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Abstract

This paper deals with nonparametric estimation of the upper boundary of a mul-
tivariate support under monotonicity constraint. This estimation problem arises in
various contexts such as efficiency and frontier analysis in econometrics and portfolio
management. The traditional estimators based on envelopment techniques are very
non-robust. To reduce this defect, previous works have rather concentrated on esti-
mation of a concept of a partial frontier of order α ∈ (0, 1) lying near the full support
boundary. However the resulting sample estimator is a discontinuous curve and suffers
from a lack of efficiency due to the large variation of the extreme observations involved
in its construction. A smoothed-kernel variant of this empirical estimator may be then
preferable as shown recently in the econometric literature, but no attention was de-
voted to the limit distribution of the smoothed α-frontier when it estimates the true
full boundary itself. In this paper, we address this problem by specifying the different
limit laws of this estimator for fixed orders α ∈ (0, 1] as well as for sequences α = αn

tending to one at different rates as the sample size n goes to infinity.
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1 Introduction

This paper deals with nonparametric estimation of the monotone upper boundary of the

support of a random vector (X, Y ) ∈ R
p
+×R+ defined on a probability space (Ω,A, P). This

frontier estimation problem arises in various contexts. It appears naturally in productivity

and efficiency analysis, where X is a set of inputs (for example labor, energy or capital)

used to produce an output (for example a quantity of goods produced) Y in a certain firm.

The support boundary may be then viewed as the set of efficient production units (firms,...).

Economic considerations lead to the assumption that this support curve is a monotone

nondecreasing surface. Here the data typically consist of pairs (Xi, Yi) lying below the

boundary curve and observed for a number n of i.i.d. firms.

Until recently, the joint support of (X, Y ) which is interpreted in deterministic nonpara-

metric frontier models as the production set {(x, y) ∈ R
p
+×R+ | x can produce y}, was often

assumed to be of the form {(x, y) ∈ R
p
+ × R+ | y ≤ ϕ(x)} where ϕ is a monotone function

whose the graph defines the support curve. A probabilistic formulation of such a frontier

function has been introduced by Cazals, Florens and Simar (2002):

ϕ(x) = F−1(1|x) := sup{y ≥ 0|F (y|x) < 1} = inf{y ≥ 0|F (y|x) = 1} (1.1)

where F (y|x) = F (x, y)/FX(x), F (x, y) = P(X ≤ x, Y ≤ y) and FX(x) = P(X ≤ x) > 0. A

famous nonparametric estimation technique of this frontier is the free disposal hull (FDH)

estimator, the lowest step monotone curve covering all sample points:

ϕ̂(x) = F−1
n (1|x) := sup{y ≥ 0|Fn(y|x) < 1} = max{Yi|i : Xi ≤ x}

where Fn(y|x) =
∑n

i=1 1I(Xi ≤ x, Yi ≤ y)/
∑n

i=1 1I(Xi ≤ x), with 1I(A) being the indicator

function for the set A. The smallest concave curve covering the FDH frontier is the popular

data envelopment analysis (DEA) estimator. A related field of application where monotone

concave frontiers naturally arise is portfolio management, where X measures the volatility

or variance of a portfolio and Y its average return. In Capital Assets Pricing Models, the

support of (X, Y ) which represents the attainable set of portfolios is naturally convex and

its boundary curve is interpreted as the set of optimal portfolios.

The asymptotic theory of the traditional frontier estimators FDH and DEA is now mostly

available (see e.g. Jeong and Park (2006) and Daouia et al. (2008) for the limit distributions),

but these envelopment estimators are by construction very non-robust. The underlying idea

to reduce this vexing defect is to estimate a conditional quantile-based frontier near the

support boundary as suggested by Aragon et al. (2005). They extend the formulation (1.1)

of Cazals et al.(2002) to a concept of a partial support curve of order α ∈ (0, 1] characterized
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as the graph of the αth conditional quantile function

qα(x) = F−1(α|x) := inf{y ≥ 0|F (y|x) ≥ α}.

Then, Aragon et al. (2005) show that the empirical estimator

qα,n(x) = F−1
n (α|x) := inf{y ≥ 0|Fn(y|x) ≥ α} (1.2)

estimates the full frontier ϕ(x) itself and converges to the same Weibull distribution as the

FDH estimator by an appropriate choice of the order α as a function of the sample size.

Moreover qα,n(x) has the advantage to be more resistant to extreme values and/or outliers

than the standard nonparametric FDH and DEA estimators as established theoretically in

Daouia and Ruiz-Gazen (2006). Even more strongly, it is shown recently in Daouia, Flo-

rens and Simar (2008) by an elegant method using extreme-values theory that this sample

estimator of ϕ(x) converges to a normal distribution under quite general extreme-values con-

ditions. However it suffers from a lack of efficiency due to the large variation of the extreme

observations (Xi, Yi), with Xi ≤ x, involved in its construction. A smoothed estimator may

be then preferable to the sample estimator qα,n(x). Martins-Filho and Yao (2008) propose a

kernel-based variant

q̂α(x) = F̂−1(α|x) := inf{y ≥ 0|F̂ (y|x) ≥ α} (1.3)

where F̂ (y|x) = F̂n(x, y)/F̂X(x) with

F̂X(x) =
1

n

n
∑

i=1

1I(Xi ≤ x), F̂n(x, y) =
1

n

n
∑

i=1

1I(Xi ≤ x)H

(

y − Yi

h

)

,

h = hn → 0 is a sequence of bandwidths and H(·) =
∫ ·
−∞ K(u)du, with K(·) being a density

kernel. This smoothed estimator may also be preferable to the sample one for the following

additional respect: the construction of asymptotic confidence intervals for qα(x) using the

asymptotic normality of qα,n(x) requires the estimation of the derivative F ′(qα(x)|x), whereas

smoothing gives a naturally derived estimator of this conditional quantile density function.

However, while the consideration of the notion of partial frontiers in the literature is

primely motivated by the construction of a robust estimator of the full frontier function

ϕ(x) which is well inside the sample {(Xi, Yi), i = 1, . . . , n} but near from the optimal

boundary, Martins-Filho and Yao (2008) only focus on the estimation of the partial frontier

function qα(x) for a fixed order α ∈ (0, 1), showing that q̂α(x) is asymptotically biased

and normally distributed. Our paper gives more insights and extends their work in four

directions. i) First, similarly to Martins-Filho and Yao (2008), we derive in Proposition 1

the asymptotic normality of q̂α(x) as an estimator of qα(x), for a fixed order α ∈ (0, 1), under
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weaker conditions and without asymptotic bias. ii) Second, we focus on the asymptotic

distribution of q̂α(x) as an estimator of the full frontier function ϕ(x) itself, for a sequence

α = αn tending to one as n → ∞. It is established in Theorem 1 that q̂αn(x) converges to a

normal distribution when n(1−αn) → ∞. It appears that q̂αn(x) is asymptotically biased as

a smooth estimator of the true frontier ϕ(x), but is asymptotically unbiased as an estimator

of the extreme partial frontiers qαn(x) lying near the full boundary ϕ(x). Corollaries 1 and

2 answer the question of how to construct smooth confidence intervals for the large partial

frontiers qαn(x). iii) The case where n(1−αn) tends to a constant is addressed in Theorem 4.

It is shown that q̂αn(x), once centered on the true frontier ϕ(x), has asymptotically an

extreme-values distribution. iv) The extreme case α = 1 is considered in Theorem 2. It

provides the necessary and sufficient condition under which the smooth estimator q̂1(x) of

ϕ(x) converges to a non-degenerate distribution. The limit distribution and the convergence

rate are both specified. We also investigate the moment convergence in Theorem 3.

The next section is organized as follows. The assumptions needed to derive the asymptotic

distributions of the smooth frontier estimators in the above mentioned situations i)-iv) are

introduced and motivated in Subsection 2.1. Subsection 2.2 provides some standard examples

to illustrate the used extreme-values type conditions. Our main results are presented in

Subsection 2.3. The proofs are postponed to Appendix.

2 Main results

2.1 Assumptions

Let us denote by F̄ (·|x) = 1 − F (·|x) the conditional survival function. Assumptions 1-3

below are used to establish the different limit distributions of the smooth frontier estimators

in the four situations mentionned in Section 1.

Assumption 1. The joint cumulative distribution function F (·, ·) is differentiable.

Under this condition, the conditional cumulative distribution function F (·|x) is also differen-

tiable. In the sequel, we denote by f(·, ·) and f(·|x), respectively, the joint and conditional

densities.

Assumption 2. Functions F (·|x) and f(·|x) satisfy the von-Mises condition

lim
y↑ϕ(x)

{ϕ(x) − y}f(y|x)/F̄(y|x) = −1/γ(x).

This condition implies (see for instance Proposition 1.16 in Resnick (1987, p. 63)) that

F (·|x) is in the maximum domain of attraction of Weibull with tail index γ(x) < 0, i.e.,
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ϕ(x) < ∞ and

F̄ (y|x) = {ϕ(x) − y}−1/γ(x)ℓx

(

{ϕ(x) − y}−1
)

, (2.4)

where ℓx is a slowly varying function, that is limt→∞ ℓx(tz)/ℓx(t) = 1 for all z > 0. More

precisely, Assumption 2 is equivalent to ϕ(x) < ∞ and (2.4) with ℓx being a normalized

slowly varying function, i.e., using the Karamata representation for slowly varying functions

(see e.g. Resnick (1987), p. 17) :

ℓx(z) = κx exp

{
∫ z

1

ε(t)

t
dt

}

for z > 0,

where κx > 0 and limt→∞ ε(t) = 0. From Proposition 0.8(v) in Resnick (1987, p. 22), note

that (2.4) with ℓx being a normalized slowly varying function, is equivalent to

ϕ(x) − qα(x) = (1 − α)−γ(x)Lx({1 − α}−1), (2.5)

where Lx is a normalized slowly varying function. Note also that the general assumption

(2.4) is the necessary and sufficient condition under which the conventional unsmoothed

FDH estimator of ϕ(x) converges to a Weibull distribution as shown in Daouia et al.(2008).

It is also the necessary and sufficient condition for the smoothed estimator q̂1(x) of ϕ(x) to

converge to a non-degenerate distribution as it will be shown in Theorem 2.

Assumption 3. The density kernel K has a bounded support, i.e., for some constant c > 0,

∫ c

−c

K(u)du = 1.

This condition is satisfied by commonly used kernels in nonparametric estimation such as

Biweight, Triweight, Epanechnikov, etc.

Remark 1. In the particular case where ℓx ({ϕ(x) − y}−1) = ℓ(x) is a strictly positive

function in x, it is shown in Daouia et al.(2008) that the joint density of (X, Y ) ∈ R
p
+ × R+

satisfies

f(x, y) = cx {ϕ(x) − y}βx + o({ϕ(x) − y}βx) as y ↑ ϕ(x) (2.6)

for some constant cx > 0 with βx = −(1/γ(x)) − (p + 1) > −1, provided that the functions

ℓ(x) > 0, γ(x) > −1/p and ϕ(x) are differentiable and the partial first derivatives of ϕ(x)

are strictly positive (in order to ensure the existence of the joint density near its support

boundary). The restrictive variant (2.6) of Assumption 2 answers the question of how the

conditional tail index γ(x) is linked to the dimension (p +1) of the data and to the shape of

the joint density of (X, Y ) near the frontier: when γ(x) > −1/(p+1), the joint density decays

to zero at a speed of power βx of the distance from the frontier; when γ(x) = −1/(p + 1),
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the density has a sudden jump at the frontier; when γ(x) < −1/(p + 1), the density rises

up to infinity at a speed of power βx of the distance from the frontier (γ(x) ≤ −1/(p + 1)

corresponds to sharp or fault-type boundaries).

Remark 2. Most of the recent contributions to statistical aspects of frontier estimation

are rather based on the restrictive assumption (2.6) that the density f(x, y) is an algebraic

function of ϕ(x)−y. Gijbels and Peng (2000) and Hwang, Park and Ryu (2002) consider the

case p = 1; Hall, Nussbaum and Stern (1997) focus on the case p = 1 with βx > 1, while there

has been extensive work on the case βx = 0 (see among others Gijbels, Mammen, Park and

Simar 1999, Park, Simar and Weiner 2000, Cazals et al. 2002, Aragon et al. 2005, Daouia and

Simar 2007, Martins-Filho and Yao 2008); Condition (2.6) has been also considered in Hardle,

Park and Tsybakov (1995) and Hall, Park and Stern (1998). Econometric considerations also

often lead to the assumption (2.6), but the shape parameter βx is supposed most of the time

to be independent of x or equal to zero. This is for instance the case in parametric approaches

where it is often assumed1 that the conditional density of Y given X = x is an exponential or

a half-normal or a truncated normal. Greene (1980) and Deprins and Simar (1985) analyze

gamma densities with free shape parameter allowing β ≥ 0, but with the homoskedastic

restriction that β does not depend on x. It is also the case in the nonparametric econometric

literature mentioned above where βx = 0.

In our approach, we consider the general case βx > −1, p ≥ 1 and not necessarily constant

functions ℓx(·) in (2.4).

2.2 Examples

The following three examples have been considered among others by Gijbels et al (1999),

Park et al.(2000), Cazals et al.(2002), Aragon et al.(2005), Daouia and Ruiz-Gazen (2006),

Daouia and Simar (2007), Martins-Filho and Yao (2008), Daouia et al.(2008). The second

and third examples are more justified from an economic point of view.

Example 1. We first consider the case where the monotone frontier is linear. We choose

(X, Y ) uniformly distributed over the region D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x}. In this

case, we have ϕ(x) = x and F̄ (y|x) = (ϕ(x) − y)2/FX(x) for all 0 ≤ y ≤ ϕ(x). Then (2.4)

holds with ℓx(·) = 1/FX(x) and γ(x) = −1/2 for all x. Assumption 2 holds as well.

Example 2. We now choose a non linear monotone frontier given by the Cobb-Douglas

model Y = X1/2 exp (−U), where X is uniform on [0, 1] and U , independent of X, is Ex-

ponential with parameter λ = 3. Here ϕ(x) = x1/2 and F (y|x) = 3x−1y2 − 2x−3/2y3, for

1Formally, the model is Y = ϕ(X)− U , where U > 0 a.s. is an exponential, etc... independent of X and
ϕ is a specific parametric econometric function (Cobb-Douglas, Translog,...).
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0 < x ≤ 1 and 0 ≤ y ≤ ϕ(x). Then it is not hard to verify that Assumption 2 holds with

γ(x) = −1/2 and that (2.4) holds with ℓx(z) = {3ϕ(x) − 2/z}/ϕ3(x) for all x ∈]0, 1] and

z > 0.

Example 3. Here we choose a non convex support with monotone frontier given by the

model Y = X3 exp (−U), where X is uniform on [1, 2] and U , independent of X, is Expo-

nential with parameter λ = 3. We have ϕ(x) = x3 and we find

F (y|x) =











1 y ≥ x3

1
x−1

[y1/3 − 1 + y3

8
(y−8/3 − x−8)] 1 ≤ y ≤ x3

y3

8
1−x−8

1−x
0 ≤ y ≤ 1.

Then we show that F̄ (x3 − 1
t
|x) = t−2[ 1

x−1
(542

99
x−5 + o(1))]. Thus γ(x) = −1/2 and ℓx(z)

tends to 542
99

x−5

x−1
as z → ∞.

2.3 Asymptotic distributions

2.3.1 Estimation of the partial α-frontier qα(x) when α ∈ (0, 1) is fixed.

We show in the following proposition that the smooth estimator q̂α(x) of qα(x), defined in

(1.3), is asymptotically unbiased and normally distributed.

Proposition 1. Under Assumptions 1 and 3, if f(·|x) is continuous in a neighborhood of

qα(x) with f(qα(x)|x) > 0 and if nh2 → 0 as n → ∞, then

σ−1
n,1(x) (q̂α(x) − qα(x))

d−→ N(0, 1) where σn,1(x) =

√

α(1 − α)
√

nFX(x)f(qα(x)|x)
.

Note that the asymptotic normality of q̂α(x) has also been proved by Martins-Filho and

Yao (2008, Theorem 2), but this estimator is asymptotically biased in their result. Moreover

they employ some strong conditions in their technique of proof, namely the assumptions

A3(c) and A4. They also need min{i:Xi≤x} Yi ≥ hc for all n large enough, which could be

violated by certain data generating processes as pointed out in their paper. Note also that

we only need the kernel K to possess a compact support [−c, c] in Assumption 3 to derive

the asymptotic normality, whereas the technique of proof used by Martins-Filho and Yao

(2008) requires, in addition to Assumption 3, several stringent conditions on K, namely the

assumptions A2(a)-A2(e).

2.3.2 Estimation of the full frontier by q̂αn(x) where αn → 1, n(1 − αn) → ∞.

The asymptotic distribution of the endpoint estimator q̂αn(x) = F̂−1(αn|x) of ϕ(x) is given

in the next theorem.
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Theorem 1. Under Assumptions 1-3, if n(1 − αn) → ∞ and nh2(1 − αn) = o{(ϕ(x) −
qαn(x))2}, then

σ−1
n,2(x) (q̂αn(x) − ϕ(x) − bn(x))

d−→ N(0, 1)

where

bn(x) = qαn(x) − ϕ(x) and σn,2(x) =
−γ(x)(ϕ(x) − qαn(x))

{n(1 − αn)FX(x)}1/2
.

Under the conditions of Theorem 1, σ−1
n,2(x)bn(x) → −∞ as n → ∞. Thus q̂αn(x) is an

asymptotically biased estimator of ϕ(x) but it is asymptotically unbiased as an estimator of

the extreme partial frontier qαn(x) lying close to the full frontier ϕ(x).

Remark 3. Note that the convergence rate in Proposition 1 and Theorem 1 does not directly

depend on the bandwidth h, but that this value interferes respectively in the conditions
√

nh → 0 and (ϕ(x) − qαn(x))/h
√

n(1 − αn) → ∞. Note also that the asymptotic mean

squared error of q̂αn(x) is given by

AMSE(q̂αn(x)) ∼ (ϕ(x) − qαn(x))2

[

1 +
γ2(x)

n(1 − αn)FX(x)

]

.

The obtention of an acceptable value of αn by optimizing the AMSE cannot be done without

imposing extra second-order regular variation conditions, as it is often the case for uncon-

ditional sample quantiles. For instance, if in (2.4) , ℓx ({ϕ(x) − y}−1) = ℓ(x) is a strictly

positive function in x, and γ(x) < −1/2, it is easily shown that the AMSE is minimum if

and only if n(1 − αn)FX(x) = −γ(x)
(

γ(x) + 1
2

)

. Clearly, this solution is not theoretically

admissible since it does not fulfill n(1 − αn) → ∞. Nevertheless, it provides a motivation

for studying the case where n(1 − αn) converges to a constant, see Theorem 4 below.

Theorem 1 is probably only of a theoretical value. The following corollaries enable one

to construct smooth confidence intervals for high partial frontiers qαn(x) when αn → 1 and

n(1 − αn) → ∞.

Corollary 1. Let

σn,3(x) = − γ(x)

{n(1 − αn)FX(x)}1/2
.

Under the Assumptions of Theorem 1

σ−1
n,3(x)

q̂αn(x) − qαn(x)

q̂αn(x) − q̂2αn−1(x)

is asymptotically normal with mean zero and variance (2−γ(x) − 1)−2.
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To construct asymptotic confidence bands for the extreme partial frontier estimator

q̂αn(x) of qαn(x), it suffices to replace the tail index γ(x) in the asymptotic variance with a

consistent estimator. One can use for example a Pickands type estimator defined as:

γ̂(x) = (log 2)−1 log {(q̂αn(x) − q̂2αn−1(x)) / (q̂2αn−1(x) − q̂4αn−3(x))} .

Corollary 2. Under the Assumptions of Theorem 1, γ̂(x)
p→ γ(x).

2.3.3 Estimation of the full frontier by q̂1(x).

Martins-Filho and Yao (2008, Theorem 4) have shown that2

n1/(p+1)(ϕ(x) − q̂1(x) + hc)
d→ Weibull(µp+1

x , p + 1) (2.7)

under some very restrictive conditions, namely: (1) mini:Xi≤x Yi ≥ hc, (2) the joint density

f(·, ·) of (X, Y ) is strictly positive on the frontier {(x, ϕ(x)) : FX(x) > 0}, etc. The constant

µx depends on the value of f(·, ·) at the frontier and on the slope of the frontier function

ϕ(·) which is also assumed to be continuously differentiable. The next theorem gives more

insights and generalizes the result of Martins-Filho and Yao (2008) in at least four directions:

we show that their condition (1) is not needed for the convergence in distribution of q̂1(x) to

hold, we provide the necessary and sufficient condition under which a−1
n (ϕ(x) − q̂1(x) + hc)

converges in distribution and we specify the limit distribution with the appropriate norming

constants an > 0 in a general setup. In particular we extend their restrictive condition (2)

to the more general case where f(·, ·) may decrease to zero or rise up to infinity. We also

provide a limit theorem of moments.

Theorem 2. Let Assumption 3 hold and h = hn be any sequence of bandwidths. There exists

an(x) > 0 such that a−1
n (x)(q̂1(x)−ϕ(x)− hc) converges in distribution if and only if F (·|x)

is in the maximum domain of attraction of Weibull, or equivalently, (2.4) holds. In such a

case, an(x) can be chosen as

an(x) = ϕ(x) − q1− 1
nFX (x)

(x),

and the limit cumulative distribution function is

y 7→ Ψγ(x)(y) =

{

exp{−(−y)−1/γ(x)} y < 0
1 y ≥ 0.

As an immediate consequence of Theorem 2, if Assumptions 3 and (2.4) hold and

a−1
n (x)h → 0, then a−1

n (x)(q̂1(x) − ϕ(x))
d→ Ψγ(x).

2Hereafter we say that a random variable X follows the distribution Weibull(λ, r) if λXr is Exponential
with parameter 1.
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Remark 4. In the particular case where in (2.4),

ℓx

(

{ϕ(x) − y}−1
)

:= ℓ(x)

is a strictly positive function in x, we have F−1(α|x) = ϕ(x) − (1−α
ℓ(x)

)−γ(x) as α ↑ 1, whence

an(x) = {nFX(x)ℓ(x)}γ(x) for all n sufficiently large. We thus have in this particular case

{nFX(x)ℓ(x)}−γ(x)
(

ϕ(x) − q̂1(x) + hc
) d−→ Weibull(1,−1/γ(x)) as n → ∞.

If, in addition (2.6) holds, then the norming constant is

an(x) = {nFX(x)ℓ(x)}−1/(βx+p+1).

In the restrictive case where the joint density has a jump at its support boundary, i.e.

βx = 0, we achieve the best convergence rate n−1/(p+1) as in Martins-Filho and Yao (2008),

see equation (2.7). Let us mention that the case where the frontier function is β- Lips-

chitzian has been addressed in Girard and Menneteau (2005) and Girard and Jacob (2008).

Different estimators reaching the best convergence rate n−β/(p+β) have been proposed. The

main difference with our approach lies in the fact that those approaches as well as the vast

literature on frontier estimation focus on nonparametric estimation of the right-endpoint of

the conditional distribution of Y given X = x, whereas the distribution of Y is conditioned

by X ≤ x in our setup due to the monotonicity constraint.

Next we show for which values of k > 0 the convergence in distribution a−1
n (x)(q̂1(x) −

ϕ(x) − hc)
d−→ Ψγ(x) implies the moment convergence

E{a−1
n (q̂1(x) − ϕ(x) − hc)}k −→

∫ 0

−∞
ykΨγ(x)(dy) as n → ∞.

Theorem 3. Let Assumption 3 hold. If a−1
n (x)(q̂1(x) − ϕ(x) − hc)

d−→ Ψγ(x) with an(x) =

ϕ(x) − q1− 1
nFX (x)

(x), then for any integer k ≥ 1

lim
n→∞

E{a−1
n (x)(q̂1(x) − ϕ(x) − hc)}k =

∫ 0

−∞
ykΨγ(x)(dy) = (−1)kΓ(1 − kγ(x)),

where Γ(·) denotes the gamma function.

Remark 5. We have E{ϕ(x)− q̂1(x)}2 = E{ϕ(x)− q̂1(x)+hc}2−(hc)2−2hcE{ϕ(x)− q̂1(x)}.
Then by using the fact that E{ϕ(x) − q̂1(x) + hc}k = Γ(1 − kγ(x))ak

n(x) + o(ak
n(x)) and

optimizing the AMSE = E{ϕ(x) − q̂1(x)}2, we get the following optimal value of h,

hn(x) = arg min
h

{h2c − 2han(x)Γ(1 − γ(x))} = an(x)Γ(1 − γ(x))/c.

9



In particular, when the joint density of (X, Y ) has a jump at its support boundary, as it

is often assumed in applications (see Remarks 2 and 4), we have an(x) = {nFX(x)ℓ(x)}γ(x)

and γ(x) = −1/(p + 1), which gives

hn(x) = {c(p + 1)}−1Γ(1/(p + 1)){nFX(x)ℓ(x)}−1/(p+1).

This also reflects how the smooth estimator q̂1(x) suffers from the curse of dimensionality

as the number p of inputs increases. Finally, it should be clear that a−1
n (x)(q̂1(x) − ϕ(x) −

chn(x))
d→ Ψγ(x), however the optimal value hn(x) does not satisfy a−1

n (x)hn(x) → 0.

Remark 6. In the particular case where ℓx(·) = ℓ(x) > 0, it is easy to check that, for n

large enough,

AMSE(q̂1(x)) < AMSE(q̂αn(x)) < AMSE(q̂α(x)),

where n(1 − αn) → ∞ and α ∈ (0, 1). Thus q̂1(·) is the best estimator for the full frontier

from a theoretical point of view, but it is by construction very non-robust. The estimator

q̂αn(·) may be preferable since it is less sensitive to extremes, is asymptotically Gaussian and

provides a useful confidence interval.

2.3.4 Estimation of ϕ(x) by q̂αn(x) when n(1 − αn) converges to a constant.

Next we show that if the bandwidth h and the scaling a−1
n (x), described in Theorem 2, satisfy

a−1
n (x)h → 0 as n → ∞, then we can specify the asymptotic distribution of q̂1−k/nF̂X(x)(x)

when it estimates the true frontier function ϕ(x), for all fixed integers k ≥ 0.

Theorem 4. If Assumptions 3 and (2.4) hold with a−1
n (x)h → 0 as n → ∞, then for any

fixed integer k ≥ 0,

a−1
n (x)

(

q̂1− k

nF̂X (x)

(x) − ϕ(x)

)

d−→ Hk,x

with the cumulative distribution function Hk,x(y) = Ψγ(x)(y)
∑k

i=0(− log Ψγ(x)(y))i/i!.

This theorem states that when a−1
n (x)(q̂1(x) − ϕ(x))

d→ Ψγ(x) and a−1
n (x)h → 0, the

nonparametric partial frontier q̂α(x) with α = 1 − k/nF̂X(x) estimates ϕ(x) itself and con-

verges in distribution as well, with the same scaling but a different limit distribution Hk,x

which coincides with Ψγ(x) only for k = 0. It should be also clear that α → 1 and n(1 − α)

converges here to a constant, almost surely as n → ∞, whereas the asymptotic normality

of q̂α(x) requires α → 1 slowly so that n(1 − α) → ∞ as established in Theorem 1 and

Corollary 1.
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Appendix: proofs and lemmas

Proof of Proposition 1 Let Φ be the standard normal distribution function. Our aim is

to show that P[σ−1
n,1(x)(q̂α(x) − qα(x)) ≤ z] → Φ(z) as n → ∞, for all z ∈ R. From the

definition of q̂α(x), we have

P[σ−1
n,1(x)(q̂α(x) − qα(x)) ≤ z] = P[F̂ (qα(x) + σn,1(x)z|x) ≥ α]

= P[F̂ (qα(x) + σn,1(x)z|x) − F (qα(x) + σn,1(x)z|x) ≥ α − F (qα(x) + σn,1(x)z|x)].

Let {vn,1} be the positive sequence defined by

vn,1 =
1

σn,1(x)f(qα(x)|x)
=

√

nFX(x)

α(1 − α)
. (2.8)

We thus have P[σ−1
n,1(x)(q̂α(x) − qα(x)) ≤ z] = P[Wn,1 ≥ an,1], where

an,1 = vn,1{α − F (qα(x) + σn,1(x)z|x)},
Wn,1 = vn,1{F̂ (qα(x) + σn,1(x)z|x) − F (qα(x) + σn,1(x)z|x)}.

We first need to prove that an,1 → −z as n → ∞ and second we shall show that Wn,1
d−→

N(0, 1). By doing so, Gn,1(·) = P[Wn,1 < ·] converges pointwise to the continuous distribu-

tion function Φ. Then, by Dini’s Theorem, Gn,1 converges uniformly to Φ. Therefore, taking

an,1 → −z into account, we obtain Gn,1(an,1) → Φ(−z) and thus P[σ−1
n,1(x)(q̂α(x) − qα(x)) ≤

z] → 1−Φ(−z) = Φ(z), which will complete the proof. Let us first show that an,1 → −z. A

Taylor’s expansion yields

an,1 = −vn,1σn,1(x)zf(qα(x) + θσn,1(x)z|x) = −z
f(qα(x) + θσn,1(x)z|x)

f(qα(x)|x)
,

with θ ∈ (0, 1), and thus an,1 → −z as n → ∞ since f(·|x) is continuous at qα(x). Now let us

show that Wn,1
d−→ N(0, 1). To this end, consider the expansion Wn,1 = ∆1,1 + ∆2,1, where

∆1,1 = (vn,1/F̂X(x))
∑n

i=1 n−1[Zn,1,i − E(Zn,1,i)] and ∆2,1 = (vn,1/F̂X(x))E(Zn,1,1), with

Zn,1,i = 1I(Xi ≤ x)

[

H

(

qα(x) + σn,1(x)z − Yi

h

)

− F (qα(x) + σn,1(x)z|x)

]
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for i = 1, . . . , n. Since the frontier function ϕ(·) is monotone nondecreasing and the joint

density of (X, Y ) satisfies f(t, y) = 0 for all y > ϕ(t), it can be easily checked that

∆2,1 =
vn,1

F̂X(x)

{

∫ x

0

[

∫ ϕ(x)

0

H

(

qα(x) + σn,1(x)z − y

h

)

f(t, y)dy

]

dt

− F (qα(x) + σn,1(x)z|x)FX(x)

}

=
vn,1

F̂X(x)







∫ x

0





∫

qα(x)+σn,1(x)z

h

qα(x)−ϕ(x)+σn,1(x)z

h

H(w)f(t, qα(x) + σn,1(x)z − hw)

× hdw

]

dt − F (qα(x) + σn,1(x)z|x)FX(x)

}

.

Since h → 0, we have qα(x)−ϕ(x)+σn,1(x)z

h
→ −∞ and qα(x)+σn,1(x)z

h
→ ∞. As an immediate

consequence we get
qα(x)−ϕ(x)+σn,1(x)z

h
< −c for all n large enough. Hence, taking account of

∫ c

−c
K(t)dt = 1 and integrating by parts, we find for all n sufficiently large that

∆2,1 =
vn,1

F̂X(x)







∫ x

0





∫

qα(x)+σn,1(x)z

h

−c

H(w)f(t, qα(x) + σn,1(x)z − hw)hdw



 dt

− F (qα(x) + σn,1(x)z|x)FX(x)

}

=
vn,1

F̂X(x)

{
∫ x

0

[

−H

(

qα(x) + σn,1(x)z

h

)

∂

∂t
F (t, 0)

+

∫ c

−c

K(w)
∂

∂t
F (t, qα(x) + σn,1(x)z − hw)dw

]

dt

− F (qα(x) + σn,1(x)z|x)FX(x)

}

=
vn,1

F̂X(x)

{
∫ c

−c

[
∫ x

0

∂

∂t
F (t, qα(x) + σn,1(x)z − hw)dt

]

K(w)dw

− F (qα(x) + σn,1(x)z|x)FX(x)

}

=
vn,1FX(x)

F̂X(x)

∫ c

−c

[F (qα(x) + σn,1(x)z − hw|x) − F (qα(x) + σn,1(x)z|x)]K(w)dw.

Whence

|∆2,1| ≤
vn,1

F̂X(x)
sup

y∈[−c,c]

∣

∣F̄ (qα(x) + σn,1(x)z − hy|x) − F̄ (qα(x) + σn,1(x)z|x)
∣

∣

12



and from the continuity of F̄ (·|x) in a neighborhood of qα(x), there exists y∗ ∈ [−c, c] such

that

|∆2,1| ≤ vn,1

F̂X(x)

∣

∣F̄ (qα(x) + σn,1(x)z − hy∗|x) − F̄ (qα(x) + σn,1(x)z|x)
∣

∣

≤ vn,1hc

F̂X(x)
f(qα(x) + σn,1(x)z − hy∗ξ|x), (2.9)

where ξ ∈ (0, 1), which entails ∆2,1 = O(vn,1h/F̂X(x))
a.s.−→ 0 in view of

√
nh → 0. It remains

to show that ∆1,1
d−→ N(0, 1). The above calculations show that E(Zn,1,1) = O(h) while

E

{

1I(X ≤ x)H

(

qα(x) + σn,1(x)z − Y

h

)}

= F (qα(x) + σn,1(x)z|x)FX(x) + O(h).

Similarly, it is easy checked that

E

{

1I(X ≤ x)H2

(

qα(x) + σn,1(x)z − Y

h

)}

− FX(x)F (qα(x) + σn,1(x)z|x) = O(h).

Thus,

E(Z2
n,1,1) = FX(x)F (qα(x) + σn,1(x)z|x)[1 − F (qα(x) + σn,1(x)z|x)] + O(h)

which implies var(Zn,1,1) → α(1−α)FX(x) as n → ∞. Moreover, since E[|Zn,1,1−E(Zn,1,1)|3] ≤
2var(Zn,1,1), we have

nE[|Zn,1,1 − E(Zn,1,1)|3]
[nvar(Zn,1,1)]3/2

≤ 2/
√

nvar(Zn,1,1) → 0

and Lyapounov’s Theorem entails

n
∑

i=1

Zn,1,i − E(Zn,1,1)
√

nvar(Zn,1,1)

d−→ N(0, 1).

Finally,

vn,1

√

var(Zn,1,1)/
√

nF̂X(x) ∼ vn,1

√

α(1 − α)FX(x)/
√

nF̂X(x)
a.s.−→ 1,

yields ∆1,1
d−→ N(0, 1) which concludes the proof. �

Proof of Theorem 1 The proof follows the same lines as that of Proposition 1. Let us

define

vn,2 = −γ(x)σ−1
n,2(x)(ϕ(x) − qαn(x))/(1 − αn) (2.10)

an,2 = vn,2{αn − F (qαn(x) + σn,2(x)z|x)}
Wn,2 = vn,2{F̂ (qαn(x) + σn,2(x)z|x) − F (qαn(x) + σn,2(x)z|x)}.
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We first need to prove that an,2 → −z as n → ∞. A Taylor’s expansion and Assumption 2

show that there exists θ ∈ (0, 1) such that

an,2 = −vn,2σn,2(x)zf(qαn(x) + θσn,2(x)z|x)

∼ vn,2σn,2(x)z

γ(x)

F̄ (qαn(x) + θσn,2(x)z|x)

ϕ(x) − qαn(x) − θσn,2(x)z
.

Since σn,2(x)/(ϕ(x) − qαn(x)) → 0, we have

an,2 ∼
vn,2σn,2(x)z

γ(x)

F̄ (qαn(x)|x)

ϕ(x) − qαn(x)
=

vn,2σn,2(x)z

γ(x)

1 − αn

ϕ(x) − qαn(x)

and thus an,2 → −z in view of (2.10). Now let us show that Wn,2
d−→ N(0, 1). We consider

again the expansion Wn,2 = ∆1,2 + ∆2,2 where

∆1,2 = (vn,2/F̂X(x))

n
∑

i=1

n−1[Zn,2,i − E(Zn,2,i)],

∆2,2 = (vn,2/F̂X(x))E(Zn,2,1),

Zn,2,i = 1I(Xi ≤ x)

[

H

(

qαn(x) + σn,2(x)z − Yi

h

)

− F (qαn(x) + σn,2(x)z|x)

]

for i = 1, . . . , n. Since qαn(x)−ϕ(x)
h

→ −∞ and
σn,2(x)

qαn(x)−ϕ(x)
→ 0, we have

qαn(x)−ϕ(x)+σn,2(x)z

h
→

−∞ and therefore, similarly to (2.9), it can be established by making use of the continuity

of F̄ (·|x) in a left neighborhood of ϕ(x) that for all n large enough

|∆2,2| ≤
vn,2hc

F̂X(x)
f(qαn(x) + σn,2(x)z − hy∗ξ|x),

where ξ ∈ (0, 1) and y∗ ∈ [−c, c]. Now, Assumption 2 entails

|∆2,2| ≤ − 1

γ(x)

vn,2hc

F̂X(x)

F̄ (qαn(x) + σn,2(x)z − hy∗ξ|x)

ϕ(x) − qαn(x) − σn,2(x)z + hy∗ξ
.

Since h/(ϕ(x) − qαn(x)) → 0, σn,2(x)/(ϕ(x) − qαn(x)) → 0 and ℓx(.) is a slowly varying

function, it can be easily seen that F̄ (qαn(x) + σn,2(x)z − hy∗|x) ∼ F̄ (qαn(x) + σn,2(x)z|x) ∼
1 − αn and ϕ(x) − qαn(x) − σn,2(x)z + hy∗ξ ∼ ϕ(x) − qαn(x). Then

∆2,2 = O

(

vn,2h

F̂X(x)

(1 − αn)

ϕ(x) − qαn(x)

)

= O

(

h

σn,2(x)F̂X(x)

)

. (2.11)

Thus ∆2,2
a.s.−→ 0 as n → ∞. It remains to show that ∆1,2

d−→ N(0, 1). We know from (2.11)

that E(Zn,2,1) = ∆2,2F̂X(x)/vn,2 = O((1 − αn)h/(ϕ(x) − qαn(x)). Similarly,

E

{

1I(X ≤ x)H2

(

qαn(x) + σn,2(x)z − Y

h

)}

= F (qαn(x) + σn,2(x)z|x)FX(x)

+O

(

(1 − αn)h

ϕ(x) − qαn(x)

)

,
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leading to

var(Zn,2,1) = F̄ (qαn(x) + σn,2(x)z|x)[1 − F̄ (qαn(x) + σn,2(x)z|x)]FX(x)

+O

(

(1 − αn)h

ϕ(x) − qαn(x)

)

,

and thus var(Zn,2,1) ∼ FX(x)(1 − αn) as n → ∞. Therefore

nE[|Zn,2,1 − E(Zn,2,1)|3]
[nvar(Zn,2,1)]3/2

≤ 2/
√

nvar(Zn,2,1) ∼ 2/
√

n(1 − αn)FX(x) → 0

as n → ∞, and consequently

n
∑

i=1

[Zn,2,i − E(Zn,2,i)]/
√

n(1 − αn)FX(x)
d−→ N(0, 1)

according to Lyapounov’s Theorem. Finally since

√

(1 − αn)FX(x)[v2,n/
√

nF̂X(x)]
a.s.−→ 1,

we obtain ∆1,2
d−→ N(0, 1). This yields W2,n

d−→ N(0, 1) and concludes the proof. �

Proof of Corollary 1 From Theorem 1, we have

q̂αn(x) = qαn(x) + σn,3(x)ξαn{ϕ(x) − qαn(x)},

where ξαn

d−→ N(0, 1). Let δn = 2αn − 1. Since n(1 − δn) = 2n(1 − αn) → ∞,

q̂δn(x) = qδn(x) +
σn,3(x)√

2
ξδn{ϕ(x) − qδn(x)},

where ξδn

d−→ N(0, 1). Let us introduce the following notation :

Rn(x) = σ−1
n,3(x)

{

q̂αn(x) − qαn(x)

q̂αn(x) − q̂δn(x)

}

.

Hence,

Rn(x) =
ξαn{ϕ(x) − qαn(x)}

qαn(x) − qδn(x) + σn,3(x)
{

ξαn{ϕ(x) − qαn(x)} − ξδn√
2
{ϕ(x) − qδn(x)}

}

= ξαn

{

ϕ(x) − qδn(x)

ϕ(x) − qαn(x)
− 1 + σn,3(x)

{

ξαn − ξδn√
2

ϕ(x) − qδn(x)

ϕ(x) − qαn(x)

}}−1

.

From (2.5), we have

ϕ(x) − qδn(x)

ϕ(x) − qαn(x)
= 2−γ(x) Lx({1 − δn}−1)

Lx({1 − αn}−1)
→ 2−γ(x),
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since Lx(.) is a slowly varying function. Thus,

Rn(x) = {2−γ(x) − 1}−1ξαn(1 + oP(1)),

which concludes the proof. �

Proof of Corollary 2 Let us introduce the notation θn := 4αn − 3. From Theorem 1,

log(2)γ̂(x) is equal to

log







ϕ(x) − qδn(x) − {ϕ(x) − qαn(x)} + σn,3(x)
{

ξαn{ϕ(x) − qαn(x)} − ξδn√
2
{ϕ(x) − qδn(x)}

}

ϕ(x) − qθn(x) − {ϕ(x) − qδn(x)} +
σn,3(x)√

2

{

ξδn{ϕ(x) − qδn(x)} − ξθn√
2
{ϕ(x) − qθn(x)}

}







= log







1 − ϕ(x)−qαn (x)
ϕ(x)−qδn (x)

+ σn,3(x)
{

ξαn

ϕ(x)−qαn (x)
ϕ(x)−qδn (x)

− ξδn√
2

}

−1 +
ϕ(x)−qθn (x)

ϕ(x)−qδn(x)
+

σn,3(x)√
2

{

ξδn − ξθn√
2

ϕ(x)−qθn (x)

ϕ(x)−qδn(x)

}







= γ(x) log(2) log







1 + o(1) +
σn,3(x)

1−2γ(x)

{

2γ(x)ξαn − ξδn√
2

+ oP(1)
}

1 + o(1) + σn,3(x)

(1−2γ(x))
√

2

{

ξδn − 2γ(x) ξθn√
2

+ oP(1)
}







Then remarking that

1 + o(1) +
σn,3(x)

1−2γ(x)

{

2γ(x)ξαn − ξδn√
2

+ oP(1)
}

1 + o(1) +
σn,3(x)

(1−2γ(x))
√

2

{

ξδn − 2γ(x) ξθn√
2

+ oP(1)
}

p→ 1

we get the desired conclusion. �

The proofs of Theorems 2-4 are based on the next lemma in which Nx =
∑n

i=1 1I(Xi ≤ x)

and Y x
1 , . . . , Y x

Nx
denote the observations Yi such that Xi ≤ x, with Y x

(1) ≤ Y x
(2) ≤ . . . ≤ Y x

(Nx)

being their corresponding order statistics.

Lemma 1. Under Assumption 3, we have for all n ≥ 1

(i) q̂1(x) = Y x
(Nx) + hc.

(ii) Y x
(Nx−k) − hc < q̂Nx−k

Nx

(x) ≤ Y x
(Nx−k) + hc, for each k = 0, . . . , Nx − 1.

Proof. (i) We know that q̂1(x) = inf{y ≥ 0|
∑Nx

i=1 H
(

y−Y x
i

h

)

= Nx}. It is also clear that the

event
{

∑Nx

i=1 H
(

y−Y x
i

h

)

= Nx

}

holds if and only if the event

{

H

(

y − Y x
i

h

)

= 1, for each i = 1, . . . , Nx

}

,
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which is equivalent to {y ≥ Y x
i + hc, for each i = 1, . . . , Nx}, holds. Hence q̂1(x) = Y x

(Nx) +

hc.

(ii) We have by definition of F̂ (·|x),

F̂ (Y x
(Nx−k) + hc|x) = (1/Nx)

Nx
∑

i=1

H

(

Y x
(Nx−k) − Y x

(i)

h
+ c

)

≥ (1/Nx)
∑

i≤Nx−k

H

(

Y x
(Nx−k) − Y x

(i)

h
+ c

)

= (Nx − k)/Nx = F̂ (q̂Nx−k
Nx

(x)|x).

Then Y x
(Nx−k) + hc ≥ q̂Nx−k

Nx

(x) by the strict monotonicity of F̂ (·|x). Likewise, we have

F̂ (Y x
(Nx−k) − hc|x) = (1/Nx)

∑

i<Nx−k

H

(

Y x
(Nx−k) − Y x

(i)

h
− c

)

< (Nx − k)/Nx,

which gives Y x
(Nx−k) − hc < q̂Nx−k

Nx

(x). �

Proof of Theorem 2. Let us first remark that the FDH estimator ϕ̂(x) = Y x
(Nx) is the max-

imum of the random variables Zx
i = Yi1I(Xi ≤ x), i = 1, . . . , n, and that ϕ(x) is the right

endpoint of their common distribution function Fx(z) = {1 − FX(x)[1 − F (z|x)]}1I(z ≥ 0).

Thus, from Lemma 1(i), a−1
n (x)(q̂1(x) − ϕ(x) − hc) converges in distribution if and only

if a−1
n (x)(ϕ̂(x) − ϕ(x)) = a−1

n (x)(max1≤i≤n Zx
i − F−1

x (1)) converges in distribution. Ac-

cording to the standard extreme-values theory, the necessary and sufficient condition for

a−1
n (x)(max1≤i≤n Zx

i − F−1
x (1)) to converge in distribution is that Fx(·) belongs to the max-

imum domain of attraction of Weibull, which is equivalent to the condition (2.4). In this

case (see e.g. Resnick 1987, Proposition 1.13, p. 59), the limiting distribution is the Weibull

distribution function Ψγ(x)(·) and an(x) can be taken equal to F−1
x (1)−F−1

x (1− 1/n) which

coincides with ϕ(x) − q1− 1
nFX (x)

(x). �

Proof of Theorem 3. As shown in the proof of Theorem 2, we have

a−1
n (x)(max

1≤i≤n
Zx

i − F−1
x (1)) = a−1

n (x)(ϕ̂(x) − ϕ(x)) = a−1
n (x)(q̂1(x) − ϕ(x) − hc)

d−→ Ψγ(x)

and an(x) = ϕ(x) − q1− 1
nFX (x)

(x) coincides with F−1
x (1) − F−1

x (1 − 1/n). We also have

E[|Zx|k] = FX(x)E(Y k|X ≤ x) ≤ ϕ(x)k. On the other hand, we know according to Resnick

(1987, Proposition 2.1, p.77) that, if a−1
n (x)(max1≤i≤n Zx

i − F−1
x (1))

d−→ Ψγ(x) with an(x) =

F−1
x (1) − F−1

x (1 − 1/n) and if E[|Zx|k] < ∞, then

lim
n→∞

E{a−1
n (x)(max

1≤i≤n
Zx

i − F−1
x (1))}k =

∫ 0

−∞
ykΨγ(x)(dy) = (−1)kΓ(1 − kγ(x)).
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This limit coincides with limn→∞ E{a−1
n (x)(q̂1(x)−ϕ(x)−hc)}k, which ends the proof. �

Proof of Theorem 4. From Theorem 2, Assumptions 3 and (2.4) imply that a−1
n (x)(q̂1(x)−

ϕ(x) − hc)
d−→ Ψγ(x). Lemma 1(i) thus yields a−1

n (x)(Zx
(n) − F−1

x (1))
d−→ Ψγ(x), where

Zx
(i) denotes hereafter the ith order statistic generated by the random variables Zx

1 , . . . , Zx
n.

Therefore a−1
n (x)(Zx

(n−k) − F−1
x (1))

d−→ Hk,x for any integer k ≥ 0, according to van der

Vaart (1998, Theorem 21.18, p. 313). On the other hand, it is not hard to verify (see e.g.

Lemma 2(ii) in Daouia et al.(2008)) that

Zx
(n−k) = inf{y ≥ 0|F̂ (y|x) ≥ 1 − k/Nx} = Y x

(Nx−k) as n → ∞,

with probability 1. Hence, we get by using Lemma 1(ii),

a−1
n (x)(Zx

(n−k) − F−1
x (1)) − a−1

n (x)hc < a−1
n (x)

(

q̂Nx−k
Nx

(x) − ϕ(x)
)

≤ a−1
n (x)(Zx

(n−k) − F−1
x (1)) + a−1

n (x)hc

for all n large enough, with probability 1. Thus a−1
n (x)

(

q̂1− k
Nx

(x) − ϕ(x)
)

d−→ Hk,x since

a−1
n (x)h → 0. �
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