions are relaxed here by considering the projection of X on the space generated by the translated versions of the scaling function associated with the decomposition filters used. Now, assume that X is a centered fractional Brownian motion with Hurst parameter α. We assume that 0 < α < 1, and that the path considered in the wavelet packet tree is P = P 0 , where P 0 is the path located at the far left hand side of the wavelet packet tree. Path P 0 corresponds to the standard wavelet approximation path since the low-pass filter is used at every resolution level. For path P 0 , there is no convergence for the limit integrals involved in the computation of the wavelet packet coefficients, with respect to the wavelet packet functions considered in this work. In addition, the cases α = 0 and α = 1

DRAFT are irrelevant here because α = 0 corresponds to a white Gaussian process and the spectral densities of the wavelet packet coefficients are not L 1 (R) for α = 1.

Let R(t, s) stands for the autocorrelation function of X. We have

R(t, s) = E[X(t)X(s)] = σ 2 2 |t| 2α + |s| 2α -|t -s| 2α . ( 15 
)
Theorem 2 below requires assumptions (A1-A3) used in [START_REF] Kato | On the spectral density of the wavelet transform of fractional brownian motion[END_REF] to prove the existence of the spectral density of the wavelet transform of a fractional Brownian motion.

Theorem 2: Assume that the wavelet paraunitary filters (H

[r] 0 , H [r]
1 ) are with finite impulse responses and that there exists some finite order r 0 such that for every r r 0 , the wavelet function

W [r]
1 satisfy the following assumptions:

(A1) (1 + t 2 )W [r] 1 (t) ∈ L 1 (R), (A2) R W [r] 1 (t) = 0, (A3) sup |ω| η FW [r] 1 (ω)/ω < ∞ for some η > 0.
Then, the discrete random process c

[r] j,n , n 1, obtained from the projection of the fractional Brownian motion X on the wavelet packet W

[r] j,n is wide-sense stationary and its autocorrelation function is

R [r] j,n [m] = 1 2π R γ α (ω)|FW [r] j,n (ω)| 2 e i2 j mω dω, (16) 
with

γ α (ω) = σ 2 Γ(2α + 1) sin(πα) |ω| 2α+1 , (17) 
where ∆ + j,G(n) is given by Eq. ( 8) and Γ is the standard Gamma function.

Proof: Theorem 2 is a consequence of [START_REF] Kato | On the spectral density of the wavelet transform of fractional brownian motion[END_REF]Theorem 1]. In order to apply [12, Theorem 1] for the wavelet packet functions, we need to show that every W

[r] j,n,k , j 1 and n ∈ {1, 2, . . . , 2 j -1}, satisfy assumptions (A1), (A2) and (A3); which simply follows from remark 1. Appendix A summarizes the steps involved in the proof.

Remark 2:

Under assumption (A3), the integral in Eq. ( 16) is absolutely convergent for every pair (j, n)

with n = 0. Thus, from the Bochner's theorem, we derive that, for a given j 1 and n ∈ {1, 2, . . . , 2 j -1}, the spectral density of the wavelet packet coefficients c

[r] j,n of the fractional Brownian motion X is:

γ [r] j,n (ω) = 1 2π γ α (ω)|FW [r] j,n (ω)| 2 .
DRAFT By taking the Fourier transform of Eq. ( 1), we have FW

[r] j,n (ω) = 2 j/2 FW [r]
n (2 j ω). Thus, we have

γ [r] j,n (ω) = 2 j-1 π γ α (ω)|FW [r] n (2 j ω)| 2 , (18) 
where (see [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF]Lemma 1])

FW [r] n (ω) = j ℓ=1 H [r] ǫℓ ( ω 2 j+1-ℓ ) FΦ [r] ( ω 2 j ), (19) 
the sequence (ǫ 1 , ǫ 2 , . . . , ǫ j ) being the binary sequence associated with the shift parameter n, with n of the form Eq. ( 2).

Remark 3: Note that assumption (A1) is not satisfied for the Shannon wavelet W S 1 (t) defined by

W S 1 (t) = 2W S 0 (2t) -W S 0 (t), (20) 
where W S 0 (t) = Φ S (t) = sin(πt)/πt. Thus, Theorem 2 does apply in order to obtain the analytic form of the spectral density of the Shannon wavelet packet coefficients of X.

Theorem 3: With the same assumptions as in Theorem 2 above, and under assumption:

(A4) there exists some positive function g ∈ L 1 (R) that dominates the sequence (|FW The autocorrelation functions of the wavelet packet coefficients of the fractional Brownian motion X satisfy (i)

lim r→+∞ R [r] j,n [m] = 2 j π ∆ + j,G(n) γ α (ω) cos (2 j mω)dω R S j,n [m] (21) 
where ∆ + j,G(n) is given by Eq. ( 8). (ii)

lim j→+∞ R S j,n [m] = γ α (ω P )δ[m], (22) 
where R S j,n is defined by Eq. ( 21) with γ α given by Eq. [START_REF] Leporini | High-order wavelet packets and cumulant field analysis[END_REF].

Remark 4: As highlighted by remark 3, Theorem 2 does not apply in order to obtain the analytic form of the autocorrelation function R S j,n , n = 0, for the wavelet packet coefficients of a fractional Brownian motion. The above definition of R S j,n (second equality in Eq. ( 21)) shows that results similar to those of DRAFT Theorem 2 still hold for the Shannon wavelet packets so that, from Eq. ( 21), we can define the spectral density of the Shannon wavelet packet coefficients of a fractional Brownian motion as

γ S j,n (ω) = 2 j-1 π γ α (ω)1l ∆j,G(n) (2 j ω), = 1 2π γ α (ω)|FW S j,n (ω)| 2 , (23) 
where FW S j,n (ω) is given by Eq. ( 7); with γ S j,n (0) = 0 since 0 does not belong to ∆ j,G(n) when n = 0.

Proof: (of Theorem 3).

Proof of statement (i):

By taking into account [19, Lemma 1], and if (ǫ 1 , ǫ 2 , . . . , ǫ j ) is the binary sequence associated with the shift parameter n; that is: if n is of the form Eq. ( 2), then we have

FW [r] j,n (ω) = 2 j/2 FW [r] n (2 j ω),
with FW

[r]

n given by Eq. ( 19). Thus, by taking into account Eqs. ( 4) and ( 6), we have that |FW ǫℓ (ω)| 1 for all ℓ = 1, 2, . . . , j, and because we assume n = 0, we have also from Eq. [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF] that

|FW [r] j,n (ω)| 2 j/2 |FW [r] 1 (2ω)|. Thus, we have γ α (ω)|FW [r] j,n (ω)| 2 2 j γ α (ω)|FW [r] 1 (2ω)| 2 ,
and by taking into account assumption (A4), we have that γ α (ω)|FW

[r] j,n (ω)| 2 is dominated by the function f (ω) = 2 j γ α (ω)g(2ω) which does not depends on r. Moreover, the function f is integrable: indeed, by

setting K 1 = 2 j σ 2 Γ(2α + 1) sin(πα), we have R f (ω) K 1 dω = R g(2ω) |ω| 2α+1 dω |ω| η K 2 |ω| 2α-1 dω + 1 η 2α+1 |ω| η g(2ω)dω < ∞ (24) 
for every α, 0 < α < 1, and where K 2 is a constant such that sup |ω| η g(2ω)/|ω| 2 < K 2 ; the existence of K 2 and η being guaranteed by the assumption (A4).

It follows from Lebesgue's dominated convergence theorem that

lim r→+∞ R [r] j,n [m] = lim r→+∞ 1 2π R γ α (ω)|FW [r] j,n (ω)| 2 e i2 j (k-ℓ)ω dω = 1 2π R γ α (ω)|FW S j,n (ω)| 2 e i2 j (k-ℓ)ω dω. (25) 
DRAFT Statement (i) derives from Eq. ( 25), after some straightforward calculations by taking into account that FW S j,n is given by Eq. ( 7). One can easily check that integral in Eq. ( 25) is absolutely convergent for every pair (j, n) with n = 0, because |FW S j,n (ω)| is compactly supported and 0 does not belong to its support (see Eq. ( 7)).

Proof of (ii): Statement (ii) simply derives from Lemma 2 given in appendix B: if P = P 0 , then ω P = 0, 0 / ∈ ∆ + j,G(n) (which moreover is a closed set), and the function 1/|ω| 2α+1 is integrable on ∆ + j,G(n) and is continuous at ω P .

From Theorems 2 and 3, we have that c

[r] j,n is wide-sense stationary and tend to be decorrelated when both r and j tend to infinity, with variance γ α (ω P ) in path P = P 0 of the wavelet packet decomposition tree. The following highlights that the Daubechies and the spline Battle-Lemarié wavelet families satisfy assumptions of Theorems 2 and 3.

The Fourier transform of a Daubechies or a Battle-Lemarié wavelet W

[r] 1 of order r has the following form.

FW [r] 1 (ω) = H [r] 1 (ω/2)FΦ [r] (ω/2), (26) 
where Φ [r] denotes a scaling function and H

[r]

1 the associated wavelet filter.

B. Properties of the Daubechies and the spline Battle-Lemarié functions

The following proves that the Daubechies and spline Battle-Lemarié functions satisfy assumptions (A1-A4) of Theorems 2 and 3. Note that all the Daubechies and Battle-Lemarié wavelet functions satisfy assumption (A2) by construction (null moments condition, see [START_REF] Daubechies | Ten lectures on wavelets[END_REF], [START_REF] Mallat | A wavelet tour of signal processing[END_REF]). In addition, since the Daubechies wavelet functions are bounded with compact support [START_REF] Daubechies | Ten lectures on wavelets[END_REF], they satisfy assumption (A1). The 1 ) r are such that

|FW [r] 1 (2ω)| 2 K sin ω 4 2 1l {|ω| η} + 1 |ω| 2 1l {|ω|>η} (27) 
for any η such 0 < η 2π/3, where K > 0 is a constant independent of r.

DRAFT Proof: The Fourier transform of Daubechies wavelet function W

[r]

1 of order r is of the form Eq. ( 26).

We have from [22, Lemmas 7.1.7 and 7.1.8] that:

|FΦ [r] (ω)| C (1 + |ω|) r-r log(3) log(2) + log(3) log(2) , (28) 
for every r = 1, 2, . . ., and thus, we derive

|FΦ [r] (ω)| 2 C 2 (1 + |ω|) 2 . ( 29 
)
On the other hand, the Daubechies wavelet filter

H [r]
1 is defined by

H [r] 1 (ω) = e -iω/2 1 -e iω/2 2 r P r (ω), (30) 
where P r is a trigonometric polynomial (see [START_REF] Daubechies | Ten lectures on wavelets[END_REF], [START_REF] Mallat | A wavelet tour of signal processing[END_REF] for more details). From [22, Lemmas 7.1.3 and 7.1.4], we have that sup ω |P r (ω)| 2 r-1 . Thus, we get

|H [r] 1 (ω)| 1 -e iω/2 r 2 2 r-1 sin ω 4 r . (31) 
It follows that |H 2) The family of Battle-Lemarié wavelet functions satisfies assumption (A4): The Battle-Lemarié scaling and wavelet functions are computed from the normalized central B-spline of order r. The Fourier transform of its associated wavelet function is of the form Eq. ( 26) with (see [START_REF] Mallat | A wavelet tour of signal processing[END_REF], [START_REF] Battle | A block spin construction of ondelettes. i. lemarié functions[END_REF], [START_REF] Lemarié | Ondelettes localisation exponentielle[END_REF])

H [r] 1 (ω) = e -iω/2 | sin(ω/2)| r Θ r (ω + π) Θ r (2ω) (32) 
and

|FΦ [r] (ω)| = 1 |ω| r 1 k∈Z 1 (ω+2kπ) 2r , (33) 
or, equivalently,

|FΦ [r] (ω)| = sin(ω/2) ω/2 r Θ r (ω), (34) 
where

Θ r (ω) = k∈Z sin(ω/2 + kπ) ω/2 + kπ 2r (35) = cos ω 4 2r Θ r ( ω 2 ) + sin ω 4 2r Θ r ( ω 2 + π). ( 36 
)
Lemma 1: For every r = 1, 2, . . . , the function H

[r]

1 defined by [START_REF] Jokinen | On windowing effects in estimating averaged periodograms of noisy signals[END_REF] satisfy

sup |ω| π/2 |H [r] 1 (ω)/ω| 1/ √ 2. ( 37 
)
Proof: If |ω| π/2, then (see [START_REF] Kim | On asymptotic behavior of battlelemarié scaling functions and wavelets[END_REF]) we have Θ r (ω + π) Θ r (ω), and thus

Θ r (ω + π) Θ r (2ω) = 1 (sin(ω/2)) 2r + (cos(ω/2)) 2r Θr(ω)
Θr(ω+π)

1 (sin(ω/2)) 2r + (cos(ω/2)) 2r , (38) 
and since we assume |ω/2| π/4, then we obtain

Θ r (ω + π) Θ r (2ω) 2 r ,
and the result follows: Proposition 2: The Battle-Lemarié scaling functions satisfy

H [r] 1 (ω) ω 2 r/2 | sin(ω/2)| r |ω| = 2 r/2-1 | sin(ω/2)| r-1 | sin(ω/2)| |ω/2| (39) 
|Φ [r] (ω)| 2 1l {|ω| 2π} + 2π ω 2 × 1l {|ω|>2π} , (40) 
for every r = 1, 2, . . ..

Proof:

For every r = 1, 2, . . . , we have from Eq. ( 33) that |FΦ [r] (ω)| 1 for every ω ∈ R. This result follows from that

k∈Z 1 (ω + 2kπ) 2r = 1 ω 2r + k∈Z k =0 1 (ω + 2kπ) 2r 1 ω 2r .
On the other hand, for every ω ∈ R, there exists some k 0 ∈ Z such that 0 ω + 2k 0 π < 2π. Thus,

k∈Z 1 (ω + 2kπ) 2r = 1 (ω + k 0 π) 2r + k∈Z k =k0 1 (ω + 2kπ) 2r 1 (2π) 2r , (41) 
so that |FΦ [r] (ω)| 2 (2π/ω) 2r = (2π/ω) 2 × (2π/ω) 2r-2 . When |ω| 2π, we have (2π/ω) 2r-2 1

for every r = 1, 2, . . .. It follows that |FΦ [r] (ω)| 2 (2π/ω) 2 for |ω| 2π.

DRAFT Finally, we have that the family of Battle-Lemarié wavelet functions satisfies assumption (A4) since from Eqs. ( 26), ( 37) and (40), we obtain

|FW [r] 1 (2ω)| 2 ω 2 2 × 1l {|ω| π 2 } + 1l { π 2 <|ω| 2π} + 2π ω 2 × 1l {|ω|>2π} (42) 
Theorems 1 and 3 specify the asymptotic behavior of the wavelet packet coefficients when using some families of paraunitary filters that converge almost everywhere to the Shannon filters. The following discusses consequences of Theorems 1 and 3. Due to the complexity of the convergence involved, the key point is the convergence speed to the limit autocorrelation and distributions. In fact, if the convergence speed is fast, we can expect reasonable decorrelation of the wavelet packet coefficients for finite j and r.

IV. ON THE CONVERGENCE SPEED OF THE DECORRELATION PROCESS

Consider a family of paraunitary filters satisfying Eqs. ( 6) and a second order centered random process X being either fractional Brownian motion or wide-sense stationary with spectrum γ. The convergence speed to the limit autocorrelation for the wavelet packet coefficients of X depends on two factors:

A. The convergence speed involved in Eq. ( 6), that is, the speed of the convergence to the Shannon filters.

B. The convergence speed to the limit autocorrelation in the case where the decomposition used is achieved by the Shannon filters.

A. Convergence of paraunitary filters to the Shannon filters

Theorems 1 and 3 concern some paraunitary filters that approximate the Shannon filters in the sense given by Eq. ( 6). According to these theorems, we can expect that using paraunitary wavelet filters that are close to the Shannon filters will approximately lead to the same behavior as that obtained by using the Shannon filters. In this respect, the following illustrates how close standard Daubechies, Symlets and Coiflets paraunitary filters can be to the Shannon filters. These standard filters are derived from the Daubechies polynomial

H [r] 0 (ω) = 1 + e -iω 2 r Q(e -iω ),
so that r describes the flatness of H 2) is given in figure 3. 

H 0 (ω) =    √ 2 if ω ∈ [-π 3 , π 3 ], 0 if ω ∈ [-π, -2π 3 ] ∪ [ 2π 3 , π]. (43 

B. Convergence speed for the Shannon paraunitary filters

Consider a path P associated with nodes (subbands) (j, n) j∈N . The speed of the decorrelation process in path P depends on the shape of spectrum γ of X in the sequence of nested intervals

(∆ j,G(n) ) j∈N .
First, if γ is constant in ∆ j0,G(n(j0)) for some j 0 0, that is, if γ(ω) = γ(πG(n(j 0 ))/2 j0 ) in ∆ j0,G(n(j0)) , then it follows from Eq. ( 12) that for any j j 0

R S j,n [m] = γ( πG(n(j 0 )) 2 j0 )δ[m], (44) 
and the wavelet packet coefficients are decorrelated in any subband (j, n) of path P, for every j j 0 . Now, assume that γ is approximately linear, γ(ω) = aω + b in ∆ j0,G(n(j0)) , then it follows from Eq. ( 12) that, in path P and for every j j 0 ,

R S j,n [m] = γ( πG(n) 2 j )δ[m] +          πa 2 j+1 if m = 0, (-1) mG(n) ((-1) m -1)a πm 2 2 j if m = 0. ( 45 
)
Note that ∆ j,G(n) is a tight interval when j is large. For j = 6, the diameter of ∆ j,G(n) is π/2 6 ≈ 0.05. It follows that the assumption "γ is constant or linear in ∆ j,G(n) " is reasonable for approximating (piecewise linear approximation of a function) the shape of the spectrum γ for large values of the decomposition level, for fractional Brownian motions and for wide-sense stationary processes with regular or piecewise regular spectra.

DRAFT Eq. ( 45) has two consequences. First, the convergence speed is very high since the sequence 1/2 j decay very fast when j increases. Second, let X 1 , X 2 be two processes having spectra with linear shapes a 1 and a 2 in ∆ j,G(n) . If 0 < a 1 ≪ a 2 , then we can expect that decorrelating process X 1 will be sensibly easier in the paths associated with ∆ j,G(n) than decorrelating process X 2 .

C. Decorrelation speed, in practice

We first consider a random process with spectrum γ(ω) = 1/ω β , 0 < β < 2. The spectrum of such a process is very sharp near ω = 0 and becomes less and less sharp when ω increases. Section IV-B thus tells us that the decorrelation speed will be very slow in any path characterized by a sequence of nested intervals (∆ j,G(n) ) j∈N for which the limit value ω P close to zero.

More precisely, figure 4 illustrates the decorrelation speed for path P π/4 (denoted P π/4 because n(j) = 2 j-3 so that the limit autocorrelation function is γ(π/4)δ[m]), in comparison with the autocorrelation function obtained in path P 0 (for which, there is no convergence of the integrals involved for computing the autocorrelation functions). It follows that decorrelation can be considered to be attained with reasonable values for decomposition level j 6 and filter order r 7 for path P π/4 whereas coefficients of path P 0 remain strongly correlated. Note that for a spectrum γ with the form 1/ω β , γ(0) = ∞ and Theorem 3 does not apply for path P 0 . Now, we consider a stationary random process (generated by filtering white noise with an autoregressive filter) with spectrum γ defined for 0 < µ < 1, by

γ(ω) = (1 -µ) 2 /|1 -µe -iω | 2 .
For such a process, Theorem 1 applies even for path P 0 and the decorrelation speed thus depends on the shape of the spectrum in this path. Figure 6 shows that the decorrelation in P 0 is faster when the spectrum shape is parameterized by µ 1 than when it is parameterized by µ 2 with µ 1 < µ 2 : that is when the shape of the spectrum is less sharp. This confirms the role played by the spectrum shape in the decorrelation speed, as highlighted by Eq. ( 45). Spectra are plotted in figure 5 for µ 1 = 0.5 and µ 2 = 0.9.

V. WAVELET PACKET BASED SPECTRUM ESTIMATION

We now address wavelet packet based spectrum estimation, on the basis of Theorems 1 and 3. These theorems provide a general non-parametric method for estimating the spectrum of X assumed to be fractional Brownian motion or wide-sense stationary with spectrum γ. The principle of the method is detailed below. Its advantages and limitations are discussed in the Section V-C. with parameters µ1 = 0.5, µ2 = 0.9, the spectra of these processes are given by figure 5. The approximation path is considered.

For every set of parameters j, n, r considered, the correlation is stronger for process c

[r] j,n (X2) than for process c

[r] j,n (X1). The decorrelation process is fast: Process X2 spectrum is very sharp around the null frequency, however, the coefficients of this process in the approximation path are sensibly decorrelated by using standard paraunitary filters (Daubechies filters with order r = 7 are used).

A. Wavelet packet based spectrum estimation

From Theorems 1 and 3, we have that R

[r] j,n [0] is close to γ(πG(n)/2 j ) with a good precision when j and r are large enough since the absolute value of the difference between the two quantities can be made arbitrary small: for every fixed η > 0, there exist some j 0 = j 0 (ǫ) and r 0 = r(j 0 , ǫ) so that for every j j 0 and every r r 0 , |R

[r] j,n [0] -γ(πG(n)/2 j )| < η.
Thus the set of the variances of the wavelet packet coefficients at decomposition level j 0 , {R [r0] j0,n [0], n = 0, 1, 2, . . . , 2 j0 -1}, can be described as a set of 2 j0 estimates for the spectrum values {γ(πG(n)/2 j0 ), n = 0, 1, 2, . . . , 2 j0 -1}. Now, if the spectrum γ is not very singular and if we choose j 0 sufficiently large, then we can assume that γ is approximately constant in ∆ j0,G(n) (this is reasonable because the diameter 1/2 j0 of ∆ j0,G(n) decay very fast to zero when j 0 increases). It follows that for any frequency ω 0 ∈ [0, π], the value γ(ω 0 ) can be estimated by the variance R

[r0] j0,n [0] of the wavelet packet coefficients located at node (j 0 , n), where DRAFT n is such that πG(n)/2 j0 ω 0 < π (G(n) + 1) /2 j0 . Summarizing, assume that we identify sufficiently large values for j and r. We can thus sample uniformly or non-uniformly the spectrum of X with respect to the values (ω ℓ ) ℓ chosen in [0, π]. For an arbitrary ω ℓ ∈ [0, π], the estimation is performed along the following steps.

1) Compute the largest integer p so that ω ℓ pπ/2 j , that is p = 2 j ω ℓ π .

2) Compute the shift parameter n by using the inverse of the permutation G:

n = G -1 (p),
G -1 being obtained from the Gray code (see [START_REF] Mallat | A wavelet tour of signal processing[END_REF]) of p : if p = j ℓ=1 ǫ ℓ 2 j-ℓ , with ǫ ℓ ∈ {0, 1}, then

G -1 (p) = j ℓ=1 (ǫ ℓ ⊕ ǫ ℓ-1 ) 2 j-ℓ (46) 
with the convention ǫ 0 = 0 and where ⊕ denotes the bitwise exclusive-or.

3) Set γ(ω ℓ ) = R r j,n [0], where R r j,n [0] is the variance of the wavelet packet coefficients located at node (j, n) (projection of X on W r j,n ).

B. Experimental results

The experimental tests concern 2 20 samples of a (simulated) discrete random process X with spectrum γ(ω) ∝ 1/ω β . We consider the following wavelet filters for the decomposition of the input process:

Daubechies filters with order 7 and 45, Symlet filters with order 8 and 30, Coiflet filters of order 5 and Meyer filters (see figures 2 and 3). The results presented are obtained at decomposition levels 7 and 9. The Welch's averaged modified periodogram method [START_REF] Welch | The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[END_REF] with window size 2 J+1 -1, J = 7, 9 is also used. The Welch averaged modified periodogram is one of the most efficient methods for estimating spectrum of long data [START_REF] Jokinen | On windowing effects in estimating averaged periodograms of noisy signals[END_REF]. We choose the window size equal to 2 J+1 -1 in order to get the same number of samples of the estimated spectrum as for the wavelet packet method (at level J, we have 2 J subbands and thus, 2 J -1 spectrum samples because the approximation path is not concerned by Theorem 3). The reader can find in [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF]Table 1], some complementary tests for the estimates of the values γ(0), γ(π/4), γ(π/2), γ(π) as well as their 95% confidence intervals for 100 realizations of the process with spectrum parameterized by µ = µ 2 = 0.9 (see figure 5).

For a single test, a simple estimate β of β is obtained by averaging over all the possible combinations of the form β(ω 1 , ω 2 ) = -log( γ(ω2) γ(ω1) )/ log( ω2 ω1 ), with ω 2 > ω 1 > 0. This (non-parametric) approach takes into account the errors made at every sample estimate and thus, reflects more precisely, the estimation errors than extracting β by a parametric method. The empirical mean of the estimate β, the estimation error and the empirical variance of β are given in table I. These values are those obtained over 25 tests based on different realizations of the random process X. This table shows good performance of the wavelet packet based spectrum estimation, in comparison of the Fourier-Welch method. Note that, surprisingly, the best results for the wavelet packet methods are not those achieved by filters with long impulse responses (filters that are much closer to the Shannon filters): this is due to the fact that the computation of filters with very very long impulse responses1 and thus, the computation of the wavelet packet coefficients by using such filters, are subject to numerical instabilities [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Figure 7 gives an estimate of the spectrum computed from one realization of X, in comparison with the spectrum obtained with the Fourier-Welch method. This figure highlights the good behavior of the wavelet packet method when ω is close to the null frequency, in contrast to the Fourier-Welch method.

C. Discussion

The main limitation of the method seems to be the number of samples required to decompose the input random process up to 6, 7 levels (or more). However, note that if the spectrum shape is not very sharp around certain frequency points, it is not necessary to decompose up to 6 decomposition levels.

As an example, if we consider a random process whose spectrum is that of figure 5 for µ = 0.9 , then by using the Daubechies filters with order 7, we get (see [START_REF] Atto | On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process[END_REF]Figure 5]) a good approximation of • γ(0) at decomposition levels 7,

• γ(π/4) at decomposition levels 5,

• γ(π/2) at decomposition levels 3,

• γ(π) at decomposition levels 2.

Around the null frequency, γ is very sharp and 7 decompositions are necessary; otherwise, less decomposition levels are sufficient because the spectrum is rather flat.

The first advantage of the wavelet packet based method is the simplicity of the spectrum estimation via the technique described in Section V-A. Statistical properties of the autocorrelation and the convergence speed to the limit autocorrelation functions ensure that we can expect good performance of the method by DRAFT using standard Daubechies or Symlets filters with order larger than or equal to 7. The second advantage of the method is that it is non-parametric: in practice, it can be used in many applications with no a priori on the spectrum shape. When a priori information is available, the method could also be improved with existing techniques. As a matter of fact, if the spectrum of interest has a priori exactly the form 1/ω β , then we can estimate β by maximum-likelihood estimate as done for the wavelet based method in [START_REF] Wornell | Estimation of fractal signals from noisy measurements using wavelets[END_REF], [START_REF] Kaplan | Fractal estimation from noisy data via discrete fractional gaussian noise (dfgn) and the haar basis[END_REF] or by techniques such as [START_REF] Ninness | estimation of 1/f noise[END_REF] if the observation is corrupted by additive white noise.

VI. CONCLUSION

The asymptotic autocorrelation functions of wavelet packet coefficients of fractional Brownian motions have been computed for some paraunitary filters that approximate the Shannon paraunitary filters.

The paper also characterizes the convergence speed to the limit autocorrelation and show that approximate decorrelation can be achieved at finite decomposition levels even by using non-ideal paraunitary filters.

The ideal subband coding yielded by the Shannon wavelet packet decomposition, the convergence of some standard wavelet filters to the Shannon filters, and the asymptotic properties of the wavelet packet autocorrelation allow for defining wavelet packet based spectrum estimation. This spectrum estimation has been tested in the framework of fractional Brownian motion, but also applies wide-sense stationary random processes.

The new wavelet packet based spectrum estimation presented in the paper derives from theoretical results (those stated in Theorems 1 and 3), has very low complexity and outperforms the standard non-parametric Fourier-Welch based spectrum estimation. The discussion of Section V-C highlights the limitations and the advantages of the new method. It also presents some perspectives on how to improve the wavelet packet based spectrum estimation.

In future work, we plan to investigate the contributions of some of the proposed techniques, among others, the exploitation of redundancy in the signal domain (Hilbert transform) or in the wavelet domain (averaging several ǫ-decimate orthogonal wavelets, using complex wavelets or multiwavelets).

Proof:

Since f is continuous at ω P , then for every real number η > 0, there exists a real number ν > 0 such that, for every ω ∈ [ω P -ν, ω P + ν], we have |f (ω) -f (ω P )| < η. In addition, since lim j→+∞ G(n P (j))π 2 j = lim j→+∞ (G(n P (j)) + 1)π 2 j = ω P , there exists an integer j 0 = j 0 (ν), such that, for every natural number j j 0 , the values G(n P (j))π/2 j and (G(n P (j))+1)π/2 j are within the interval [ω P -ν, ω P +ν]. It follows that, for every natural number j j 0 and every ω ∈ ∆ + j,G(nP (j)) , |f (ω) -f (ω P )| < η.

Therefore, for any natural number j j 0 we conclude that, for every natural number j j 0 ,

2 j π ∆ + j,G (n) 
f (ω) cos (2 j kω)dω -f (ω P )δ[k] < η uniformly in k ∈ Z.

DRAFT

ǫRemark 1 :

 1 for ǫ ∈ {0, 1} are with finite impulse responses. This holds true for the Daubechies and Battle-Lemarié paraunitary filters. It the follows that: The wavelet packet function W [r] j,n,k is obtained by a recursive decomposition involving the wavelet function W

2 )

 2 r and satisfy: sup |ω| η g(ω)/|ω| 2 < ∞ for some η > 0.

  [r] j,n | 2 converges almost everywhere to |FW S j,n | 2 when r tends to infinity. Since |H [r]

Battle- 1 ) 1 :

 11 Lemarié wavelet functions satisfy assumption (A1) as well because these functions are bounded and have exponential decays [22, Corollary 5.4.2]. Since assumption (A4) implies (A3), it suffices now to check that assumption (A4) holds true for the sequences of Daubechies and Battle-Lemarié wavelet functions. The family of Daubechies wavelet functions satisfies assumption (A4): More precisely, we have Proposition The Daubechies wavelet functions (W [r]

  )| | sin(ω/4)| for |ω| 2π/3 and the result derives by taking into account Eqs. (26) and (29), with K = C 2 .

  and for |ω/2| π/4, we have | sin(ω/2)| r-1 2 -(r+1)/2 and | sin(ω/2)| |ω/2| 1.

0Fig. 2 .

 2 Fig. 2. Graphs of |H [r] 0 | for the Daubechies, Symlets and Coiflets scaling filters. "FilterName[r]" denotes the filter type and its order, r.

)Fig. 3 .

 3 Fig. 3. Magnitude response of Meyer scaling filter normalized by the factor 1/ √ 2.

Fig. 4 .

 4 Fig. 4. Normalized autocorrelation functions of the wavelet packet coefficients (j = 3, 6, r = 1, 7 and β = 1.5) of a process with spectrum 1/ω β . The approximation path P0 and the path P π/4 (n(1) = n(2) = 0 and n(j) = 2 j-3 for every j 3) are considered. Daubechies filters with order r = 1, 7 are used.

Fig. 5 .Fig. 6 .

 56 Fig.5. Spectrum γ for process X1 (resp. X2) with parameter µ1 = 0.5 (resp. µ2 = 0.9).

Fig. 7 .

 7 Fig. 7. Spectrum estimated via the Wavelet and Fourier-Welch method.

  2 j π ∆ + j,G(n P (j)) |f (ω) -f (ω P )| dω < η M j π ∆ + j,G(n P (j)) dω = η.(54)On the other hand, for any natural number j j 0 and every integer k,∆ + j,G(n P (j)) f (ω) cos (2 j kω)dω -∆ + j,G(n P (j))f (ω P ) cos (2 j kω)dω= ∆ + j,G(n P (j)) (f (ω) -f (ω P )) cos (2 j kω)dω ∆ + j,G(n P (j)) |f (ω) -f (ω P )| dω.(55)Hence, we derive from Eqs. (54) and (55) that, for every natural number j j 0 ,2 j π ∆ + j,G(n P (j)) f (ω) cos (2 j kω)dω -∆ + j,G(n P (j)) f (ω P ) cos (2 j kω)dω < η uniformly in k ∈ Z. Since 2 j π ∆ + j,G(n P (j))f (ω P ) cos (2 j kω)dω = f (ω P )δ[k],

TABLE I EMPIRICAL

 I MEANS, ERRORS, AND VARIANCES, OF THE ESTIMATION OF α OVER 25 NOISE REALIZATIONS, BY USING A FOURIER-WELCH AND WAVELET PACKET BASED METHOD. THE BEST PERFORMANCE OF THE WAVELET PACKET METHOD ARE IN BOLD, IN THE TABLE. THE WELCH'S AVERAGED MODIFIED PERIODOGRAM METHOD WITH WINDOW SIZE 2 J+1 -1, J = 7, 9 IS USED AT DECOMPOSITION LEVEL J .

	Method		Fourier			Wavelet			
			'Welch' 'Daub[7]' 'Daub[45]' 'Symlet[8]' 'Symlet[30]' 'Coiflet[5]' 'Meyer'
					J = 7.				
	α=0.25	Mean( α)	0.2563	0.2520	0.2534	0.2531	0.2546	0.2531	0.2548
	α=0.50	|α -Mean( α)| 10 4 × Var( α) Mean( α)	0.0063 0.0526 0.5126	0.0020 0.0080 0.5049	0.0034 0.0271 0.5062	0.0031 0.0048 0.5061	0.0046 0.0710 0.5075	0.0031 0.0084 0.5060	0.0048 0.2290 0.5060
	α=0.75	|α -Mean( α)| 10 5 × Var( α) Mean( α)	0.0126 0.6865 0.7712	0.0049 0.1967 0.7590	0.0062 0.3849 0.7612	0.0061 0.0474 0.7607	0.0075 0.3276 0.7612	0.0060 0.0894 0.7602	0.0060 0.3280 0.7624
	α=1.00	|α -Mean( α)| 10 5 × Var( α) Mean( α)	0.0212 0.7520 1.0297	0.0090 0.2357 1.0135	0.0112 0.6134 1.0138	0.0107 0.0298 1.0142	0.0112 0.6650 1.0147	0.0102 0.1980 1.0146	0.0124 0.3396 1.0142
		|α -Mean( α)| 10 4 × Var( α)	0.0297 0.0603	0.0135 0.0085	0.0138 0.0773	0.0142 0.0104	0.0147 0.0587	0.0146 0.0168	0.0142 0.1643
					J = 9.				
	α=0.25	Mean( α)	0.2520	0.2476	0.2490	0.2492	0.2504	0.2484	0.2520
	α=0.50	|α -Mean( α)| 10 3 × Var( α) Mean( α)	0.0020 0.0032 0.5033	0.0024 0.0085 0.4976	0.0010 0.0214 0.4992	0.0008 0.0211 0.5003	0.0004 0.1027 0.5040	0.0016 0.0237 0.4995	0.0020 0.1392 0.5027
	α=0.75	|α -Mean( α)| 10 3 × Var( α) Mean( α)	0.0033 0.0100 0.7569	0.0024 0.0130 0.7486	0.0008 0.0210 0.7518	0.0003 0.0068 0.7505	0.0040 0.0308 0.7525	0.0005 0.0155 0.7511	0.0027 0.1185 0.7531
	α=1.00	|α -Mean( α)| 10 4 × Var( α) Mean( α)	0.0069 0.1496 1.0089	0.0014 0.0806 0.9993	0.0018 0.1958 1.0009	0.0005 0.1564 1.0031	0.0025 0.4050 1.0099	0.0011 0.0845 1.0036	0.0031 0.3587 1.0122
		|α -Mean( α)| 10 4 × Var( α)	0.0089 0.0931	0.0007 0.1154	0.0009 0.3161	0.0031 0.1976	0.0099 0.6106	0.0036 0.1117	0.0122 0.2733

We have 102 (resp. 90) coefficients for the Meyer (resp. Daub[45]) low-pass filter.DRAFT

APPENDIX A PROOF OF THEOREM 2

By taking into account remark 1 and under assumption (A1), the discrete random process c

[r] j,n representing the wavelet packet coefficients of the fractional Brownian motion X is defined by

with convergence in quadratic mean sense and its autocorrelation function is

with R(t, s) given by Eq. [START_REF] Benedetto | Wavelets : Mathematics and applications[END_REF].

By considering again remark 1 and under assumption (A2), we have that

and thus

DRAFT By mimicking the proof of [12, Theorem 1] we get

Thus, from Eqs. (48), ( 50) and (51), we obtain

One can check that under assumption (A3), the integral in Eq. ( 52) is absolutely convergent for every pair (j, n) with n = 0. From Eq. ( 52) we have that c

[r] j,n is a wide-sense stationary random process for every (j, n) ∈ N × N. With the standard abuse of language, we denote R

with m = k -ℓ and Eq. ( 16) follows.

APPENDIX B

Lemma 2: Let f be a real valued function. Consider the sequence of nested intervals ∆ + j,G(nP (j)) j 1 defined by Eq. ( 8) and associated with a wavelet packet path P. Assume that f is locally integrable on R. If f is continuous at ω P given by Eq. ( 10), then we have uniformly in

2 Change of variables. 3 Bahr and Essen representation of |t| 2α , see [START_REF] Bahr | Inequalities for the rth moment of a sum of random variables, 1 r 2[END_REF]. 4 Fubini's theorem, the integrand is absolutely integrable. 5 Taking into account Eq. (49). 6 Write cos(tω) = (e -itω + e -itω )/2 to obtain Fourier integrals of W