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BLOOD-FLOW MODELLING ALONG AND TROUGH A BRAIDED

MULTI-LAYER METALLIC STENT ∗

Vuk Milǐsić1, 2

Abstract. In this work we study the hemodynamics in a stented artery connected
either to a collateral artery or to an aneurysmal sac. The blood flow is driven by the
pressure drop. Our aim is to characterize the flow-rate and the pressure in the contiguous
zone to the main artery: using boundary layer theory we construct a homogenized first
order approximation with respect to ǫ, the size of the stent’s wires. This provides
an explicit expression of the velocity profile through and along the stent. The profile
depends only on the input/output pressure data of the problem and some homogenized
constant quantities: it is explicit. In the collateral artery this gives the flow-rate. In
the case of the aneurysm, it shows that : (i) the zeroth order term of the pressure
in the sac equals the averaged pressure along the stent in the main artery, (ii) the
presence of the stent inverses the rotation of the vortex. Extending the tools set up in
[5,24] we prove rigorously that our asymptotic approximation is first order accurate with
respect to ǫ. We derive then new implicit interface conditions that our approximation
formally satisfies, generalizing our analysis to other possible geometrical configurations.
In the last part we provide numerical results that illustrate and validate the theoretical
approach.
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Introduction

Atherosclerosis and rupture of aneurysm are lethal pathologies of the cardio-vascular system.
A possible therapy consists in introducing a metallic multi-layered stent (see fig. 1 right), either
as a supplementary protection of the arterial wall or in order to slow vortices in the aneurysm and
to favor coagulation of the sac. In this study we aim to investigate the fluid-dynamics of blood
in the presence of a stent. We focus on two precise configurations in this context: (i) a stented
artery is connected to the collateral artery but the aperture of the latter is partially occluded by
the presence of the stent (see fig. 1 left). (ii) a sacular aneurysm is present behind a stented artery
(fig. 1 middle). From the applicative point of view these two situations are of interest since they
represent a dual constraint that a stent should optimize somehow: the grid generated by the wires
should be coarse enough to provide blood to the collateral arteries (for instance iliac arteries in the
aorta), at the same time the wires should be close enough to have a real effect on the aneurysmal
zones (slow vortices, protect arterial walls, etc).

Keywords and phrases: wall-laws, porous media, rough boundary, Stokes equation, multi-scale modeling, bound-
ary layers, pressure driven flow, error estimates, vertical boundary correctors
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2 BLOOD FLOW IN STENTED ARTERIES

artery walls

blood−flow

stent’s wires

Figure 1. A sketch of stented arteries: with a collateral artery (left), an aneurys-
mal sac (middle) and a 3D example of a real metallic multi-wired stent (right)

Multi-layer metallic wired stents seem to satisfy both the constraints at the same time. Although
experimentally proved [4], these facts needed better mathematical understanding. We give here
results in this sense, setting a common framework for both phenomena in the case of the Stokes
flow.

Inspired by homogenization techniques applied to the case of rough boundaries [1, 20, 26] we
construct a first-order multi-scale approximation of the velocity and the pressure. By averaging, we
get a first order accurate macroscopic description of the fluid flow. Indeed, we compute an explicit
expression of the velocity through the fictitious interface supporting the stent and separating the
main artery from the contiguous zone. This formula only depends on the input data of the problem
and some homogenized constants obtained solving microscopic cell problems. In the case of the
aneurysmal sac we show rigorously that the zero order pressure in the sac is constant and averaged
with respect to the pressure in the main artery, which was not known. Then we show that formally
this leads also to redefine the problem in an new and implicit way in the domain decomposition
flavor. Actually we obtain a new set of interface conditions along the fictitious interface: while
for the normal velocity they look similar to those presented in [2, 8, 9], the tangential conditions
are new to our knowledge. They express a slip velocity in the main artery (as in [19]), but a
discontinuous homotetic relationship between horizontal velocities across the interface of the stent
(see system (4), p. 4).

From the mathematical point of view this paper introduces several novelties. The case of a
sieve has been widely studied in a somehow different setting in [2, 8, 10, 11] and more recently
in [14]. In these works, the authors considered the case of obstacles set on a surface with various
dimensionalities but with a common point: the velocity was completely imposed at the boundary.
Although this could seem a technicality, it influences drastically the limiting regime of the flow.
Indeed a complete velocity profile is imposed as a Dirichlet condition at the inlet/outlet of the
domain, so that the total flow-rate through the sieve remains constant whatever ǫ, the size of the
obstacles. In the context of blood flow such a regime seems unrealistic: occlusions of arteries occur
and are even a widely spread pathology, suggesting that blood flow should be driven by pressure
drop more that fixed flow-rates.

In this direction, Jäger and Mikelić considered a pressure driven fluid in [18]. But they studied
an interface whose thickness was independent on ǫ, which seemed useless for our purpose : the
diameter of the wires of the stent are dependent on the radius of the artery where the stent
should be implanted. It appears natural to consider roughness size that is proportional to ǫ in any
direction. Moreover in this paper we introduce both a tangential and a transverse flow along and
trough the stent. Indeed, in the limiting regime considered by Jäger and Mikelić [18], the velocity
is zero. Here when the collateral artery or a sac are completely closed by the stent, we still expect
a Poiseuille profile in the main artery.

At a more technical level, this work improves the approach developed in [5, 24] in order to
correct edge oscillations introduced by periodic boundary layers. At the same time, we give an
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appropriate framework to deal with this problem in the case of Stokes equations. Namely, we
decompose the corrections of the superfluous boundary layer oscillations in two parts :

• on the microscopic side we use weighted Sobolev spaces to describe the behaviour at infinity
of the vertical corner correctors. This provides accurate decay rates with respect to ǫ at
the macroscopic level near the corner. Indeed, using onto mappings between weighted
Sobolev spaces we improve decay estimates already derived in the scalar case in [5, 24].

• a complementary macroscopic corrector is added in a second step, that handles exponen-
tially decreasing errors far from the corners.

A first attempt to break the periodicity at the inlet/outlet of the domain was done in [19] by
using a vertical corrector localized in a tiny strip near the vertical interface. But, decay estimates
claimed in formula (77) p. 1123 [19] seem to work, to our knowledge, only for a priori estimates
of the error and are not accurate enough to be used in the very weak estimates.

The paper is organized as follows: in the next section, after some basic notations and definitions,
we give a detailed review of the results obtained either in the case of a collateral artery or a sacular
aneurysm. Then in section 2 we give the proofs of the claims. We provide numerical results that
show a first order accuracy also in the discrete case in section 3. In the Appendix we give a proof
of the weighted Sobolev properties of the vertical boundary correctors.

1. Notations, problem settings & main results

The two dimensional domains and their respective boundaries are defined as in fig. 2: Ωǫ :=
Ω1,ǫ ∪ Γ0 ∪ Ω2 and Ω := Ω1 ∪ Γ0 ∪ Ω2. Each of the domains Ω1,ǫ and Ω2 are of height and
width equal to one. The rough boundary Γǫ is the set of rigid regular periodic bodies Qǫ whose
inner diameter is proportional to ǫ and spaced one with respect to each-other with a distance
proportional to ǫ as well. The limit fictitious interface is called Γ0 and separates Ω1,ǫ from Ω2.
On the microscopic scale we set up the infinite strip S := Z+ ∪ Z− where Z+ contains the single
C∞ obstacle Q whose boundary is denoted P and it is separated from Z− by the microscopic
version of Γ0 denoted Σ. We define also a set of notations : ΓN := Γin ∪Γout,1 ∪Γout,2 is the set of

Γin

Γ1

Γ2

Γǫ

Γout,2

Γ0

Ω1,ǫ

Ω2
Γ2

Γout,1 Γin

Γ1

Γ2

Γout,2

Γ0

Ω1

Ω2
Γ2

Γout,1

Z+

Z−

P

Σ

Q

Figure 2. The macroscopic domains: for a fixed ǫ (left), for ǫ = 0 (middle) and
the microscopic one (right)

all boundaries on which mixed type conditions are imposed. On the contrary ΓD := Γ1 ∪ Γ2 and
ΓD,ǫ := Γ1∪Γ2∪Γǫ are the sets of edges on which Dirichlet conditions are set. The exterior normal
vector to any domain is denoted by n, if not stated explicitly n is orientated from Ω1 towards Ω2

on the fictitious interface Γ0. The tangent vector is defined as τ . We set Bǫ := Γ0 × (0, 2ǫ) and
Ω′

1 := Ω1 \ Bǫ.The macroscopic (resp. microscopic) space variable is denoted x (resp. y), these
variables are related through the scaling: x = ǫy.
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1.1. The case of a collateral artery

We study the problem : find (uǫ, pǫ) solving the stationary Stokes equations































− ∆uǫ + ∇pǫ = 0 in Ωǫ

div uǫ = 0 in Ωǫ

pǫ = pin on Γin, pǫ = pout,1 on Γout,1, pǫ = pout,2 on Γout,2,

uǫ · τ = 0 on Γin ∪ Γout,1 ∪ Γout,2

uǫ = 0 on Γ1 ∪ Γ2 ∪ Γǫ

(1)

In what follows we set both pout,1 and pout,2 to be zero for simplicity. The results remain valid for
any fixed constants pout,1 and pout,2 as well.

When adapted to rough boundaries, the homogenization technique decomposes in two steps :
the derivation of a multi-scale asymptotic expansion and the construction of an averaged macro-
scopic approximation. The first part can be seen as an iterative algorithm with respect to powers
of ǫ :

(i) pass to the limit with respect to ǫ and obtain a limit profile, in our case, because of the
very simple geometry of the artery, the Poiseuille profile is obtained in Ω1 and a trivial
solution in Ω2 :







u0(x) =
pin

2
(1 − x2)x2e11Ω1 , ∀x ∈ Ω

p0(x) = pin(1 − x1)1Ω1

(2)

(ii) construct microscopic boundary layers that correct the errors made by the zeroth or-
der approximation on Γǫ and Γ0: we set up in the next section three boundary layers
(β, π), (Υ, ̟) and (χ, η) to this purpose. These functions solve microscopic problems on
the y1-periodic y2-infinite strip S.

(iii) compute the constants at both + and - infinity of S that these correctors reach: (β
±
, 0),(Υ

±
, 0)

and (χ, η
±

). Then subtract these constants to the correctors. Physically, β
±
,Υ

±
provide

a microscopic feed-back relative to the horizontal velocity (see the wall-law framework
in [19, 26] and references therein) whereas the pressure difference [η] represents a micro-
scopic resistivity in the flavor of [2, 8].

(iv) take into account the homogenized constants on the limit interface Γ0 by solving a macro-
scopic problem (u1, p1)















































−∆u1 + ∇p1 = 0 in Ω1 ∪ Ω2

div u1 = 0 in Ω1 ∪ Ω2

u1 = 0 on Γ1 ∪ Γ2

u1 · τ = 0 on Γin ∪ Γout,1 ∪ Γout,2,

p1 = 0 on Γin ∪ Γout,1 ∪ Γout,2

u1 =

{

∂u0,1

∂x2
β
±

+

[

∂u0,1

∂x2

]

Υ
±
}

e1 +
[p0]

[η]
χe2 on Γ0

±

(3)

where the brackets [·] denote the jump across Γ0. This macroscopic corrector depends on
the zeroth order approximation and the homogenized constants. Due to the explicit form
of the Poiseuille profile it is thus also explicit with respect to the data of the problem
along and across Γ0 (but neither inside Ω1 nor Ω2).

(v) goto (ii) and correct, on a micrscopic scale, errors made by (u1, p1) on Γǫ ∪ Γ0.

The second step consists then in averaging this ansatz and obtaining an expansion of the macro-
scopic solutions only. This gives, for instance, at first order :

uǫ := u0 + ǫu1, pǫ := p0 + ǫp1.
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In particular as u1 · n = −[p0]/[η] on Γ0, one gets an explicit first order velocity profile across Γ0.
As a consequence, we obtain a new result :

Proposition 1. The flow-rate in the collateral artery Ω2 can be computed explicitly and reads

QΓ0 :=

∫

Γ0

uǫ · ndx1 =
ǫ
[

η
]

∫

Γ0

[p0]dx1 =
ǫ
[

η
]

∫

Γ0

(pout,1 + (pin − pout,1)(1 − x1) − pout,2) dx1

As stated above [η] depend only on the geometry of the microscopic obstacle Q and is indepen-
dent on any other parameter. In the last section of this paper we give some numerical examples
that illustrate the accuracy of this result. Although this is a first order correction of the flow
trough the stent, we underline that in the physiological context the pressures (pin, pout,1) present
in the main artery can be very important compared to pout,2 : the first order flow rate QΓ0 can
thus be quantitatively significant as well.

In order to validate our formal asymptotic expansion there is a large mathematical framework
[2,5,8,10,11,19,24] that aims comparing the exact solution of (1) and our asymptotic ansatz. We
have constructed in this work a sufficient framework to show

Theorem 1.1. The averaged asymptotic ansatz (uǫ, pǫ) belongs to L2(Ωj)×H−1(Ωj) for j ∈ {1, 2}
and satisfies the convergence result

‖uǫ − uǫ‖L2(Ω1∪Ω2)
+
√
ǫ‖pǫ − pǫ‖H−1(Ω′

1∪Bǫ∪Ω2)
≤ kǫ

3
2
−

where 3
2

−
represent any real number strictly less then 3

2 and the constant k is independent on ǫ.

Expressing the interface conditions satisfied by (uǫ, pǫ) on Γ0 in an implicit way and neglecting
higher order rests, we show formally that in fact (uǫ, pǫ) solve at first order a new interface
problem :



































































− ∆uǫ + ∇pǫ = 0 in Ω1 ∪ Ω2

div uǫ = 0 in Ω1 ∪ Ω2

uǫ = 0 on Γ1 ∪ Γ2

uǫ · τ = 0 on Γin ∪ Γout,1 ∪ Γout,2

pǫ = pin, pǫ = 0 on Γout,1 ∪ Γout,2

u+
ǫ · τ = ǫ(β

+
+ Υ

+
)
∂uǫ,1

∂x2

+

,
u+

ǫ · τ
β

+
+ Υ

+ =
u−

ǫ · τ
β
−

+ Υ
−

u+
ǫ · n = u−

ǫ · n =
ǫ

[η]
([σuǫ,pǫ

] · n,n)



















on Γ0

(4)

where σuǫ,pǫ
:= ∇uǫ − pǫId2 represents the strain tensor. Note that the interface condition on

the normal velocity can be integrated in the Stokes equations as a kind of “strange term” in the
spirit of [2, 9], but as we are at first order with respect to ǫ, the derivation does not follow the
same argumentation. In a forthcoming work we study the well-posedness of such a system as
well as its consistency with respect to (uǫ, pǫ) and (uǫ, pǫ). Because of the particular signs of
the homogenized constants but also the discontinuous nature of the interface conditions in the
tangential direction to Γ0, this seems a challenging task.
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1.2. The case of an aneurysm

The framework introduced above can be extended to the case of an aneurysm ; considering the
same domain Ωǫ as above we define a new problem : find (uǫ, pǫ) solving































− ∆uǫ + ∇pǫ = 0 in Ωǫ

div uǫ = 0 in Ωǫ

pǫ = pin on Γin, pǫ = 0 on Γout,1,

uǫ · τ = 0 on Γin ∪ Γout,1

uǫ = 0 on Γ1 ∪ Γ2 ∪ Γout,2

(5)

The main difference resides in the boundary condition imposed on Γout,2 : here we force a complete
adherence condition on the velocity ; this closes the output Γout,2 and converts the collateral artery
into an aneurysmal sac.

Again, we construct a similar multi-scale asymptotic ansatz. We extract the macroscopic part
to get a homogenized expansion (uǫ, pǫ)

uǫ := u0 + ǫu1, pǫ := p0 + ǫp1

where (u0, p0) is again a Poiseuille profile but it is complemented by an unknown constant pressure
p−0 inside the sac:















u0(x) =
pin − pout,1

2
(1 − x2)x2e11Ω1

p0(x) = p+
0 (x)1Ω1 + p−0 1Ω2 ,

p+
0 := pout,1 + (pin − pout,1)(1 − x1), p

−
0 ∈ R

, ∀x ∈ Ω (6)

Then again (u1, p1) solves a mixed Stokes problem (3) with only constant data and an explicit
profile on Γ0, the only difference is that u1 = 0 on Γout,2. This gives again a new result:

Corollary 1.1. The zeroth order pressure is constant in Ω2, moreover it satisfies the following
compatibility condition with respect to the data:

p−0 =
1

|Γ0|

∫

Γ0

p+
0 (x1, 0) dx1

the latter quantity depending only on the prescribed pressures at the boundaries of the domain.
This gives an explicit velocity profile on Γ0 which reads:

uǫ · n =
ǫ

[η]
(p+

0 (x1, 0) − p−0 ) +O(ǫ2)

The interface condition exhibited on the normal velocity shows rigorously a phenomenon already
observed experimentally [4]. Set x1,max := maxx∈Γ0 x1 (resp. x1,min := minx∈Γ0 x1) and x1 :=

(x1,max + x1,min)/2, when x1 < x1 the pressure jump [p0] := p+
0 (x) − p−0 is positive, otherwise it

is negative. This implies that the first order flow trough the stent is entering Ω2 when x1 < x1

and leaving it otherwise. Thus the prosthesis inverses the orientation of the cavitation in Ω2 with
respect to the non-stented artery (see fig. 3).

As stated in the corollary, we will show in the next section that in fact the zero order pressure
is the only constant that insures conservation of mass in Ω2. From the medical point of view the
two claims on pressure and flow are of interest because they quantify and confirm the stabilizing
effect of a porous stent: besides reducing the stress on the wall of the aneurysm because of the
decrease of velocity (proportional to ǫ), the stent averages also the pressure inside the sac avoiding
for instance corner singularities (see fig. 4).

Again one has a mathematical validation of the formal multi-scale construction
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Figure 3. Streamlines and velocity vectors in an aneurysmal sac, with (left) and
without a stent (right)

Figure 4. Pressure in an aneurysmal sac, with (left) and without a stent (right)

Theorem 1.2. The first order approximation (uǫ, pǫ) belongs to L2(Ω1)×H−1(Ω1) and L2(Ω2)×
H−1(Ω2)/R, moreover we have a convergence result that reads

‖uǫ − uǫ‖L2(Ω) +
√
ǫ(‖pǫ − pǫ‖H−1(Ω′

1∪Bǫ)
+ ‖pǫ − pǫ‖H−1(Ω2)/R

) ≤ kǫ
3
2
−

where 3
2

−
represent any real number strictly less then 3

2 , the constant k is independent on ǫ.

We show the same type of result as above : (uǫ, pǫ) solve formally the same implicit problem
(4) up to the second order error, but with a homogeneous Dirichlet condition on Γout,2.

2. Proof of the main results

2.1. The case of a collateral artery

The zero order term. When ǫ goes to zero we show in a first step that (uǫ, pǫ) converges to (u0, p0)
the Poiseuille profile stated in (2), which solves in Ωǫ :







































− ∆u0 + ∇p0 = [σu0,p0 ] · n δΓ0 in Ωǫ

div u0 = 0 in Ωǫ

u0 = 0 on Γ1 ∪ Γ2

u0 · τ = 0 on ΓN

p0 = pin on Γin, p0 = 0 on Γout,1 ∪ Γout,2

u0 6= 0 on Γǫ
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Theorem 2.1. For a fixed ǫ, there exists a unique solution (uǫ, pǫ) ∈ H1(Ωǫ)
2 × L2(Ωǫ) of the

problem (1). Moreover, one has

‖uǫ − u0‖H1(Ωǫ)2
+ ‖pǫ − p0‖L2(Ωǫ)

≤ k
√
ǫ

where the constant k does not depend on ǫ.

Proof. Existence and uniqueness of the solutions of problem (1) come from the standard theory
of mixed problems [12, 15], so one has

‖uǫ‖H1(Ωǫ)2
+ ‖pǫ‖L2(Ωǫ)

≤ ‖pin‖
H− 1

2 (Γin)
.

As u0 does not satisfy homogeneous boundary conditions on Γǫ, one constructs a lift denoted
R(u0) := u0φ(x2/ǫ), where φ(y2) is a cut-off function equal to one in a unit ball and zero outside
the ball of radius two. We set ũ0 := u0 −R(u0). Standard a priori estimates give then

‖uǫ − ũ0‖H1(Ωǫ)
+ ‖pǫ − p0‖L2(Ωǫ)

≤ ‖∆R(u0) − [σu0,p0 ] · nδΓ0‖H−1(Ωǫ)

Thanks to the vicinity of Γǫ, one deduces the standard Poincaré and trace inequalities

‖ϕ‖L2(Ω1,ǫ∩Bǫ)
≤ ǫ‖∇ϕ‖L2(Ωǫ)

, ‖ϕ‖L2(Γ0) ≤
√
ǫ‖∇ϕ‖L2(Ωǫ)

, ∀ϕ ∈ H1(Ωǫ) s.t. ϕ = 0 on Γǫ

which end the proof. �

Estimates above show a threefold error: the jump of the gradient of the velocity in the horizontal
direction across Γ0, the Dirichlet error on Γǫ and the pressure jump in the normal direction across
Γ0. In order to correct these errors we solve three microscopic boundary layer problems.
The Dirichlet correction. The first boundary layer corrects the Dirichlet error on Γǫ. It is very
alike to the one introduced in the wall-laws setting [19]. Namely we solve: find (β, π) such that



















− ∆β + ∇π = 0 in S,

div β = 0 in S,

β = −y2e1 on P,

β2 → 0 |y2| → ∞.

(7)

We define the transverse section T (y2) := {z ∈ S s.t. z2 ≡ y2} and the corresponding averaging
operator:

β(y2) :=
1

|T (y2)|

∫

T (y2)

β(z1, y2)dz1.

We define as in [15] p. 56, the homogeneous Sobolev space D1,2(S) := {v ∈ D′(S), s.t. ∇v ∈
L2(S)}. Moreover we denote by D1,2(S)0 the subset of functions belonging to D1,2(S)0 and
vanishing on P .

Proposition 2. There exists a unique solution (β, π) ∈ D1,2(S) × L2
loc(S), π being defined up to

a constant. Moreover, one has:

β(y) → β±e1, y2 → ±∞

the convergence being exponential with rate γβ and















β2(y2) = 0, ∀y2 ∈ R,

β1(y2) = −|Q| − |∇β|2L2(S) + β1(0), y2 > y2,P ,

β1(y2) = β1(0), y2 < 0,

where y2,P := maxy∈P y2 and |Q| is the 2d-volume of the obstacle |Q|
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Proof. We start by lifting the non-homogeneous Dirichlet boundary condition : we set R(β) :=

y2φ(y2)e11Z+ and β̃ := β +R(β), this is still a divergence free vector. Now, there exists a unique
solution s.t.

∣

∣

∣∇β̃

∣

∣

∣

L2(S)
≤ |∇R(β)|L2(S)

Because in the space of L2
loc(S) functions vanishing on P , the gradient norm is a norm (via

Wirtinger estimates), one has proved the result for β.
We apply Lemma 3.4 and Proposition 3.5 of [23] in order to recover the L2

loc(S) pressure solving:

−∆β̃ + ∇π = −∆R(β)

and this gives existence and uniqueness of (β̃, π) ∈ D
1,2
0 (S) × L2

loc(S). On the interface located
above (resp. below) the obstacle Q we apply the Fourier decomposition in modes as in Theorem 3
p. 10 [21]. One obtains the exponential convergence towards the zero modes of β, π in an explicit
way. To obtain the relationships between the constant values at infinity, one has

(i) by the divergence free condition that β2(ν) = β2(γ) = 0 for all ν ≥ y2,P and γ ≤ 0
(ii) integrating the first equation of (7) in every transverse section {y2 = δ} which does not

cross the obstacle Q gives

d2

dy2
2

(

∫

{y2=δ}

β1(y1, y2) dy1

)

=

∫

{y2=δ}

− ∂β1

∂2y2
1

+
∂π

∂y1
dy1 = 0

by y1-periodicity. This implies that β(δ) is an affine function of δ. As the gradient rapidly
goes to zero, the linear part is zero, we conclude that only the constant remains : thus
β(δ) = β(+∞) for δ > y2,P , and β(ν) = β(0) for ν < 0.

(iii) Set G := y21Z+ and F := 0, they satisfy:

{−∆G+ ∇F = δΣ in S

divG = 0 in S
(8)

we test the first equation in (7) by G and the first equation in (8) by β, then we integrate
on Sν,γ := S∩]0, 1[×]γ, ν[ :

(∆G−∇F,β) − (∆β −∇π,G) = β1(0)

= (σG,F · n,β)∂Sν,γ
− (σβ,π · n, G)∂Sν,γ

= (σG,F · n,β)P − (σβ,π · n, G)P + β1(ν)

= −( ∂n (y2e1), y2e1)P + (σβ,π · n,β)P + β1(ν) = −( ∂n (y2e1), y2e1)P + |∇β|L2(S) + β1(ν)

where we neglected exponentially small terms on {y2 = ν} and {y2 = γ}. Now we explicit
the physical meaning of the constant Q := ( ∂n (y2e1), y2e1)P

Q + ( ∂n (y2e1), y2e1){y2=ν}∪{y2=γ} = (∆(y2e1), y2e1)Sν,γ
+ |∇(y2e1)|2Sν,γ

which in turn gives :

Q + ν − γ = ν − γ − |Q|
where |Q| is the volume of the obstacle Q. The quantity Q represents the volume of fluid
missing due to the presence of the obstacle Q above the limit interface Σ. If we were to
consider a straight channel without a collateral artery but a roughness below the interface,
Q would be a positive number equal to the volume of fluid present below Σ.

�

In what follows we should distinguish between the mean-value of a function (for instance β(δ))
and the discontinuous piecewise-constant function taking the averaged values of the correctors at
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infinity (for example denoted β) :

β(y) := β(+∞)1Z+ + β(−∞)1Z− , ∀y ∈ S

Shear rate jump correction. The second boundary layer corrects the jump of the normal derivative
of the axial velocity: we introduce a source term that accounts for a unit jump in the horizontal
component but on the microscopic scale. Namely, we look for (Υ, ̟) solving:



















− ∆Υ + ∇̟ = −δΣe1 in S,

divΥ = 0 in S,

Υ = 0 on P,

Υ2 → 0 |y2| → ∞.

Again we give some basic results and the behaviour at infinity of this corrector.

Proposition 3. There exists a unique (Υ, ̟) ∈ D1,2(S) × L2
loc(S), ̟ being defined up to a

constant. Moreover, one has:

Υ(y) → Υ±e1, y2 → ±∞
and















Υ2(y2) = 0 ∀y2 ∈ R,

Υ1(y2) = Υ1(0) − β1(0) y2 > y2,P ,

Υ1(y2) = Υ1(0) y2 < 0,

where y2,P := maxy∈P y2.

The proof follows the same lines as in Proposition 2.
The pressure jump. In order to correct the pressure jump we use a similar the corrector to the one
introduced and studied in [10] p. 25:



















− ∆χ + ∇η = 0 in S,

div χ = 0 in S,

χ = 0 on P,

χ2 → −1, |y2| → ∞.

(9)

As in the proof of Proposition 2, one repeats the same arguments to study the behaviour of this
boundary layer giving similarly to [10] :

Proposition 4. There exists a unique solution (χ, η) ∈ D1,2(S)× L2
loc(S) of system (9), η being

defined up to a constant. Moreover, one has

χ → χ ≡ −e2, |y2| → ∞,

the convergence being exponential with rate γχ and there exists two constants η(+∞) and η(−∞)
depending only on the geometry of P such that

η(y) → η(±∞), |y2| → ∞.

We denote [η] := η(+∞) − η(−∞). One then proves:

|∇χ|2L2(S) = [η]

This corrector will be used in the sequel, but we already utilize it to give a first result on the
average of π and ̟
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Corollary 2.1. The solution (β, π) and (Υ, ̟) satisfy :

π(y2) = 0 and ̟(y2) = 0, ∀y2 ∈ R−∪]y2,P ,+∞[

Proof. Setting again β̃ := β + y2e11Z+ and writing

(−∆β + ∇π,χ)Sδ,ν
− (−∆χ + ∇η, β̃)Sδ,ν

= 0

= (σχ,η · n, β̃){y2=δ}∪{y2=ν} − (σβ,π · n,χ){y2=δ}∪{y2=ν} → −[ηβ2]
+∞
−∞ + [πχ2]

+∞
−∞

because β2 → 0 and χ2 → −1, one gets the desired result at infinity. As the pressure π is harmonic
in S, the average π(δ) is zero in R−∪]y2,P ,+∞[. The same proof holds for ̟. �

In the sequel we will also need the corrector



















− ∆κ + ∇µ = −(∇χ − (η − η)Id2).e1 in S,

div κ = 0 in S,

κ = 0 on P,

κ2 → 0 |y2| → ∞.

Proposition 5. There exists a unique solution (κ, µ) ∈ D1,2(S) × L2
loc(S), µ being defined up to

a constant. One has also exponential convergence towards constants with rate γκ

[µ]+− = (χ1(η − η))S , [κ1]
+
− = −(σχ,(η−η).e1,β)S

In what follows we use the ǫ-scaling of all boundary layers above, namely we set:

βǫ(x) := β
(x

ǫ

)

, Υǫ(x) := Υ
(x

ǫ

)

, χǫ(x) := χ
(x

ǫ

)

, κǫ(x) := κ

(x

ǫ

)

, ∀x ∈ Ωǫ.

Vertical correctors on Γ1∪Γ2∪Γout,1. Above boundary layers are periodic; their oscillations perturb
homogeneous Dirichlet as well as Neumann stress boundary conditions on Γin ∪ Γout,1 ∪ Γ2. The
perturbation on these boundaries is O(1), due to the vicinity of these edges to the geometrical
perturbation Γǫ. In order to correct these errors, we introduce vertical boundary correctors defined
on a perforated half-plane. Namely we set Π := ∪∞

k=0{S + ke1}, the vertical infinite boundary is
divided in D := {0} × R− and N := {0} × R+. We denote B := ∪∞

k=0{P + ke1}. On this domain
we define the vertical correctors lifting each of the periodic boundary layers above











































− ∆wβ + ∇θβ = 0 in Π,

div wβ = 0 in Π,

wβ = β − β on D,

wβ,2 = β2 on N,

θβ = π on N,

wβ = 0 on B,











































− ∆wχ + ∇θχ = 0 in Π,

div wχ = 0 in Π,

wχ = χ − χ on D,

wχ,2 = χ2 − χ2 on N,

θχ = η − η on N,

wχ = 0 on B,















































− ∆wΥ + ∇θΥ = 0 in Π,

div wΥ = 0 in Π,

wΥ = Υ − Υ on D,

wΥ,2 = Υ2 − Υ2 on N,

θΥ = µ− µ on N,

wΥ = 0 on B,

(10)
and (wκ , θκ) solves a similar system lifting (κ, µ) on D∪N . We define the usual weighted Sobolev
space [3, 16]:

Wm,p
α (Π) :=

{

v ∈ D′(Π) s.t. |Dλv|(1 + ρ2)
α+|λ|−m

2 ∈ Lp(Π), 0 ≤ |λ| ≤ m
}

where ρ := (1 + |y|2) 1
2 . We endow this space with the corresponding weighted norm. Here we

extend to the case of Stokes results obtained for mixed boundary conditions and the rough Laplace
equation in [5, 24]. In the appendix we give the extensive proof of the crucial claim:
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Theorem 2.2. There exists a unique solution (wi, θi) ∈ W1,2
α (Π)2×W 0,2

α (Π) for i ∈ {β,Υ,χ,κ},
where the constant α is of modulus strictly less than 1.

We need to localize these correctors near the vertical boundaries Γin ∪ Γ2 ∪ Γout,1. To this
purpose we define two cut-off functions:

(i) The “corner” cut-off functions : Set ψ1 := ψ(x) and ψ2 := ψ(x−x), where x := Γout,1∩Γ2

and ψ is a radial monotone decreasing cut-off function such that

ψ(x) :=











1 if |x| ≤ 1

3

0 if |x| ≥ 2

3

Finally set ψ(x) := ψ1(x)+ψ2(x). Note that with this definition ∂nψ = 0 on Γin ∪Γout,1.
(ii) The “far from the corner” cut-off function : Φ is defined in a complementary manner on

Γin ∪ Γout,1 ∪ Γ2 such that

{

ψ + Φ = 1

∂nΦ = 0,
on Γin ∪ Γout,1 ∪ Γ2

and one can take for instance Φ(x) := 1 − ψ(0, x2) for all x ∈ Ω.

We set for i ∈ {β,Υ,χ,κ},














wǫ,i(x) := ci(O)wi

(x

ǫ

)

ψ1(x1) + ci(x)wi

(

x− x

ǫ

)

ψ2(x),

θǫ,i(x) := ci(O)θi

(x

ǫ

)

ψ(x1) + ci(x)θi

(

x− x

ǫ

)

ψ2(x),

where the constants ci denote

cβ :=
∂u0,1

∂x2
, cΥ :=

[

∂u0,1

∂x2

]

, cχ :=
[p0]

[η]
, cκ := pin

cχ being the only constant which is different when x = O or x = x. Then, we define the complete
vertical corrector as















Wǫ(x) := ǫ
∑

i

wǫ,i(x) + W(x),

Zǫ(x) :=
∑

i

θǫ,i + Z(x),
∀x ∈ Ωǫ

where (W, Z) solve the system of equations on the macroscopic domain Ωǫ :



















































∆W + ∇Z = 0, in Ωǫ

div W = 0 in Ωǫ

W · τ = ǫ
{

cβ(βǫ − β) + cΥ(Υǫ − Υ) + cχ(χǫ − χ) + ǫcκ(κǫ − κ)
}

· τ Φ

Z =
{

cβπǫ + cΥ̟ǫ + cχ(ηǫ − η) + ǫcκ(µǫ − µ)
}

Φ
on ΓN

W = 0 on Γǫ

W = ǫ
{

cβ(βǫ − β) + cΥ(Υǫ − Υ) + cχ(χǫ − χ) + ǫcκ(κǫ − κ)
}

Φ on ΓD

(11)

Proposition 6. There exists a unique solution (W, Z) ∈ H1(Ωǫ)×L2(Ωǫ) of system (11), more-
over one has:

‖W‖
H1(Ωǫ)

+ ‖Z‖L2(Ωǫ)
≤ ke−

γ
ǫ

where the exponential rate γ and the constant k do not depend on ǫ.
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Proof. By the standard theory for mixed problems [12, 15], there exists a unique solution (W, Z)
solving the problem above, one has the a priori estimates:

‖W‖
H1(Ωǫ)

+‖Z‖L2(Ωǫ)
≤
∥

∥

((

cβǫ
σβǫ,π + cΥσΥǫ,̟ + cχσχǫ,ηǫ

+ ǫcκσκǫ,µǫ

)

n,n
)∥

∥

H− 1
2 (ΓN )

+ ǫ
∥

∥

∥τ ·
{

cβ(βǫ − β) + cΥ(Υǫ − Υ) + cχ(χǫ − χ) + ǫ(κǫ − κ)
}

Φ
∥

∥

∥

H1(Ωǫ)

Thanks to the crucial presence of the cut-off function Φ and the exponential decrease of rate
γ := min(γβ, γΥ, γχ, γκ) of all the microscopic quantities, one gets again an exponential decrease
in all norms. This ends the proof. �

Remark 2.1. Without the presence of the cut-off function Φ the result above is not true, because
for instance the normal derivatives are of order one and integrating them near the origin or near
x, one looses the decay property. That is the reason why we use in fact localized microscopic
correctors wǫ,i near the “corners” (0, 0) and x.

The complete first order approximation. Having introduced every single element, we built a com-
plete first order approximation, setting:

Uǫ := u0 + ǫ

{

∂u0,1

∂x2
(βǫ − β) +

[

∂u0,1

∂x2

]

(Υǫ − Υ) +
[p0]

[η]
(χǫ − χ) + u1

}

+ ǫ2
{

pin(κǫ − κ) + u2

}

+ Wǫ,

Pǫ := p0 +

{

∂u0,1

∂x2
πǫ +

[

∂u0,1

∂x2

]

̟ǫ +
[p0]

[η]
(ηǫ − η) + ǫp1

}

+ ǫpin(µǫ − µ) + ǫ2p2 + Zǫ,

(12)

where the first order macroscopic corrector (u1, p1) solves (3), while (u2, p2) satisfies











































−∆u2 + ∇p2 = 0 in Ω1 ∪ Ω2,

div u2 = 0 in Ω1 ∪ Ω2,

u2 = 0 on ΓD,

u2 · τ = 0,

p2 = 0,
on ΓN ,

u2 = pinκ
±

on Γ0
±.

(13)

We give two distinct values to the horizontal first order correction of the velocity on Γ0. This is
due to the different values of the constants whom the boundary layer correctors β and Υ tend at
infinity. The velocity vectors u1 and u2 being discontinuous across Γ0, it is not possible to obtain
a priori estimates in Ω. But thanks to the specific mixed type boundary conditions on Γin∪Γout,1,
(u1, p1) and (u2, p2) belong to H1(Ω1,ǫ) × L2(Ω1,ǫ). Nevertheless due to the discontinuity of the
Dirichlet data at the intersection between Γ2 and Γ0 (at the corners (0,0) and (1,0)) u1 and u2

cannot belong to H1(Ω2)×L2(Ω2). Instead thanks to [11], one has that (u1, p1) and (u2, p2) exist
and are unique very weak solutions in L2(Ω2) ×H−1(Ω2).
A priori estimates. Due to the lack of regularity of the complete ansatz (Uǫ,Pǫ) near the vertical
boundaries Γin ∪Γout,1 ∪Γ2, one cannot obtain directly a priori estimates in Ωǫ. Instead inspiring
ourselves from ideas similar to energy methods [10] p. 39, we focus on the Ωǫ-“regular” terms of
Uǫ present on Γ0. Namely we set :

Vǫ := uǫ − (u0 + Fǫ(1 − Φ)), Qǫ := pǫ − (p0 + Gǫ(1 − Φ))

Fǫ := ǫ

{

∂u0,1

∂x2
βǫ +

[

∂u0,1

∂x2

]

Υǫ +
[p0]

[η]
χǫ

}

+ ǫ2 {pinκǫ} =: ǫF1

(x

ǫ

)

+ ǫ2F2

(x

ǫ

)

Gǫ :=

{

∂u0,1

∂x2
πǫ +

[

∂u0,1

∂x2

]

̟ǫ +
[p0]

[η]
(ηǫ − η)

}

+ ǫpin(µǫ − µ) =: G1

(x

ǫ

)

+ ǫG2

(x

ǫ

)
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In fact, we do not consider neither the constants at infinity nor their macroscopic correctors.
Because we localize these terms in a fixed zone near the rough layer this is also a possible more
regular approximation of (uǫ, pǫ).

Theorem 2.3. One has the a priori error estimates

‖Vǫ‖H1(Ωǫ)
+ ‖Qǫ‖L2(Ωǫ)

≤ kǫ−

where the constant k is independent on ǫ and ǫ− is any positive number strictly less than ǫ.

Proof. In order to correct vertical oscillations we define correctors similar to those presented above
in (10). The major difference is that we do not take into account the constants at infinity inside
the Dirichlet part of the boundary : we look for (w1, θ1) and (w2, θ2) solving respectively











































− ∆wi + ∇θ = 0 in Π,

div wi = 0 in Π,

wi = Fi(0, y2) on D,

wi · τ = Fi(0, y2) · τ on N,

σ
wi,θi

· n,n = σFi,Gi
· n,n on N,

wi = 0 on B,

(14)

Because Fi goes to F i 6= 0 exponentially fast with respect to y2, wi tends to a constant at infinity
on N ∪D.

Proposition 7. There exists (wi, θi) in W1,2
α (Π)×W 0,2

α (Π) a unique solution of problem (14) if
the weight exponent α is s.t. −1 < α < 0.

Proof of Proposition 7. If α < 0, the boundary data Fi(0, y2) ∈ W
1
2 ,2
α (D ∪N), and if |α| < 1 by

Theorem 3.1 in the appendix, there exists a unique solution in the corresponding weighted Sobolev
spaces. �

We lift as well the second order error on Γǫ by setting

R :=

(

u0 −
∂u0,1

∂x2
x2e1

)

φ
(x2

ǫ

)

Finally we define:










Ṽǫ := Vǫ − ǫiwi

(x

ǫ

)

ψ −R =: Vǫ − ǫiwǫ,iψ −R,

Q̃ǫ := Qǫ − θi

(x

ǫ

)

ψ =: Qǫ − θǫ,iψ

where ψ is the radial cut-off function already introduced above. These new variables solve :















−∆Ṽǫ + ∇Q̃ǫ = ∆R− 2σFǫ,Gǫ
· ∇Φ − ∆ΦFǫ

− 2σǫiwǫ,i,θǫ,i
· ∇ψ − ǫi∆ψwǫ,i, in Ωǫ

div Ṽǫ = ∇Φ · Fǫ + ǫi∇ψ ·wǫ,i

(15)

and they satisfy homogeneous boundary conditions on ∂Ωǫ :















Ṽǫ · τ = 0

Q̃ǫ = 0
on Γin ∪ Γout,1 ∪ Γout,2

Ṽǫ = 0 on Γ1 ∪ Γ2 ∪ Γǫ

By standard theory we have a priori estimates. They provide H1(Ωǫ)×L2(Ωǫ) control of (Ṽǫ, Q̃ǫ)
by the H−1(Ωǫ) norm of the rhs in the first two lines of system (15) and by the L2(Ωǫ) norm of
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the rhs in the divergence equation. We detail the H−1(Ωǫ) estimates, the L2(Ωǫ) part follows the
same way.

Thanks to the specific form of the lift R, one easily writes

‖∆R‖H−1(Ωǫ)
= ‖∇R‖L2(Ωǫ)

≤ 2ǫ‖u0‖H2(Ωǫ)

The support of ∇Φ and ∆Φ being fixed (independent on ǫ) and far from the roughness, the
contribution of the Fǫ part of the rhs in (15) is exponentially small with respect to ǫ. As an
example we detail the estimates of the part of σFǫ,Gǫ

∇Φ that contains (β, π), the rest follows the
same

∫

Ωǫ

|∇yβǫ − πǫId2|2|∇Φ|2dx ≤ kǫ

∫ 1

0

∫ 2
3ǫ

1
3ǫ

(

|∇yβǫ|2 + |π|2
)

dy2dy1 ≤ ǫe−
γβ
ǫ

Finally we detail the contribution of the vertical correctors (ǫwǫ,i, θǫ,i)ψ

∥

∥

∥σǫwǫ,i,θǫ,i
· ∇ψ

∥

∥

∥

2

L2(Ωǫ)
=

∫

Ωǫ

∣

∣

∣σǫwǫ,i,θǫ,i
· ∇xψ(x)

∣

∣

∣

2

dx = ǫ2
∫

Π

∣

∣(∇ywi − θiId2) · ∇xψ(ǫy)
∣

∣

2
dy

≤ kǫ2
∫

Π∩] 1
3ǫ

, 2
3ǫ [×(0,π)

{

|∇ywi|2 + |θi|2
}

ρ2αrdrdθ̃ sup
r∈[ 1

3ǫ
, 2
3ǫ ]
ρ−2α

≤ kǫ2−α
(

‖w‖2
W

1,2
α (Π) +

∥

∥θ
∥

∥

2

W
0,2
α (Π)

)

In the same way

∥

∥ǫi(∆ψ)wǫ,i

∥

∥

2

L2(Ωǫ)
≤ ǫ4

∫

Π∩] 1
3ǫ

, 2
3ǫ [×(0,π)

|wi|2
ρ2

ρ2αrdrdθ̃ sup
r∈[ 1

3ǫ
, 2
3ǫ ]
ρ2−2α ≤ ǫ2−2α

By a similar argument we obtain that

∥

∥∇(ǫiwǫ,iψ)
∥

∥

L2(Ωǫ)4
≤ kǫ1−α

which by a triangular inequality ends the proof of theorem 2.3
�

Remark 2.2. Note that the energy method combined with the H1 norm provides a similar result
in formula (2.8c) of Theorem 2.4 p. 10 in [10]. Nevertheless, thanks to the vertical correctors
(ǫiwǫ,i, θǫ,i) presented above, we avoid the particular decomposition of the gradient of Vǫ/

√
ǫ in

formula (5.18) p. 39. So that (i) we do not need to prove the weak convergence of Vǫ/ǫ → 0 on
Γ0 and (ii) we obtain a H1(Ωǫ) error estimate of Vǫ which is O(ǫ−) instead of o(

√
ǫ) as the latter

approach would yield.

Very weak estimates. We use here the framework of very weak solutions, for scalar elliptic problems
see [25], a similar setting is derived by duality in the case of Stokes in [11], see also [13] for
more general results. The essential motivation comes from the lack of regularity of the averaged
approximation (uǫ, pǫ) across the interface Γ0 and the optimal cost of the boundary layers’ velocity
in the L2 norm. As the obstacles are contained inside the limiting domain, we apply similar ideas
as in the proof of Theorem 3.1 in [26], we decompose our domain in three parts.

Theorem 2.4. The full approximation (Uǫ,Pǫ) satisfies the error estimates:

‖uǫ − Uǫ‖L2(Ω1∪Ω2) + ‖pǫ − Pǫ‖H−1(Ω′
1∪Bǫ∪Ω2)

≤ kǫ
3
2
−

where the constant k does not depend on ǫ and 3
2

−
is a real strictly less than 3

2 .
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Proof. Writing down the system of equations satisfied by (uǫ − Uǫ, pǫ − Pǫ) in Ω′
1, and applying

the very weak framework of Appendix A in [11], one has

‖uǫ − Uǫ‖L2(Ω′
1) + ‖pǫ − Pǫ‖H−1(Ω′

1)
≤ ‖−∆(ǫwǫ,i) + ∇θǫi

‖
H−1(Ω′

1)
+

∥

∥

∥

∥

ǫ
∇[p0]

[η]
· (χǫ − χ)

∥

∥

∥

∥

L2(Ω′
1)

+ ‖ǫdiv wǫ,i‖L2(Ω′
1) + ‖uǫ − Uǫ‖L2({x2=2ǫ})

(16)
The first term is estimated by the L2(Ωǫ) norm:

I :=‖−∆(ǫwǫ,i) + ∇θǫi
‖
L2(Ωǫ)

≤ ǫk‖(∆ψ1)wi(·/ǫ)‖L2(Ωǫ)
+ k‖((θiId2 + ∇ywi)∇ψ1)‖L2(Ωǫ)

=: ǫkI1 + kI2

Here as in the proof of theorem 2.3, the support of the derivatives of the cut-off function ψ plays
an important role:

I2
1 =

∫

Ωǫ

|wi(x/ǫ)|2(∆xψ1(x))
2dx = ǫ2

∫

Π

|wi|2(∆xψ1(ǫy))
2dy ≤ kǫ2

∫

Π∩] 1
3ǫ

, 2
3ǫ [×]0,π[

|wi|2rdrdθ̃

≤ kǫ2

(

∫

Π∩] 1
3ǫ

, 2
3ǫ [×]0,π[

( |wi|
ρ

)2

ρ2αrdrdθ̃

)

·



 sup
r∈[ 1

3ǫ
, 2
3ǫ ]
ρ2−2α



 ≤ ǫ2αk‖wi‖2
W

1,2
α (Π)

We give the computation for ψ1wi(·/ǫ), obviously near x, one proceeds identically. In the same
way, we treat the other term :

I2
2 ≤ ǫ2

∫

Π

(|∇wi|2 + θ2i )|∇ψ1|2dy ≤ kǫ2
∫

Π∩] 1
3ǫ

, 2
3ǫ [×]0,π[

(|∇wi|2 + θ2i )dy

≤ ǫ2
∥

∥|∇wi|2 + θ2i
∥

∥

2

W 0,2
α (Π)

sup
r∈] 1

3ǫ
, 2
3ǫ ]
ρ−2α ≤ kǫ2(1+α)

The second term in (16) is estimated directly, while the treatment of third term follows the same
ideas as above. To handle the forth term of the rhs in (16), we split v := uǫ − Uǫ in three parts:

v1 : = uǫ −
(

u0 + ǫ

{

∂u0,1

∂x2
βǫ +

[

∂u0,1

∂x2

]

Υ +
[p0]

[η]
χǫ

}

+ ǫ2 {pinκǫ}
)

v2 : = ǫi (ui(x) − ui(x1, 0))

= ǫ

(

u1(x) −
{

∂u0,1

∂x2
β +

[

∂u0,1

∂x2

]

Υ +
[p0]

[η]
χ

}

− ǫ
(

u2(x) −
{

pinκ
})

)

v3 : = ǫ
∑

i∈{β,Υ,χ}

wǫ,i + ǫ2wǫ,κ,

Because v1 ≡ Vǫ on {x2 = 2ǫ} and {x2 = 0} and thanks to Theorem 2.3, one obtains

‖v1‖L2({x2=2ǫ}) ≤
√
ǫ‖∇v1‖L2(Bǫ)

≤ ǫ
3
2
−

Due to the H1(Ω1) regularity of u1, one has also

‖v2‖L2({x2=2ǫ}) ≤
√
ǫ‖∇v2‖L2(Bǫ)
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while on Γ0 this term is identically zero. For the vertical corrector, one has for both {x2 = 2ǫ}
and {x2 = 0} that :

‖wǫ,i‖2
L2({x2=ǫ}) ≤

∫ 1

0

|w|2
(x1

ǫ
, ǫ
)

dx1 = ǫ

∫ 1
ǫ

0

|w|2(y1, 1)dy1

≤ ǫ

∫ 1
ǫ

0

|w|2
ρ

(y1, 1)ρ2αdy1 sup
y1∈]0, 1

ǫ [
ρ1−2α ≤ kǫ‖wi‖W1,2

α (Π).

So that the same arguments give also the result in Ω2 :

‖uǫ − Uǫ‖L2(Ω2) + ‖pǫ − Pǫ‖H−1(Ω2) ≤ kǫ
3
2
−

.

It remains to consider the rough layer Bǫ. There, we have

‖uǫ − Uǫ‖L2(Bǫ)
+ ‖pǫ − Pǫ‖H−1(Bǫ)

≤ ǫ
{

‖uǫ − Vǫ‖H1(Bǫ)
+ ‖pǫ − Pǫ‖L2(Bǫ)

}

, (17)

where the H1(Bǫ) regularity is again obtained using the triple decomposition presented above. As
the estimates on the velocity come using Poincaré estimates at the microscopic level as in Lemma
3.2 in [10], the pressure estimate is obtained by duality. Indeed by definition of the dual norm one
has :

‖pǫ − Pǫ‖H−1(Bǫ)
= sup

ϕ∈H1
0 (Bǫ)

< pǫ − Pǫ, ϕ >H−1,H1
0

where H1
0 (Bǫ) denotes the set of functions in H1(Bǫ) vanishing on Γ0. As (pǫ − Pǫ) belongs to

L2(Bǫ) the duality bracket can be transformed into an integral, namely

< pǫ − Pǫ, ϕ >H−1,H1
0

=

∫

Bǫ

(pǫ − Pǫ)ϕdx ≤ ‖pǫ − Pǫ‖L2(Bǫ)
‖ϕ‖L2(Bǫ)

,

≤ ǫ‖pǫ − Pǫ‖L2(Bǫ)
‖ϕ‖H1(Bǫ)

,

taking the sup over all functions in H1
0 (Bǫ), one concludes the norm correspondence. Applying

the estimates from Theorem 2.3 again to the rhs of (17), one obtains

‖uǫ − Uǫ‖L2(Bǫ)
+ ‖pǫ − Pǫ‖H−1(Bǫ)

≤ kǫ2
−

�

Remark 2.3. Note that the weak H−1(Ω′
1 ∪ Bǫ ∪ Ω2) norm of the pressure is smaller than the

H−1(Ω1 ∪ Ω2) one, on the other hand the microscopic roughness make the domain connected and
not convex which is a sufficient condition in order to obtain very weak estimates (cf p. 53 [11]).

Here we consider the oscillating part of our approximation. We recall that uǫ := u0 + ǫu1 and
pǫ := p0 + ǫp1, and we set

vǫ := Uǫ − uǫ, qǫ := Pǫ − pǫ.

These function satisfy on each sub-domain Ωj















































− ∆vǫ + ∇qǫ = −ǫ∆wǫ,i + ∇θǫ,i in Ωj

div vǫ = ǫdivwǫ,i in Ωj

vǫ · τ = 0

qǫ = 0
on ΓN

vǫ = ǫ

{

∂u0,1

∂x2
βǫ +

∂u0,1

∂x2
β +

[

∂u0,1

∂x2

]

Υ +
[p0]

[η]
χ + ǫ

{

pinκ
}

}

=
∂u0,1

∂x2
x2 + ǫk1 on Γǫ

vǫ = 0 on ΓD

(18)
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At the same time vǫ, qǫ are explicit functions of all the correctors.

Theorem 2.5. The rapidly oscillating rest (Uǫ − uǫ,Pǫ − pǫ) satisfies

‖Uǫ − uǫ‖L2(Ω) +
√
ǫ‖Pǫ − pǫ‖H−1(Ω′

1∪Bǫ∪Ω2) ≤ kǫ
3
2

where the constant k is independent on ǫ.

Proof. Because vǫ is explicit and reads :

vǫ = ǫ
{

cβ(βǫ − β) + cΥ(Υǫ − Υǫ) + cχ(χǫ − χ) + ǫcκ(κǫ − κ)
}

+ ǫwǫ,i + W

a direct computation of the L2 norm gives that

‖vǫ‖L2(Ωj) ≤ǫk
{

∥

∥

∥
βǫ − β

∥

∥

∥

L2(Ωj)
+
∥

∥χǫ − χ
∥

∥

L2(Ωj)
+
∥

∥

∥
Υǫ − Υ

∥

∥

∥

L2(Ωj)
+ ǫ
∥

∥κǫ − κ
∥

∥

L2(Ωj)

}

+ ǫ‖wǫ,i‖L2(Ωj)
+ ‖W‖

L2(Ωj) ≤ kǫ
3
2 .

in this estimate we follow the method introduced in theorem 6, p. 1123 [19], but the same approach
does not provide more than

√
ǫ convergence rate for pressures due to the different ǫ-scaling of the

pressure terms in (12), so

‖pǫ‖L2(Ωj)
≤ k

√
ǫ

We use again the decomposition Ω := Ω′
1 ∪Bǫ ∪ Ω2 and very weak estimates in Ω′

1 and Ω2; these
give

‖qǫ‖H−1(Ω′
1) ≤ ‖vǫ‖L2({x2=2ǫ}) +O

(

ǫ
3
2
−
)

,

where we put in the last term of the above inequality the contribution of the source terms of the
rhs in (18) already computed in the proof of Theorem 2.4. But because vǫ is explicit, and due to
the y1-periodic microscopic structure of βǫ,Υǫ,χǫ and κǫ, one has only

‖vǫ‖L2({x2=2ǫ}) ≤ kǫ.

In Ω2 a similar argument gives

‖qǫ‖H−1(Ω2) ≤ ‖vǫ‖L2(Γ0)
+O

(

ǫ
3
2
−
)

≤ kǫ

In Bǫ we use the dual estimate (17) based on the Poincaré inequality, to get

‖qǫ‖H−1(Bǫ)
≤ kǫ‖qǫ‖L2(Bǫ)

≤ kǫ
3
2

�

Combining Theorems 2.4 and 2.5 above, one gets the main result of the paper

Theorem 2.6. The averaged approximation (uǫ := u0 + ǫu1, pǫ := p0 + ǫp1) satisfies the very
weak estimates:

‖uǫ − uǫ‖L2(Ωj) +
√
ǫ‖pǫ − pǫ‖H−1(Ωj)

≤ kǫ
3
2
−

, j ∈ {1, 2}
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Implicit interface conditions. We start with the horizontal velocity. We call u±
1 (resp ∂2u

±
0,1) the

values across Γ0. The first order interface condition derived above on Γ0 reads:

u±
1 =

{

∂u0,1

∂x2

+

β
±

+

[

∂u0,1

∂x2

]

Υ
±
}

e1 +
[p0]

[η]
χ2e2

assembling together normal derivatives of the velocity on both sides and because ∂2u
−
0,1 ≡ 0, one

has also :

u+
1 =

{

∂u0,1

∂x2

+

(β
+

+ Υ
+
)

}

e1 +
[p0]

[η]
χ2e2

u−
1 =

{

∂u0,1

∂x2

+

(β
−

+ Υ
−

)

}

e1 +
[p0]

[η]
χ2e2

But thanks to Proposition 3, Υ
+

= Υ
−

+β
−

and this organizes the expression above as an implicit
difference

u+
1 · e1 = ((β

+
+ Υ

+
) − (β

−
+ Υ

−
))
∂u0,1

∂x2

+

e1 + u−
1 · e1 and

u+
1 · e1

β
+

+ Υ
+ =

u−
1 · e1

β
−

+ Υ
−

which finally gives
u+

1 · e1

β
+

+ Υ
+ =

∂u0,1

∂x2

+

and
u+

1 · e1

β
+

+ Υ
+ =

u−
1 · e1

β
−

+ Υ
−

Setting uǫ := u0 + ǫu1 and because u0 ≡ 0 on Γ0, one has also

u+
ǫ · τ = ǫ(β

+
+ Υ

+
)
∂uǫ,1

∂x2
+O(ǫ2), and

u+
ǫ · τ

β
+

+ Υ
+ =

u−
ǫ · τ

β
−

+ Υ
−

One recovers a slip velocity condition in the main artery and a new discontinuous relationship
between the horizontal components of the velocity at the interface.

For the vertical velocity, thanks to the continuity of χ2 across Γ0, one has that

u+
1,2 = u−1,2 = u1,2 =

[p0]

[η]
,

this in turn gives the implicit interface condition :

uǫ · n =
ǫ

[η]
([σuǫ,pǫ

] · n,n) +O(ǫ2).

2.2. The case of an aneurysmal sac

When ǫ goes to 0, the limit solution (u0, p0) is explicit (we set pout,1 = 0 in (6)):







u0(x) =
pin

2
(1 − x2)x2e11Ω1 , ∀x ∈ Ω

p0(x) = pin(1 − x1)1Ω1 + p−0 1Ω2 ,

where p−0 is any real constant. Although we could impose the uniqueness of the limit supposing
that p−0 ∈ L2(Ω2)/R and thus setting it to zero we keep it as a degree of freedom to be fixed later
on.

Theorem 2.7. For every fixed ǫ, there exists a unique solution (uǫ, pǫ) ∈ H1(Ωǫ)×L2(Ωǫ) of the
problem (1). Moreover, one has

‖uǫ − u0‖H1(Ωǫ)2
+ ‖pǫ − p0‖L2(Ω1,ǫ)

+ ‖pǫ − p0‖L2(Ω2)/R
≤ k

√
ǫ

where the constant k depends on p−0 but not on ǫ.
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Proof. Set vǫ := uǫ − ũ0, qǫ := pǫ − p0, where ũ0 := u0 − R(u0) already defined in the proof of
Theorem 2.1, these functions solve







































− ∆vǫ + ∇qǫ = [σu0,p0 ] · n δΓ0 − ∆R(u0) in Ω

div vǫ = 0 in Ω

vǫ = 0 on Γ1 ∪ Γ2 ∪ Γout,2

vǫ · τ = 0 on ΓN

p0 = pin on Γin, p0 = 0 on Γout,1

vǫ = 0 on Γǫ

The standard theory for mixed problems gives existence and uniqueness of a solution (vǫ, q̃ǫ) in
H1(Ωǫ) × L2(Ωǫ) for every jump term on Γ0, the corresponding estimates follow exactly as in
Theorem 2.1

‖vǫ‖H1(Ωǫ)
+ ‖qǫ‖L2(Ωǫ)

≤ k(p−0 )
√
ǫ

Because of the pressure boundary condition on Γin ∪ Γout,1, the pressure q̃ǫ is uniquely defined in
Ω2. But it may differ up to a constant from qǫ := pǫ − p0 in Ω2. As Ω2 is now a cavity, we rewrite
the problem solved by (vǫ, qǫ) with a fixed velocity vǫ imposed on Γ0 and lifted inside the domain
Ω2, namely v̂ǫ := vǫ −R(vǫ). Then (v̂ǫ, qǫ) solve











− ∆v̂ǫ + ∇qǫ = ∆R(vǫ) in Ω2

div v̂ǫ = divR(vǫ) in Ω2

v̂ǫ = 0 on ∂Ω2

and this gives
‖qǫ‖L2(Ω2)/R

≤ ‖R(vǫ)‖H1(Ω2) ≤ ‖vǫ‖H(Ωǫ)
≤ k

√
ǫ

�

First order approximation. Due to the presence of three kind of errors above, we construct a full
boundary layer approximation (Uǫ,Pǫ) exactly as in (12). One has to make few minor changes in
the definition of (Wǫ,Zǫ) that are left to the reader. The only difference stands in the pressure
jump:

[p0] = p+
0 (x1, 0) − p−0

where p−0 is the constant pressure not yet fixed. The first order macroscopic corrector (u1, p1)
should satisfy















































−∆u1 + ∇p1 = 0 in Ω1 ∪ Ω2

div u1 = 0 in Ω1 ∪ Ω2

u1 = 0 on Γ1 ∪ Γ2 ∪ Γout,2

u1 · τ = 0

p1 = 0
on Γin ∪ Γout,1,

u1 =

{

∂u0,1

∂x2
β
±

+

[

∂u0,1

∂x2

]

Υ
±
}

e1 +
[p0]

[η]
χe2 on Γ0

±

(19)

As we impose the velocity on every edge of Ω2 there is a compatibility condition between the
Dirichlet data and the divergence free condition reading

∫

Ω2

div u1 dx =

∫

∂Ω2

u1 · n dσ =

∫

Γ0

u1 · n dx1 = 0,

and this precisely identifies the pressure p−0 giving

|Γ0|p−0 =

∫

Γ0

p+
0 (x1, 0)dx1. (20)
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The first order constants are fixed in the definition of (Uǫ,Pǫ). Even if p−0 is now well defined, the
first and second order pressures p1 and p2 are again defined in Ω2 up to a constant. This is why
we always need quotiented norms on the pressure in Ω2.

Following the same lines as in the section above but taking into account the pressures in Ω2 up
to a constant as in the proof of Theorem 2.7, one proves Theorem 1.2.

3. Numerical evidence

3.1. Approximation of the velocity and the flow-rate in the collateral artery

We solve numerically problem (1) in 2D, for various values of ǫ. For each ǫ, we confront the
corresponding numerical quantities with the information provided by the homogenized first-order
explicit approximation : velocity profile, flow-rate, pressure errors are computed with respect to
different norms evaluated above in a theoretical manner.
Discretizing the rough solution (uǫ, pǫ). The domain Ωǫ is discretized for ǫ ∈]0, 1] using a triangu-
lation. To discretize the velocity-pressure variables, a (P2,P1) finite element basis is chosen. Be-
cause of the presence of microscopic perturbations, when solving the Stokes equations, the penalty
method gave instabilities. For this reason we opted for the Uzawa conjugate gradient solver (see
p. 178 in [17], and references there in). The code is written in the freefem++ language1. On the
boundary we impose the following data : pin = 2, pout,1 = 0, pout,2 = −1.
The microscopic cell problem. Using the same numerical tools, we solve the microscopic problem
(9). As the domain is infinite we truncate it for y2 = L, where L is large enough. We let natural
boundary conditions on the first component of the velocity and impose χ2 = −1 on the other
component. For similar microscopic problems it was proved in [22] that the solutions of the
truncated problem converge exponentially with respect to to L to the solution of the unbounded
problem. Then we compute the numerical value of the pressure drop [η] := η(+∞) − η(−∞). If
Q is a sphere of radius 1/4 in a period of size 1 centered at (1/2, 1/4) this gives a value of the
pressure difference equal to [η] := 52.6961.
Results : In fig. 5 right, we plot various values of ǫ on the x-axis and the flow-rate through Γ0 on
the y-axis. Note that ǫ = 0.5 corresponds to the case of two huge obstacles in front of Ω2 while
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Figure 5. Zeroth and first order error estimates (left) and rough versus homog-
enized flow-rates for various values of ǫ (right)

ǫ = 0.03125 corresponds to 16 spheres. One observes that the asymptotic expansion gives the first
order derivative of the flow-rate with respect to ǫ near ǫ = 0 which was expected. One notices also
that the actual rough flow-rate behaves as a square-root of ǫ. This seems difficult to obtain using
averaged interface conditions only [6, 7]. In fig. 5 left, we plot numerical L2(Γ0) error estimates :
we compute ‖(uǫ − u0) · n‖L2(Γ0) and ‖(uǫ − uǫ) · n‖L2(Γ0)

. Our approximation uǫ is explicit on

1http://www.freefem.org/ff++

http://www.freefem.org/ff++
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Γ0, so one only solves the rough problem (1). Up to discretization errors, we recover theoretical
claims:

‖(uǫ − u0) · n‖L2(Γ0) ∼ kǫ, ‖(uǫ − uǫ) · n‖L2(Γ0)
∼ kǫ1.45.

In fig. 6 we display the mesh used for two different values of ǫ (middle and right) and the mesh
size h with respect to ǫ (left).
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h

ǫ

hmax

kǫ0.65

hmin

kǫ1.1

Figure 6. The mesh size h , meshes for ǫ = 0.25 and ǫ = 0.0625

3.2. Velocity profile and pressures in the aneurysmal sac

In the same numerical framework we validate the theoretical claims for the aneurysm : in order
to show that our result do not only apply to the basic geometry of figure 2, we choose for Ω2, the
geometry shown as an illustration in fig. 3 and 4 in section 1.2 : Ω2 := B((1

2 ,− 1
4 ), 1

4 )∩ R−
x2

. This
is supposed to give a more realistic shape to the aneurysm.

In fig. 7 we plot numerical error estimates for the zeroth and first order approximations (top),
we display also velocity profiles of uǫ · n and uǫ · n across Γ0 for different values of ǫ(bottom).
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Figure 7. Zeroth and first order error estimates of the normal velocity across
Γ0 (top, left) zeroth order pressure estimate in Ω2 with respect to ǫ (top, right)
Normal velocity profiles across Γ0 for ǫ = 0.25 (bottom, left) and ǫ = 0.0625
(bottom, right) uǫ versus uǫ

In fig. 8 middle and right, we depict an example of two meshes built respectively for ǫ = 0.25
and ǫ = 0.0625. On the left we give the mesh sizes as a function of ǫ
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Figure 8. The mesh size h , meshes for ǫ = 0.25 and ǫ = 0.0625

Up to discretization errors we recover results shown theoretically. Our first order approximation
is still better than the zeroth order one (see fig. 7 top-left). Nevertheless the convergence order
seems to coincide for both approximations around ǫ1.45. We do not have an explanation for this
particular fact. Nevertheless this phenomenon is not due to the change of shape of Ω2 : similar
tests on meshes presented in fig. 6 below give the same improved order of convergence for the
zeroth order profile in the case of an aneurysm.

In fig. 7 (top-left) we display the L2(Ω2) comparison between pǫ, the numerical solution of
problem (5) and the constant p−0 provided by Corollary 1.1. We notice that the convergence order
of the error is quadratic. This validates the choice of the constant p−0 computed theoretically, and
shows that the microscopic perturbations induce only second order errors for the pressure. This
in turn gives some hope that the theoretical results should be improved in this sense.

Appendix

We study the problem: find (w, θ) ∈ W1,2
α (Π) ×W 0,2

α (Π) solving































− ∆w + ∇θ = 0 in Π,

div w = 0 in Π

w = f on D,

w · τ = f · τ , and θ = h on N,

w = 0 on B,

(21)

Theorem 3.1. If the real α is such that |α| < 1 and if

f ∈ W
1
2 ,2
α (D ∪N), h ∈W 0,2

α (N)

there exists a unique solution (w, θ) solving problem (21).

Before giving the proof of the theorem, we need two intermediate propositions. We define

Xα := {v ∈ W1,2
α (Π) s.t. v = 0 on D ∪B, v · τ = 0 on N}, Yα := W 0,2

α (Π).

At first, we show that the divergence operator is surjective from Xα into Yα

Proposition 8. For any given function q ∈ Yα there exists a vector function v ∈ Xα such that

div v = q, and |v|Xα
≤ k(Π, α)‖q‖Yα

where the constant k depends only on the geometry of the domain, and on α.

Proof. We define a sequence of annular domains covering Π

Cn := {y ∈ Π s.t. if x = (r, θ̃) r ∈]2n−1, 2n[}, n ≥ 1, C0 := B(0, 1) ∩ Π.
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We decompose q as q =
∑∞

n=0 qn, with qn := q1Cn
. On each Cn we solve the problem: find

vn ∈ Xα,n s.t. div vn = qn and |vn|Xα
≤ k(Cn, α)|qn|Yα

, where

Xα,n := {v ∈ Xα s.t. v = 0 on {|y| = 2n−1} ∪ {|y| = 2n} ∪ (Cn ∩B) ∪ (Cn ∩D),

and v · τ = 0 on (Cn ∩N)
}

But solve the latter equation in a weak sense means

∫

Cn

div vn · ω rdrdθ̃ =

∫

Cn

qn · ω rdrdθ̃, ∀ω ∈ W 0,2
−α(Cn)

making the change of variables: (r̃ = r/2n−1, θ̃) and setting

ṽn(r̃, θ̃) := v(2n−1r̃, θ̃), q̃n(r̃, θ̃) := q(2n−1r̃, θ̃), ω̃(r̃, θ̃) := ω(2n−1r̃, θ̃)

the problem becomes: find ṽ ∈ X0,1 defined on C1 s.t.

∫

C1

˜div ṽn · ω̃r̃dr̃dθ̃ = 2n−1

∫

C1

q̃ · ω̃ r̃dr̃dθ̃, ∀ω ∈ L2(C1)

the test space is defined on a compact fixed domain C1, weighted Sobolev spaces coincide with
the classical ones as soon as the weight is strictly positive and bounded. In this framework the
operator ˜div : X0,1 → Y0,1 is surjective thanks to Lemma 4.9 p. 181 in [12]. Thus there exists

ṽn ∈ X0,1 s.t. ˜div ṽn = q̃n2n−1. Note that there is no need of a compatibility condition on the

integral of q̃n as in Lemma 3.1 chap. III in [15] because ṽn · n 6= 0 on N ∩ C1. Moreover one has
that

|ṽn|H1(C1)
≤ k(C1, 0)

∥

∥2n−1q̃n
∥

∥

L2(C1)

where k depends only on the geometry of C1 and is thus independent on n. Turning back to the
original variables (r, θ̃) one has then that div vn = qn and

∫

Cn

|∇vn|2 r drdθ̃ ≤ k(C1, 0)

∫

Cn

|qn|2r drdθ̃

In order to recover the global weighted norm of q in W 0,2
α (Π), we multiply the inequality by

22α(n+1) on both sides; we use that for r ∈ [2n−1, 2n], ρ := (1 + r2)
1
2 can be estimated as

22α(n−1) ≤ ρ2α ≤ 22α(n+1) giving finally

∫

Cn

|∇vn|2 ρ2αdy ≤
∫

Cn

|∇vn|2 22α(n+1)dy

≤ k(C1, 0)22α(n+1)

∫

Cn

q2ndy ≤ 24αk(C1, 0)

∫

Cn

q2nρ
2αdy

One defines v :=
∑

n vn1Cn
, because of the boundary conditions imposed on each of the Cn, v is

continuous on Π and thus belongs to W1,2
α (Π). This gives the result. �

We lift problem (21) by subtracting to w a function R(w) satisfying:

R(w) ∈ W1,2
α (Π), R(w) = f on D ∪N and R(w) = 0 on B

Such a lift exists (cf p. 249 [16] for an explicit form of R(w)). We correct the divergence of R(w)
by setting :

S(w) ∈ W
1,2
0 (Π) s.t. divS(w) = −div (R(w)) and ‖S(w)‖

W
1,2
0 (Π) ≤ k‖R(w)‖

W
1,2
0 (Π)
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which is possible thanks to Proposition 8. The new variables (w̃ := w − R(w) − S(w), θ) solve
the homogeneous problem:































− ∆w̃ + ∇θ = ∆R(w) + ∆S(w) in Π,

div w̃ = 0 in Π,

w̃ = 0 on D,

w̃ · τ = 0, and θ = h̃ on N,

w̃ = 0 on B,

(22)

where h̃ := h + ( ∂n (R(w) + S(w)),n). The onto mapping between W1,2
α (Π) × W 0,2

α (Π) and

W
1,2
0 (Π) ×W 0,2

0 (Π) (cf Theorem I.3 p. 243 in [16]) allows us to claim that (F,G) := (ραw̃, ραθ)

solve in an equivalent way the problem: find (F,G) in W
1,2
0 (Π) ×W 0,2

0 (Π) s.t.































Aα F + BT
αG = ρα(∆R(w) + ∆S(w))

Bα F = 0
in Π,

F = 0 on D ∪B
F · τ = 0

G = ραh̃
on N

(23)

where

AαF := −∆F − 2ρα∇F · ∇ 1

ρα
− ρα∆

1

ρα
F, and BαF := div F + ρα∇

(

1

ρα

)

· F. (24)

Note that the rhs in (23) belongs to W
−1,2
0 (Π) and the boundary data to W

− 1
2 ,2

0 (N). The well-
posedness of problem (23) is equivalent to two conditions (Theorem A.56 p. 474 [12]):

(i) P̃Aα : ker(Bα) → ker(Bα)′ is an isomorphism

(ii) Bα : Ẇ1,2
0 (Π) →W 0,2

0 (Π) is surjective

where P̃ is the restriction of Aα to the kernel of Bα and Ẇ
1,2
0 (Π) ≡ X0. Here we prove that these

conditions are actually fulfilled.

Proposition 3.1. If α < 1 then Aα,Bα satisfy conditions (i) and (ii) above

Proof. We prove at first that condition (i) is satisfied. Expanding (24) one has:

AαF = − ∆F +
2α

ρ2
∇F · ∇y + α

(

2

ρ2
− (α+ 2)|y|2

ρ4

)

F

If F ∈ Ẇ
1,2
0 (Π) ∩ ker(Bα) then on the boundary N , one has necessarily that

F2 = 0 =⇒ ∂y2F2 = 0 on N

BαF = div F − ∇ρα

ρα
F = 0







=⇒ ∂y1F =
∇ρα

ρα

(

F1

0

)

=
y

ρα
·
(

F1

0

)

= 0
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thus ∂n F = 0 on N , whereas F = 0 on D. Thanks to that, for every vector F in ker(Bα), one has

(AαF,F)Π =

(

− ∂n F + α
(y · n)

ρ2
F,F

)

∂Π

+ |∇F|2L2(Π)

− α

(

div

(

y

ρ2

)

, |F|2
)

Π

+ α

((

2

ρ2
− (α+ 2)|y|2

ρ4

)

F
2

)

Π

= |∇F|2L2(Π) − α

((

2

ρ2
− 2|y|2

ρ4

)

F
2

)

Π

+ α

((

2

ρ2
− (α+ 2)|y|2

ρ4

)

F
2

)

Π

= |∇F|2L2(Π) − α2

( |y|2
ρ4

F
2

)

Π

note that the boundary term on the first line above vanishes also because (y ·n) = 0 on N , although
F1 6= 0. We use optimal Poincaré-Wirtinger estimates already presented in the proof of Theorem
5.3 p. 20 in [24]:

∫

Π

∣

∣

∣

∣

F|y|
ρ2

∣

∣

∣

∣

2

dy ≤
∣

∣

∣

∣

F

ρ

∣

∣

∣

∣

2

L2(Π)

≤ |∇F|2
L2(Π)

Finally one has

(AαF,F)Π ≥ (1 − α2)|∇F|L2(Π)4

which implies coercivity of the operator if |α| < 1. Note that this result (also valid in the scalar
case) improves Lemma 4.3 in [5]. This is essentially due to the integration by parts performed on
the term (∇Fy/ρ2,F)Π which avoids estimating this term in a direct way.

We focus on the condition (ii). For all q ∈W 0,2
0 (Π) we look for F ∈ X0 s.t.

BαF = q, and ‖F‖X0
≤ k‖q‖W 0,2

0 (Π)

but this is equivalent to solve

div

(

F

ρα

)

=
q

ρα

Then if q ∈W 0,2
0 (Π) then q/ρα ∈W 0,2

α (Π) and by Proposition 8 there exists v ∈ Xα such that

div v =
q

ρα
and |v|

W
1,2
α (Π) ≤ k(C1, α)

∣

∣

∣

∣

q

ρα

∣

∣

∣

∣

W 0,2
α (Π)

Set F := ραv thanks to the isomorphism between W1,2
α (Π) and W

1,2
0 (Π) there exists a constant

s.t.

|F|
W

1,2
0 (Π) ≤ k1|v|W1,2

α (Π) ≤ k1k(C1, α)

∣

∣

∣

∣

q

ρα

∣

∣

∣

∣

W 0,2
α (Π)

= k′|q|W 0,2
0 (Π)

�

Proof of Theorem 3.1. Thanks to the equivalence between well-posedness and conditions (i) and
(ii) one concludes the existence and uniqueness of a pair (F,G) solving problem (23). Moreover
one has the a priori estimates :

‖F‖
W

1,2
0 (Π) + ‖G‖W 0,2

0 (Π) ≤ k′(‖ρα∆(R(w) + S(w))‖
W

−1,2
0 (Π) +

∥

∥

∥
ραh̃

∥

∥

∥

W
− 1

2
,2

0 (N)
)

they are obtained similarly to those of Theorem 2.34 p. 100 in [12]. The isomorphism between
weighted spaces mentioned above and the equivalence of problems (23) and (22) gives existence
and uniqueness of (w̃, θ) solving problem (22) and a priori estimates

‖w̃‖
W

1,2
α (Π) + ‖θ‖W 0,2

α (Π) ≤ k′′
{

‖∆(R(w) + S(w))‖
W

−1,2
α (Π) +

∥

∥

∥h̃
∥

∥

∥

W
− 1

2
,2

α (N)

}
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where the negative Sobolev spaces are defined as usually in the weighted Sobolev context [16] :

W−1,2
α (Π) = (W1,2

−α(Π))′. This gives existence and uniqueness of (w, θ) and due to the continuity
of the lifts R(w) and S(w) with respect to the data, one easily proves that

‖w‖
W

1,2
α (Π) + ‖θ‖W 0,2

α (Π) ≤ k′′′
{

‖f‖
W

1
2

,2

α (D∪N)
+ ‖h‖

W
− 1

2
,2

−α (N)

}

which ends the proof �

Proof of Theorem 2.2. For every pair (wi, θ) the boundary data is decreasing exponentially with
respect to |y2| on D ∪N . The data can be discontinuous near the origin, but this occurs only in
the horizontal component which does not need to be lifted up to N , so that one could smoothly
extend it in N keeping only the first component in D without changing the problem. This implies

that these data belong to W
1
2 ,2

α (D∪N) for the Dirichlet part and W
− 1

2 ,2
−α (N) for the pressure part,

for every α ∈ R. Thus we fulfill hypotheses of Theorem 3.1 and the result follows. �
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[19] W. Jäger and A. Mikelić. On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J.

Appl. Math., 60(4):1111–1127, 2000.
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